Cryptanalysis of RIPEMD-128

Thomas Peyrin

joint work with Franck Landelle

NTU - Singapore

ASK 2013
Weihai, China - August 29 , 2013

TECHNOLOGICAL
UNIVERSITY

Introduction
@0000

Motivations to study RIPEMD-128

@ MDx-like hash function is a very frequent design :
1990’ MDx (MD4, MD5, SHA-1, HAVAL, RIPEMD)
2002 SHA-2 (SHA-224, ..., SHA-512)
@ Some old hash functions are still unbroken :
Broken MD4, MD5, RIPEMD-0
Broken HAVAL
Broken sHA-1
Unbroken RIPEMD-128, RIPEMD-160
Unbroken SHA-2
@ RIPEMD-128

Design 15 years old.
unbroken 9 years after Wang'’s attacks [WLF+05].

Introduction
(o] Jelele]

General design and security notions

@ A hash function # is often defined by repeated
applications of a compression function h.

@ A collision on the hash function H always comes from a
collision on the compression function h:

H(M) = H(M*) = h(cv, m) = h(cv*, m")

The conditions on cv and m give different kind of attacks :
Collision cv = cv* fixed and m # m* free.

Semi-free-start Collision cv = cv* and m # m* are free.

Free-start Collision (cv, m) # (cv*, m*) are free.

The cryptanalysis history of MD5 is a good example of why
(semi)-free-start collisions are a serious warning.

Introduction
[e]e] Tele]

Results on RIPEMD-128 compression function

RIPEMD-128 parameters :
Digest 128 bits
Steps 64 steps (4 rounds of 16 steps each)

Known and new results on RIPEMD-128 compression function:

Target #Steps Complexity Ref.
collision 48 240 [MNS12]
collision 60 257.57 new
collision 63 259.91 new
collision Full 261.57 new
non-randomness 52 2107 [SW12]
non-randomness Full 259.57 new

Introduction
[e]e]e] o]

In this talk

Function RIPEMD-128 compression function

Attack a semi-free-start collision
Find cv, m # m*/ h(cv, m) = h(cv, m").

Strategy @ Choose a message difference 6, = m& m*

— new message difference used

@ Find a differential path on all intermediate
state variables
— new type of differential path with two
non-linear parts

@ Find conforming cv and m
— new branch merging technique for collision
search

Introduction
0000e

Outline

6 Description of RIPEMD-128

9 Finding a differential path
@ Finding a message difference
@ Finding the non-linear part

9 Finding a conforming pair
@ Generating a starting point
@ Merging the 2 branches

@ Conclusion

Description of RIPEMD-128

Outline

6 Description of RIPEMD-128

Description of RIPEMD-128

@000

A compression function

cv

m = mg||m||---||ms

Message block m

Expanded message block W

Many steps of state update

‘]

‘ L]

Compression Function

[

New

cv

Description of RIPEMD-128
[e] le]e]

Overview of RIPEMD-128 compression function

512 bits
Message Block

Chaining Variable

Left Branch 128 bits Right Branch
»| 64 MD4-like steps 64 MD4-like steps =

Initial State Initial State
(X,3,...,X0) (Y_g,...,Y())

Final State Final State
(X61,...,X64) Y (Y61a"'7y64)

| o |
>

Description of RIPEMD-128
[e]e] o]

The step function

! v
32 bits | e Y 4
¥
- Yo
\ ,
B &fl=— Yi_4
Y
0 ! A
Wy W/ —=t8 o Yii
r
Si

Left Branch - step /, round j Right Branch - step /, round j

Description of RIPEMD-128
[e]e]e])

The boolean functions

Boolean functions in RIPEMD-128:
@ XOR(x,y,z) =xady® z,
@ IF(x,y,2) =XxANy@®XANz
@ ONX(x,y,z) =(xVy)®z

Stepsi | Round | ®/(x,y,2) ®i(x,y,2)

O0to 15 0 XOR(X, Y, 2) IF(z,X,Y)
16 to 31 1 IF(X,y,2) ONX(X, Y, 2)
32 to 47 2 ONX(X, y, 2) IF(X,y,2)
48 to 63 3 IF(z,X,y) XOR(X, Y, Z)

Finding a differential path

Outline

9 Finding a differential path

Finding a differential path
€00

The classical strategy (example SHA-1)

@ Find a message difference 6,, and a differential path with high
probability on the middle and last steps (ideally after the first
round).

