Cryptanalysis of RIPEMD-128

Introduction

Thomas Peyrin

joint work with Franck Landelle

NTU - Singapore

ASK 2013

Weihai, China - August 29, 2013

Motivations to study RIPEMD-128

MDx-like hash function is a very frequent design :

```
1990' MDx (MD4, MD5, SHA-1, HAVAL, RIPEMD)
2002 SHA-2 (SHA-224,..., SHA-512)
```

Some old hash functions are still unbroken :

```
Broken MD4, MD5, RIPEMD-0
Broken HAVAL
Broken SHA-1
Unbroken RIPEMD-128, RIPEMD-160
Unbroken SHA-2
```

• RIPEMD-128

Design 15 years old. unbroken 9 years after Wang's attacks [WLF+05].

General design and security notions

Introduction

- A hash function \mathcal{H} is often defined by repeated applications of a compression function h.
- A collision on the hash function H always comes from a collision on the compression function h:

$$\mathcal{H}(M) = \mathcal{H}(M^*) \Longrightarrow h(cv, m) = h(cv^*, m^*)$$

The conditions on cv and m give different kind of attacks:

Collision $cv = cv^*$ fixed and $m \neq m^*$ free.

Semi-free-start Collision $cv = cv^*$ and $m \neq m^*$ are free.

Free-start Collision $(cv, m) \neq (cv^*, m^*)$ are free.

The cryptanalysis history of MD5 is a good example of why (semi)-free-start collisions are a serious warning.

Results on RIPEMD-128 compression function

RIPEMD-128 parameters:

Digest 128 bits

Steps 64 steps (4 rounds of 16 steps each)

Known and new results on RIPEMD-128 compression function:

Target	#Steps	Complexity	Ref.
collision	48	2 ⁴⁰	[MNS12]
collision	60	2 ^{57.57}	new
collision	63	2 ^{59.91}	new
collision	Full	2 ^{61.57}	new
non-randomness	52	2 ¹⁰⁷	[SW12]
non-randomness	Full	2 ^{59.57}	new

In this talk

Introduction

Function RIPEMD-128 compression function

Attack a semi-free-start collision

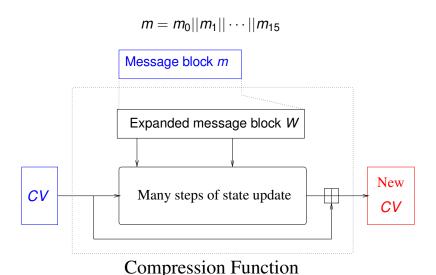
Find
$$cv, m \neq m^* / h(cv, m) = h(cv, m^*)$$
.

Strategy

- Choose a message difference $\delta_m = m \oplus m^*$
 - ightarrow new message difference used
- Find a differential path on all intermediate state variables
 - \rightarrow new type of differential path with two non-linear parts
- Find conforming cv and m
 - ightarrow new branch merging technique for collision search

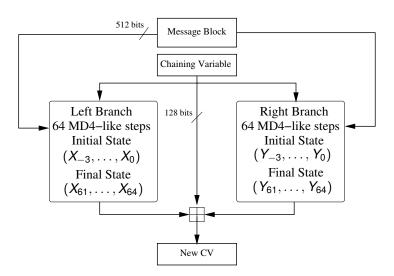
Outline

- **1** Description of RIPEMD−128
- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches
- 4 Conclusion

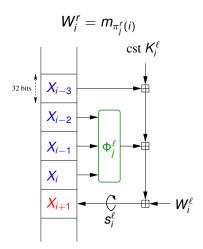

Outline

Introduction

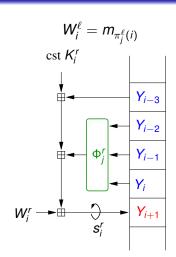
- **1 Description of** RIPEMD−128
- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches
- 4 Conclusion


Conclusion

A compression function



Overview of RIPEMD-128 compression function



The step function

Left Branch - step *i*, round *j*

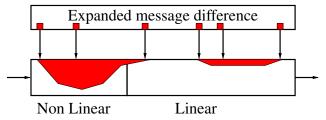
Right Branch - step *i*, round *j*

The boolean functions

Introduction

Boolean functions in RIPEMD-128:

