Practical Cryptanalysis of ARMADILLO-2

Thomas Peyrin (joint work with María Naya-Plasencia)

Nanyang Technological University - Singapore

ASK 2012

Nagoya, Japan - August 29, 2012

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

Outline

The ARMADILLO-2 function

Free-start collision attack

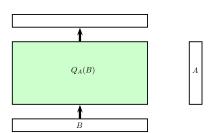
Semi-free-start collision attack

Conclusion

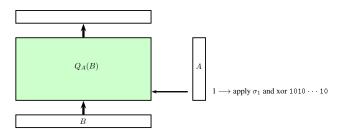
What is ARMADILLO-2?

- ARMADILLO-2 is a **lightweight**, **multi-purpose** cryptographic primitive published by Badel *et al.* at CHES 2010
- in the original article, ARMADILLO-1 is proposed but the authors identified a security issue and advised to use ARMADILLO-2
- ARMADILLO-2 is
 - a FIL-MAC
 - a stream-cipher
 - a hash function
- they are all based on an internal function that uses data-dependent bit transpositions
- 5 different parameters sizes defined

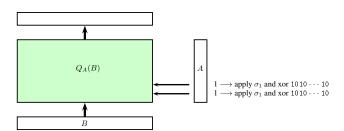
- the internal state is initialized with input *B* we apply *a* steps, where *a* is the bitsize of the input parameter *A*
- for each step i:
 - extract bit i from A
 - if A[i]=0, apply the **bitwise permutations** σ_0 , otherwise σ_1
 - bitwise **XOR** the constant 1010 · · · 10 to the internal state



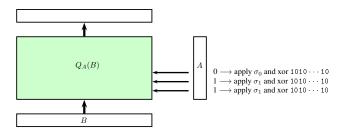
- the internal state is initialized with input B
 we apply a steps, where a is the bitsize of the input parameter A
- for each step i:
 - extract bit i from A
 - if A[i]=0, apply the **bitwise permutations** σ_0 , otherwise σ_1
 - bitwise **XOR** the constant $1010 \cdots 10$ to the internal state



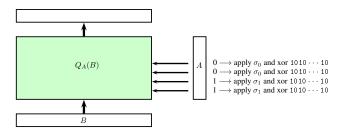
- the internal state is initialized with input *B* we apply *a* steps, where *a* is the bitsize of the input parameter *A*
- for each step i:
 - extract bit i from A
 - if A[i]=0, apply the **bitwise permutations** σ_0 , otherwise σ_1
 - bitwise **XOR** the constant 1010 · · · 10 to the internal state



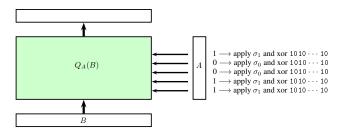
- the internal state is initialized with input B
 we apply a steps, where a is the bitsize of the input parameter A
- for each step i:
 - extract bit i from A
 - if A[i]=0, apply the **bitwise permutations** σ_0 , otherwise σ_1
 - bitwise **XOR** the constant $1010 \cdots 10$ to the internal state



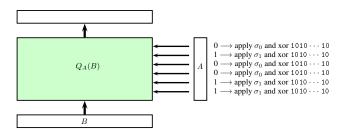
- the internal state is initialized with input B
 we apply a steps, where a is the bitsize of the input parameter A
- for each step i:
 - extract bit i from A
 - if A[i]=0, apply the **bitwise permutations** σ_0 , otherwise σ_1
 - bitwise **XOR** the constant $1010 \cdots 10$ to the internal state



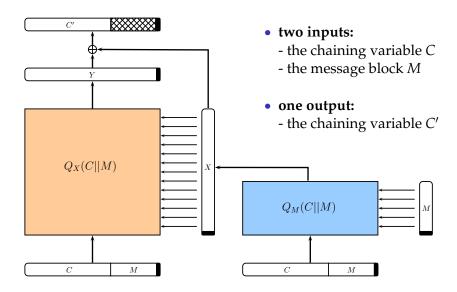
- the internal state is initialized with input B
 we apply a steps, where a is the bitsize of the input parameter A
- for each step *i*:
 - extract bit i from A
 - if A[i]=0, apply the **bitwise permutations** σ_0 , otherwise σ_1
 - bitwise **XOR** the constant $1010 \cdots 10$ to the internal state