@ Find a “realistic” non-linear differential path on the first steps
(ideally on the first round for a semi-free-start collision).

@ Find a chaining variable cv and a message m such that the state
differential path is followed (use special freedom degrees tricks
like neutral bits, message modification, boomerangs, etc.).

Expanded message difference

Non Linear Linear

Finding a differential path
0e0

The classical strategy (example RIPEMD-1238)

@ Find a message difference 6,, and a differential path with high
probability on the middle and last steps for both branches.

@ Find a “realistic” non-linear differential path on the first steps.

@ Find a conforming chaining variable cv and a message m.

Expanded message difference

right
|

Non Linear Linear

left

xpanded message

Finding a differential path
ooe

What shape should have the differential path ?

Boolean functions can help to control the diff. propagation.

Properties of the boolean functions:
@ XOR : no control of differential propagation
@ onx: some control of differential propagation and permits
low diffusion.
@ TF : a good control of differential propagation and permits
no diffusion.

Stepsi | Roundj ®(x,y,2) ®i(x,y,2)

Oto 15 0 XOR(X, Y, Z) IF(z,X,Y)
16 to 31 1 IF(X,Yy,2) ONX(X, Y, 2)
32 to 47 2 ONX(X, Y, 2) IF(x, Yy, 2)
48 to 63 3 1F(z,X,y) XOR(X, Y, 2)

Finding a differential path
00

Finding a message difference

Outline

6 Description of RIPEMD-128
e Finding a differential path

@ Finding a message difference

9 Finding a conforming pair

@ Conclusion

Finding a differential path
0e0

Finding a message difference

Choosing the message block difference

Goals keep low ham. weight on the expanded message block
Choice Put a difference on a single word of message

- - -
= |_. Right expanded dlfferTence message 0}y ﬂ
[N Il
o v—
& - ONX IF XOR —
Round 0 Round 1 Round 2 Round 3
XOR IF ONX IF

—

Left

| Left expanded d*ﬁ_eﬁence message d}y ‘—‘

With the message block difference on my:
@ “no difference” on rounds with xXOR function.
@ Non-linear differential paths are in the round with TF

Finding a differential path
ooe

Finding a message difference

Choosing the message block difference

mjy4 is really “magic” with regards to our criteria.

However, how to handle these two non-linear parts which
are in different branches, and not in the first round ?

|_. Right expanded difference message " ﬂ

1)
. [+ |

Round 0 Round 1 Round 2 Round 3
XOR IF ONX IF

Right

Left

| Left expanded d*ﬁ_e%ence message "—‘

Finding a differential path
€000

Finding the non-linear part

Outline

6 Description of RIPEMD-128
e Finding a differential path
@ Finding the non-linear part

9 Finding a conforming pair

@ Conclusion

Finding a differential path
0000

Finding the non-linear part

Automatic tool on generalized conditions

We implemented a tool similar to [CR06] for sHA-1 that uses
generalized conditions.

(b,b*) 1(0,0) | (1,0) | (0,1) | (1,1)

Hexa | Notation

0xF ? v v v v
0x9 - v v
0x6 X v v

0x1 0 v

0x2 u v

Ox4 n v

0x8 1 v

Where
@ b: a bit during the treatment the message m
@ b*: the same bit for the second message m*.