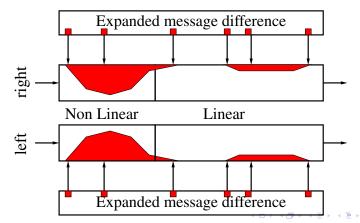
- $XOR(x, y, z) := x \oplus y \oplus z$,
- $\mathsf{IF}(x,y,z) := x \wedge y \oplus \bar{x} \wedge z$
- $\mathsf{ONX}(x,y,z) := (x \vee \bar{y}) \oplus z$


Steps i	Round j	$\Phi_j^\ell(x,y,z)$	$\Phi_j^r(x,y,z)$
0 to 15	0	XOR(x, y, z)	IF(z,x,y)
16 to 31	1	IF(x, y, z)	ONX(x, y, z)
32 to 47	2	ONX(x, y, z)	IF(x, y, z)
48 to 63	3	IF(z,x,y)	XOR(x, y, z)

Outline

- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- - Generating a starting point
 - Merging the 2 branches

The classical strategy (example SHA-1)


- Find a message difference δ_m and a differential path with high probability on the middle and last steps (ideally after the first round).
- Find a "realistic" non-linear differential path on the first steps (ideally on the first round for a semi-free-start collision).
- Find a chaining variable cv and a message m such that the state differential path is followed (use special freedom degrees tricks like neutral bits, message modification, boomerangs, etc.).

The classical strategy (example RIPEMD-128)

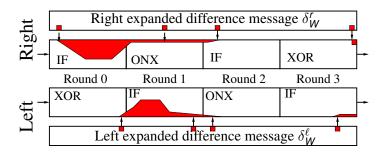
- Find a message difference δ_m and a differential path with high probability on the middle and last steps for both branches.
- Find a "realistic" non-linear differential path on the first steps.
- \odot Find a conforming chaining variable cv and a message m.

What shape should have the differential path?

Boolean functions can help to control the diff. propagation.

Properties of the boolean functions:

- XOR: no control of differential propagation
- ONX: some control of differential propagation and permits low diffusion.
- IF: a good control of differential propagation and permits no diffusion.

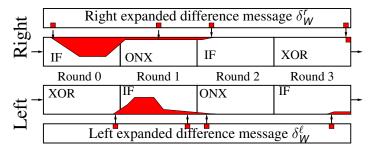

Steps i	Round j	$\Phi_j^I(x,y,z)$	$\Phi_j^r(x,y,z)$
0 to 15	0	XOR(x, y, z)	IF(z,x,y)
16 to 31	1	IF(x, y, z)	ONX(x, y, z)
32 to 47	2	ONX(x, y, z)	IF(x, y, z)
48 to 63	3	IF(z, x, y)	XOR(x, y, z)

Outline

- Description of RIPEMD-128
- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches
- 4 Conclusion

Introduction

Goals keep low ham. weight on the expanded message block Choice Put a difference on a single word of message


With the message block difference on m_{14} :

- "no difference" on rounds with XOR function.
- Non-linear differential paths are in the round with IF

 m_{14} is really "**magic**" with regards to our criteria.

However, how to handle these two non-linear parts which are in different branches, and not in the first round?

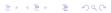
Finding the non-linear part

Outline

- Description of RIPEMD-128
- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches
- 4 Conclusion

Finding the non-linear part

Introduction


Automatic tool on generalized conditions

We implemented a tool similar to [CR06] for SHA-1 that uses generalized conditions.

	(b, b^*)	(0,0)	(1,0)	(0, 1)	(1,1)
Hexa	Notation				
0xF	?	✓	✓	✓	✓
0x9	_	✓			✓
0x6	Х		✓	✓	
0x1	0	✓			
0x2	u		✓		
0x4	n			✓	
0x8	1				√

Where

- b: a bit during the treatment the message m
- b*: the same bit for the second message m*.