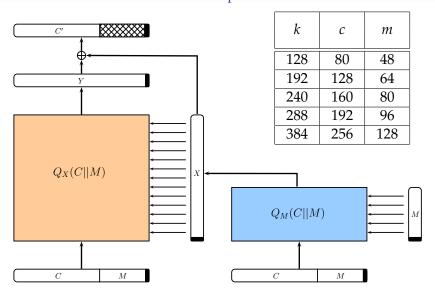
- the internal state is initialized with input B
 we apply a steps, where a is the bitsize of the input parameter A
- for each step i:
 - extract bit i from A
 - if A[i]=0, apply the **bitwise permutations** σ_0 , otherwise σ_1
 - bitwise **XOR** the constant $1010 \cdots 10$ to the internal state



The ARMADILLO-2 compression function



The ARMADILLO-2 compression function



Cryptanalysis of ARMADILLO-2

Abdelraheem et al. (ASIACRYPT 2011):

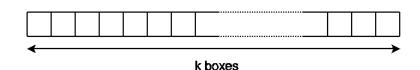
- key recovery attack on the FIL-MAC
- key recovery attack on the stream cipher
- (second)-preimage attack on the hash function

... but computation and memory complexity is very high, often close to the generic complexity (example 256-bit preimage with 2208 computations and 2^{205} memory or 2^{249} computations and 2^{45} memory)

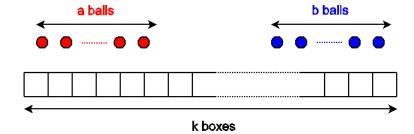
We provide **very practical attacks** (only a few operations):

- distinguisher and related-key recovery on the stream cipher
- free-start collision on the compression function (chosen-related IVs)
- semi-free-start collision on the compression/hash function (chosen IV)

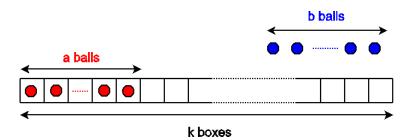
$$P_{\text{and}}(k,a,b,i) = \frac{\binom{a}{i}\binom{k-a}{b-i}}{\binom{k}{b}} = \frac{\binom{b}{i}\binom{k-b}{a-i}}{\binom{k}{a}}.$$



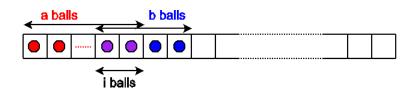
$$P_{\text{and}}(k,a,b,i) = \frac{\binom{a}{i}\binom{k-a}{b-i}}{\binom{k}{b}} = \frac{\binom{b}{i}\binom{k-b}{a-i}}{\binom{k}{a}}.$$



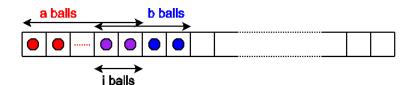
$$P_{\text{and}}(k,a,b,i) = \frac{\binom{a}{i}\binom{k-a}{b-i}}{\binom{k}{b}} = \frac{\binom{b}{i}\binom{k-b}{a-i}}{\binom{k}{a}}.$$



$$P_{\text{and}}(k,a,b,i) = \frac{\binom{a}{i}\binom{k-a}{b-i}}{\binom{k}{b}} = \frac{\binom{b}{i}\binom{k-b}{a-i}}{\binom{k}{a}}.$$



$$P_{\texttt{XOr}}(k,a,b,j) = \left\{ \begin{array}{ll} P_{\texttt{and}}(k,a,b,\frac{a+b-j}{2}) & \text{for } (a+b-j) \text{ even} \\ 0 & \text{for } (a+b-j) \text{ odd} \end{array} \right.$$