Finding a differential path
0000

Finding the non-linear part

Left branch

Finding a differential path
0000

Finding the non-linear part

Left branch

Step Xi Wi ni
I e B R T T LT 13
14: -omi e R 14
15: -c-eme - IR B R R T LR LR P T 15
16: ----------- unnnn------- O-mmmmms | e 7
17: ------- n---00000------- 1-------- | -- I 4
18: ------- 0---01111---------mmmn | s 13
19: ---u---1------- I N B 1
20: ---0----------- Q------------ B--- | s 10
A R lo-emmmee- N-me | mmmm e 6
22: - unnnn-------- [B e 15
23: - 00000-------- U--- | mmmme e 3
24: - n-11101-------- I 12
250 ----------- n-0-------------- B 0
26: ------- U---0-1--c-mmmmmmm e | e 9
27: 1------ 0---1-U-------mmea e | e 5
28: 0------ 1----- Q-----mee - | - 2
29: nN------------ I LR LR T | Xemmm e 14
308 U-----mmmm e I R LR LT LT LT 11
31 U----mm e | mmrmm - 8
32 l---mmmr e | mmm - 3
330 s I e e R L LT 10
34 e | Xemm - 14

el
=4
[[[
[| [[
e [[
[[[
al
=
=
5]
= %
s
<
o
8 [[
£
©
=)
£
=]
£
i
el 2 3 C
> (]
[
[
[}
3o
I
=1
o,
D o0 e e e o e
+ O~
12} — —

Finding the non-linear part

Finding a differential path
oooe

Finding the non-linear part

Right branch

Step Yi Wi mi
: 0 - --—-—- 5
0l: 1 - X ———- 14
02: n - -——— 7
03: - 0
04: --0000000---- - 9
05: --1111111---- - ——— 2
06: --nuuuuuu---- - -——-- 11
07: --01 0-000 --1 4
08: -01 0-011 13
09: -1 n-nnn -—— 6
10: 1n010000----- - ---- 15
11: 00111111-- - 8
12: nuuuuuuu-- - 1
13: ——————- 1-- - ---—- 10
14: ———-mu- l1----01----u- - -———— 3
15: ——————- u----10----0- - 12
16: 0-u----u - 6
17: u-0----u - -—— 11
18: u 0 - -———— 3
19: 0----0 - -——— 7
20: u- - 0

Finding a conforming pair

Outline

e Finding a conforming pair

Finding a conforming pair
0

Following a classical differential path

A classical collision search is composed of two subparts:
step 1 handling the low-probability non-linear parts using
the message block freedom
step 2 the remaining steps in both branches are verified
probabilistically

Expanded message difference oy

\J

\J

Step 1 Step 2

Finding a conforming pair

Finding a conforming pair
oe

XOR —

IF

Finding a conforming pair

Finding a conforming pair
oe

Right

Left

Our collision search is composed of three subparts:

O
T—1
—
XOR IE ONX IF
| 3 dl
w
Step 2 Step 1 Step 3

step 1 Satisfy the two non-linear parts using the freedom from both

branches internal states and a few message words

step 2 From this starting point, merge the two branches using

some remaining free message words

step 3 Handle probabilistically the linear part in both branches

Finding a conforming pair
®000

Generating a starting point

Outline

6 Description of RIPEMD-128

e Finding a differential path

9 Finding a conforming pair
@ Generating a starting point

@ Conclusion

Generating a starting point

Finding a conforming pair

0@00

Satisfying the two non-linear parts simultaneously (step 1)

Right

Left

Our collision search is composed of three subparts:

Oy
T
1F _ ONX IF XOR
L
XOR IF ONX IF
| T dl
W
Step 2 Step 1 Step 3

step 1 Satisfy the two non-linear parts using the freedom from both

branches internal states and a few message words

Generating a starting point

Finding a conforming pair

0@00

Satisfying the two non-linear parts simultaneously (step 1)

Right

Left

Our collision search is composed of three subparts:

O
T
IF ‘ ONX IF XOR
L
XOR IE ONX IF
| T al
W
Step 2 Step 1 Step 3

step 1 Satisfy the two non-linear parts using the freedom from both

branches internal states and a few message words

Generating a starting point

Finding a conforming pair

0@00

Satisfying the two non-linear parts simultaneously (step 1)

Right

Left

Our collision search is composed of three subparts:

O
T
IF ‘ ONX IF XOR
L
XOR IF ONX IF
| T al
W
Step 2 Step 1 Step 3

step 1 Satisfy the two non-linear parts using the freedom from both

branches internal states and a few message words

Finding a conforming pair
000

Generating a starting point

Satisfying the two non-linear parts simultaneously (step 1)

= UL];m
2h
& p ONX IF XOR s
| XOR ONX IF s
3
hh Il 11l
Step 2 Step 1 Step 3

Our collision search is composed of three subparts:
step 1 Satisfy the two non-linear parts using the freedom from both
branches internal states and a few message words

Finding a conforming pair
00®0

Generating a starting point

Handling probabilistically the linear parts (step 3)

Probabilities of the linear parts are fixed after the first step:
@ The probability of the left branch is 215,
@ The probability of the right branch is 2-14-32,

@ one extra bit condition in order to get a collision when
adding the two branches

@ — The overall probability for collision is 2-30-32,
(these probabilities have been verified experimentally)

Our collision search is composed of three subparts:

step 3 Handle probabilistically the linear part in both branches

Finding a conforming pair
oooe

Generating a starting point

Handling probabilistically the linear parts (step 3)

Left

I I PR

Step 2 Step 1 Step 3

— we need to obtain 23032 golutions of the merging system

Our collision search is composed of three subparts:

step 3 Handle probabilistically the linear part in both branches

Finding a conforming pair
©000000

Merging the 2 branches

Outline

6 Description of RIPEMD-128

e Finding a differential path

9 Finding a conforming pair
@ Merging the 2 branches

@ Conclusion

Merging the 2 branches

Finding a conforming pair

Merging the two branches (step 2)

O®@00000

Right

Left

6 r
w
—
ONX IF XOR
IF ONX IF
1
W
Step 2 Step 1 Step 3

Our collision search is composed of three subparts:

step 2 From this starting point, merge the two branches using
some remaining free message words

Finding a conforming pair
0000000

Merging the 2 branches

The starting point

=];III;I:IEI]]%
=
20
i IF ONX IF XOR T
— | XOR ONX IF N
5

Bl #ibil

Step 2 Step 1 Step 3

What is fixed ?
Message My2, M3, Mo, My, Mg, M5, Mg, M43, M4, M1, M7 .
Left State (X12, - ,X24)
nght State (Y3, Y47 ey Y14).
What is free ?
Message mg, Mo, Ms, Mg, My .

Finding a conforming pair
000@000
Merging the 2 branches

Prepare the merging system

The system is quite complex:

158695 [0y o ova ovg) |, O Seps
mo ms
mo Mg
ms Mo
my Mg
Mg mo
(Xi2, Xi3, X14, Xi5) (Ya, Ya, Y5, Ye)

The probability that a random choice of mg, m», ms, mg, my4
gives a solution is
0—128

Finding a conforming pair
0000000

Merging the 2 branches

Reducing the merging system

@ in the search for a starting point (step 1), we chose mj
such that: Y3 = Y4

@ randomly chose a my4 value and deduce mygy such that:
X7 B my = OxEEEEEEEE

— the system becomes much simpler and represents less
steps of the compression function.

6 Steps
> .| (cv,cvi,cve,cva) | 6 Steps
my ms
mo mo
mg mso

Finding a conforming pair
0000000

Merging the 2 branches

Solving the merging system

The goal now is to find mg, mo, ms such that
Xi=Yforie{-3,-2,-1,0}

% Ve[X Vo[X Ve X V5]

mo 4 v ; v v v v v
Mo R4 1 1 v
ms ! ! v o v L Y

To solve the merging system:

Finding a conforming pair
0000000

Merging the 2 branches

Solving the merging system

The goal now is to find mg, mo, ms such that
Xi=Yforie{-3,-2,-1,0}

L X Yol X i Vi]Xo Yo|lXs Y]
mo Vv Vv Vv
Mo Y | | v
ms ! ! v o v L Y

To solve the merging system:
@ find a value of ms that verifies X_1 = Y_4

Finding a conforming pair
0000000

Merging the 2 branches

Solving the merging system

The goal now is to find mg, mo, ms such that
Xi=Yforie{-3,-2,-1,0}

[[0 i (X Va[Xs ¥

ms

\
mo : v
\

|
I
|
|
"