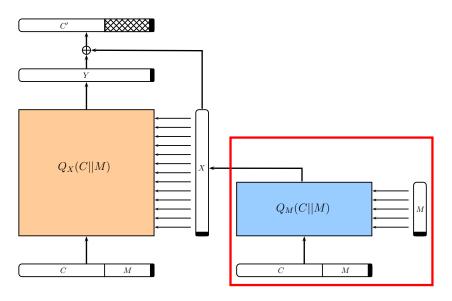


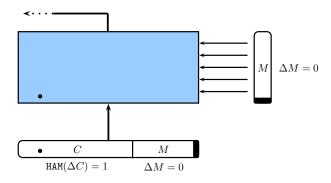
The ARMADILLO-2 function

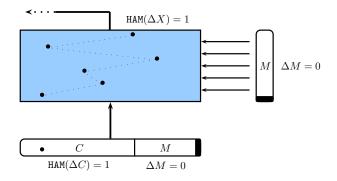
Free-start collision attack

Semi-free-start collision attack

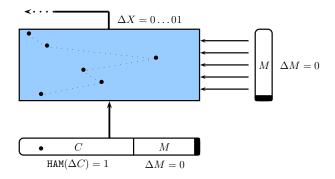
Conclusion



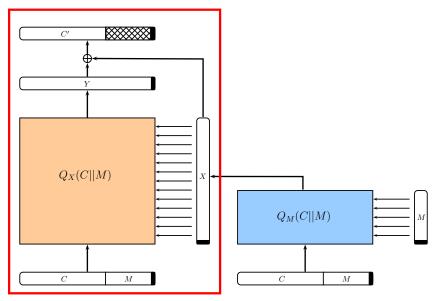


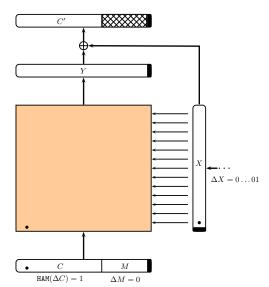


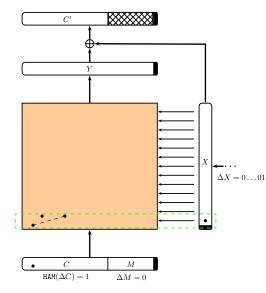
We have $\text{HAM}(\Delta X) = 1$ with probability 1



We have $\Delta X = 0 \dots 01$ with probability $P_X = \frac{1}{k}$

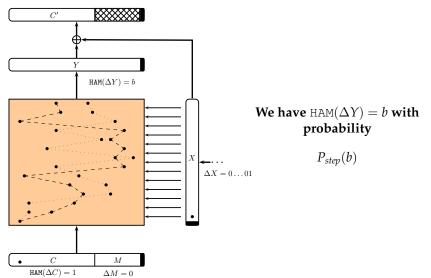


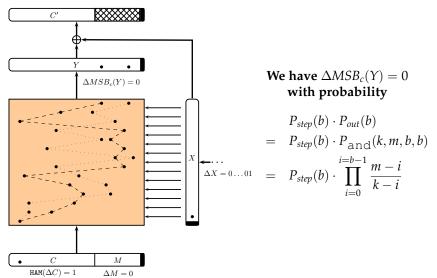




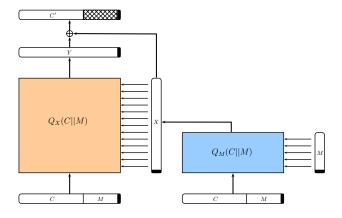
We have b active bits after first step with probability

 $P_{step}(b)$





The differential path - overall differential probability

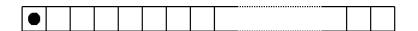


The overall collision probability is

$$P_{X} \cdot \sum_{i=1}^{i=m} P_{step}(i) \cdot P_{out}(i) = \frac{1}{k} \cdot \sum_{i=1}^{i=m} P_{step}(i) \cdot \prod_{i=0}^{i=b-1} \frac{m-i}{k-i}$$

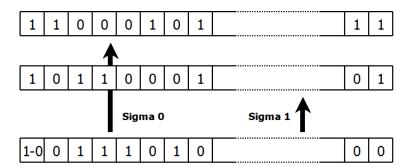
For randomly chosen values of *C* and *M*, the collision probability will be too small:

- we can choose b small, so that $P_{out}(b)$ is very high ...
- ... but $P_{step}(b)$ is very low anyway



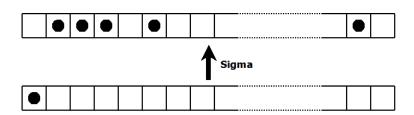
For randomly chosen values of *C* and *M*, the collision probability will be too small:

- we can choose b small, so that $P_{out}(b)$ is very high ...
- ... but $P_{step}(b)$ is very low anyway



For randomly chosen values of *C* and *M*, the collision probability will be too small:

- we can choose b small, so that $P_{out}(b)$ is very high ...
- ... but $P_{step}(b)$ is very low anyway



However, we can use the **freedom degrees**:

- by fixing the value of M and the difference position, one can first handle the right part of the differential path (Q_M)
- then by forcing the inputs value (C||M) to have very low (or very high) Hamming weight hw it will be possible to have $P_{step}(b)$ high

However, we can use the freedom degrees:

- by fixing the value of M and the difference position, one can first handle the right part of the differential path (Q_M)
- then by forcing the inputs value (C||M) to have very low (or very high) Hamming weight hw it will be possible to have $P_{step}(b)$ high



However, we can use the freedom degrees:

- by fixing the value of M and the difference position, one can first handle the right part of the differential path (Q_M)
 then by foreign the inputs value (C||M) to have your law (or your bight)
- then by forcing the inputs value (C||M) to have very low (or very high) Hamming weight hw it will be possible to have $P_{step}(b)$ high

$$P_{step}(b,hw) = \frac{hw}{c} \cdot P_{\texttt{XOr}}(k,hw,hw-1,b) + \frac{c-hw}{c} \cdot P_{\texttt{XOr}}(k,hw,hw+1,b)$$

Attack complexity and results

The total attack complexity is (probability P_X can be handled separately):

$$\frac{1}{\sum_{i=1}^{i=m} P_{step}(i,hw) \cdot P_{out}(i)}$$

scheme parameters			attack	
k	С	т	generic	attack
			complexity	complexity
128	80	48	2 ⁴⁰	2 ^{7.5}
192	128	64	2^{64}	2 ^{7.8}
240	160	80	280	28.1
288	192	96	296	28.3
384	256	128	2 ¹²⁸	$2^{8.7}$

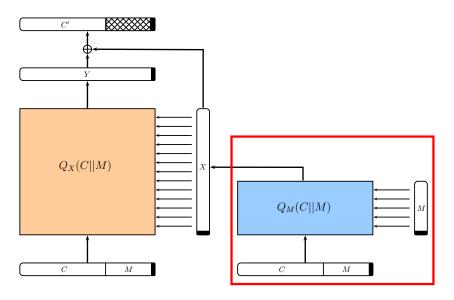
We implemented and verified the attack

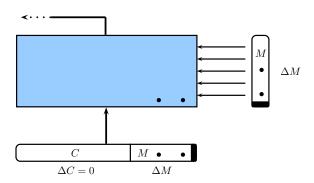
The ARMADILLO-2 function

Free-start collision attack

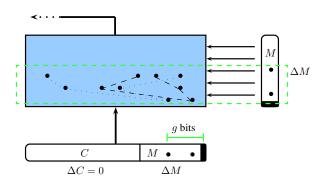
Semi-free-start collision attack

Conclusion

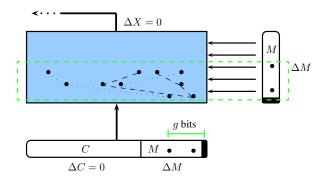




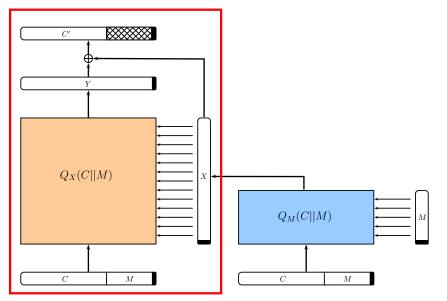
Assume we force the first g bits of M to a certain value (g being the most significant difference bit of M)

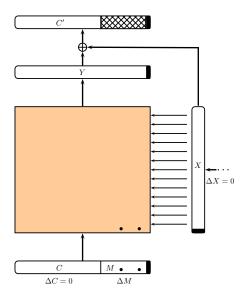


We would like a collision after step g, and this event can be obtained by solving a very particular system of linear equations since we know all first g steps

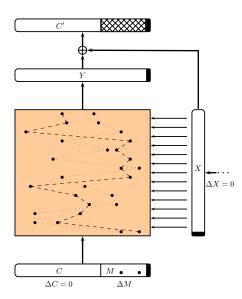


If the internal collision is obtained, we have $\Delta X = 0$ with probability 1

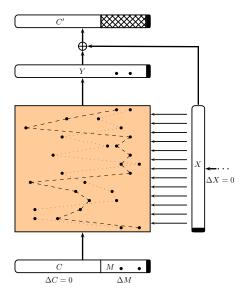




Assume we have b active bits on M



We have b active bits after applying Q_X with probability 1



We have $\Delta MSB_c(Y) = 0$ with probability

$$P_{out}(b) = P_{and}(k, m, b, b)$$
$$= \prod_{i=0}^{i=b-1} \frac{m-i}{k-i}$$

We know the value of the g first bit of M, therefore we know exactly the permutation applied to I and $I \oplus \Delta_I$ for the g first rounds of Q_M . For a collision after g rounds of Q_M , we want that

$$\sigma_{M_1[g-1]}(\cdots(\sigma_{M_1[1]}(\sigma_{M_1[0]}(I) \oplus cst) \oplus cst) \cdots)$$

$$= \sigma_{M_2[g-1]}(\cdots(\sigma_{M_2[1]}(\sigma_{M_2[0]}(I \oplus \Delta_I) \oplus cst) \oplus cst) \cdots)$$