To solve the merging system:
@ find a value of ms that verifies X_1 = Y_4
@ deduce my to fulfill Xo = Yy

Finding a conforming pair
0000000

Merging the 2 branches

Solving the merging system

The goal now is to find mg, mo, ms such that
Xi=Yforie{-3,-2,-1,0}

e [VX Ve [Xs V5]

ms

| |
I I
| |
| |
" "

To solve the merging system:
@ find a value of ms that verifies X_1 = Y_4
@ deduce my to fulfill Xo = Yy

© obtain ms to satisfy a combination of X_» = Y_, and
X 3=Y_3

Finding a conforming pair
0000000

Merging the 2 branches

Solving the merging system

The goal now is to find mg, mo, ms such that
Xi=Yforie{-3,-2,-1,0}

[[[7 X Y [Xs V]

| |
I I
| |
| |
" "

To solve the merging system:
@ find a value of m, that verifies X_y = Y_4
@ deduce my to fulfill Xo = Yy
© obtain ms to satisfy a combination of X_» = Y_, and
X3=Y_3
© finally the 4" equation is verified with probability 232

Finding a conforming pair
000000@

Merging the 2 branches

Complexity of the semi-free-start collision attack

@ Solving the merging system costs 19 RIPEMD-128 step
computations (19/128 of the compression function cost).

@ The probability of success of the merging is 234
(because of 4" equation and 2 extra hidden bit conditions)

@ We need to find 23032 solutions of the merging system.

The total complexity is therefore
19/128 x 234 x 28032 o 26157

calls to the compression function.

Conclusion

Outline

0 Conclusion

Conclusion
[leJele]e]

Conclusion

This work:

@ a new cryptanalysis technique for parallel branches based
functions

@ a collision attack on the full compression function of
RIPEMD-128

@ a distinguisher on the hash function of RIPEMD-128
@ a LOT of details (many not described here)

Perspectives:
@ improvements of this technique
@ an example of collision for RIPEMD-1287?
@ apply to other 2-branch hash functions
@ what about RIPEMD-1607?

Cryptanalysis of RIPEMD-160

Thomas Peyrin
joint work with F. Mendel, M. Schlaffer, L. Wang and S. Wu

(accepted at Asiacrypt 2013)

ASK 2013
Weihai, China - August 29 , 2013

TECHNOLOGICAL
UNIVERSITY

Conclusion
[e]e] le]e]

Results on RIPEMD-160 compression function

RIPEMD-160 parameters :
Digest 160 bits
Steps 80 steps (5 rounds of 16 steps each)

Known and new results on RIPEMD-160 compression function:

Target #Steps Complexity Ref.
semi-free-start collision 36 low (practical) [MNS12]
. ttround]

semi-free-start collision 36 270-4 new
| semi-free-start collision 42 25 new |

Conclusion
00080

RIPEMD-160 >> RIPEMD-128

Why are the improvements far less impressive for
RIPEMD-1607?

The technique we applied on RIPEMD-128 is much harder to
apply on RIPEMD-160:
@ finding non-linear parts is more difficult than for RIPEMD-128

@ evaluating the probability of a differential path is hard (because
two additions are interlinked)

@ ... so more complicated to have a global view of what will and
what won’t work when trying to organize the attack

On top of that, RIPEMD-160 has

@ better diffusion (impossible to force no diffusion, even in IF
rounds)

@ more steps ...

Thank you for your attention !

We are looking for good PhD students
in symmetric key crypto.

If interested, please contact me at:
thomas.peyrin@ntu.edu.sg

TECHNOLOGICAL
UNIVERSITY

mailto:thomas.peyrin@ntu.edu.sg

	Description of RIPEMD-128
	Finding a differential path
	Finding a message difference
	Finding the non-linear part

	Finding a conforming pair
	Generating a starting point
	Merging the 2 branches

	Conclusion