and since all operations are linear, this can be rewritten as

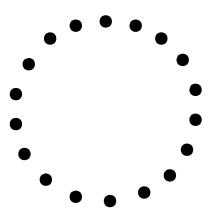
$$\rho(I) \oplus A = \rho'(I \oplus \Delta_I) \oplus B = \rho'(I) \oplus \rho'(\Delta_I) \oplus B$$

where

$$\rho = \sigma_{M_1[g-1]} \circ \cdots \sigma_{M_1[1]} \circ \sigma_{M_1[0]}
\rho' = \sigma_{M_2[g-1]} \circ \cdots \sigma_{M_2[1]} \circ \sigma_{M_2[0]}
B = \sigma_{M_2[g-1]} (\cdots (\sigma_{M_1[1]}(cst) \oplus cst) \cdots).$$

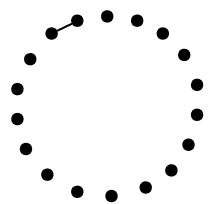
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



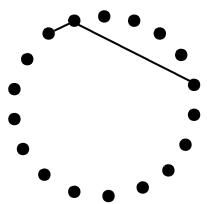
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



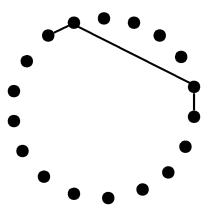
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



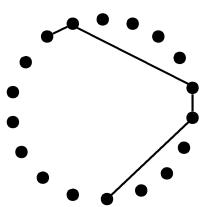
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



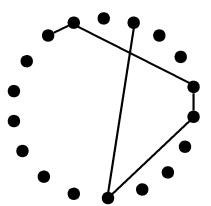
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



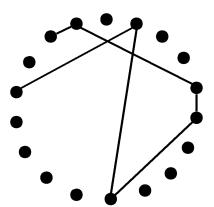
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



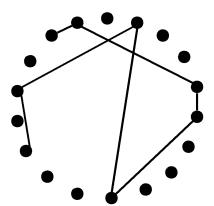
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



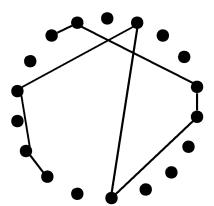
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



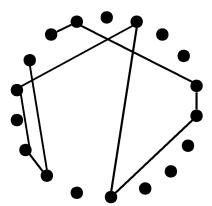
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



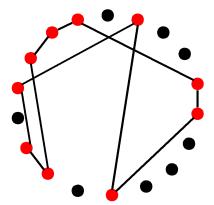
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



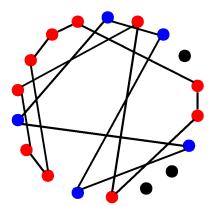
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



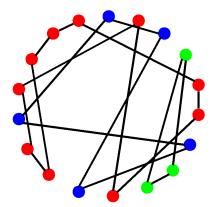
We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



We have to solve $\rho(I) \oplus \rho'(I) = A \oplus B \oplus \rho'(\Delta_I)$ which can be rewritten

$$I \oplus \tau(I) = C$$



The freedom degrees

The system of linear equations:

- admits at least a solution with a probability depending on the number of cycles of a complex composition of σ_0 and σ_1 (for random permutations σ_0 and σ_1 , we have a probability of $2^{-\log(k)}$)
- the average number of solutions is 1

Thus, in order to find a collision, we need:

- that the guess of the g bits of M is valid (with probability 2^{-g})
- that the b active bits in M are truncated on the output of Q_X (with probability $P_{out}(b)$)

Minimizing g and b will provide better complexity, but we need enough randomization to eventually find a solution

Attack complexity and results

The total attack complexity is:

$$\frac{2^g}{P_{out}(b)}$$
, with $\binom{g}{b} \ge 2 \cdot P_{out}^{-1}(b)$ so as to find a solution

scheme parameters			attack	
k	С	т	generic	attack
			complexity	complexity
128	80	48	2 ⁴⁰	28.9
192	128	64	2^{64}	2 ^{10.2}
240	160	80	280	2 ^{10.2}
288	192	96	2 ⁹⁶	2 ^{10.2}
384	256	128	2 ¹²⁸	$2^{10.2}$

We implemented and verified the attack

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

ARMADILLO-2 is not secure, attack complexities are very low:

- the diffusion can be controlled too easily
- local linearization allows to render linear the complex part of the differential paths
- the permutation $Q_A(B)$ preserves the parity of the input

Thank you for your attention!