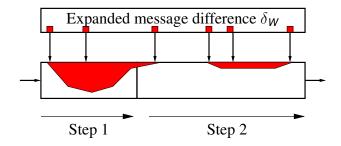
٠,,

Left branch

Step) Xi	Wi	Πi
13:			13
14:		x	14
15:	777777777777777777777777777777777		15
16:	7777777777777777777777777777777777		7
17:	???????????????????????????????		4
18:	7777777777777777777777777777777777		13
19:	7777777777777777777777777777777777		1
20:	7777777777777777777777777777777777		10
21:	???????????????????????????????		6
22:	???????????????????????????????		15
23:	???????????????????????????????		3
24:	???????????????????????????????		12
25:	???????????????????????????????		0
26:	u		9
27:	10u		5
28:	010		2
29:	n1	x	14
30:	u		11
31:	u		8
32:	1		3
33:			10
34:		x	14
35:			4

Step Yi	Wi π	īί
:		
:		
:		
:		5
01:	x	14
02: ?????????????????????????????		7
03: ?????????????????????????????		0
04: ?????????????????????????????		9
05: ?????????????????????????????		2
06: ?????????????????????????????		11
07: ??????????????????????????????		4
08: ?????????????????????????????		13
09: ?????????????????????????????		6
10: ?????????????????????????????		15
11: ?????????????????????????????		8
12: ?????????????????????????????		1
13: ?????????????????????????????		10
14: ?????????????????????????????		3
15:u		12
16:uu		6
17:u-0u		11
18:u0		3
19: 00		7
20: u		0

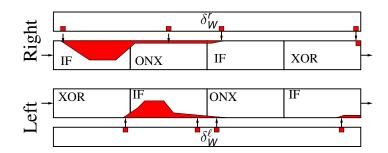
Ste	p Yi	Wi	πi
:			
:			
:			
:			5
01:		x	14
02:	n		7
03:			0
04:	0000000		9
05:	1111111		2
06:	nuuuuuu		11
07:	010-000	1	-
	-010-011		13
	-1n-nnn		6
10:	1n010000		15
	00111111000nu-n		8
	nuuuuuuu11110		-
	1nnunu		10
	101u		3
	u100		12
	0-uu		6
	u-0u		11
	u0		3
	00		7
20:	u		0


Outline

- Description of RIPEMD-128
- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches
- Conclusion

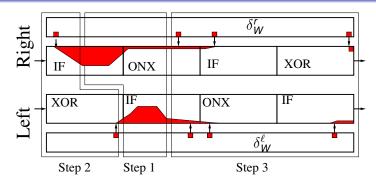
Following a classical differential path

A classical collision search is composed of two subparts:


- step 1 handling the low-probability non-linear parts using the message block freedom
- step 2 the remaining steps in both branches are verified probabilistically

Finding a conforming pair

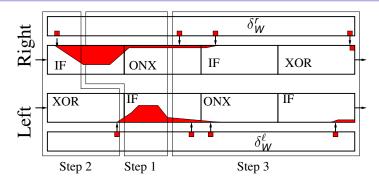
Introduction



- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

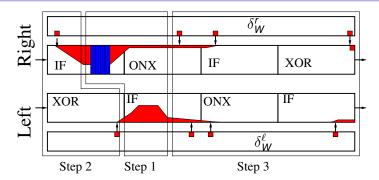
Finding a conforming pair

Introduction

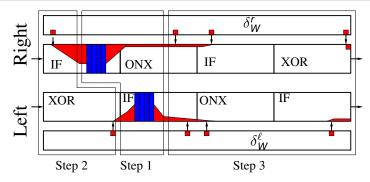


- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this starting point, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

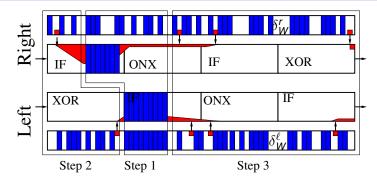
Outline


- Description of RIPEMD-128
- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches
- 4 Conclusion

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches


Introduction

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

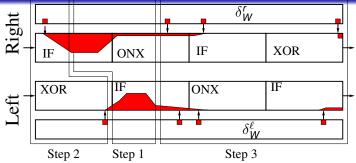

Satisfying the two non-linear parts simultaneously (step 1)

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Introduction

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

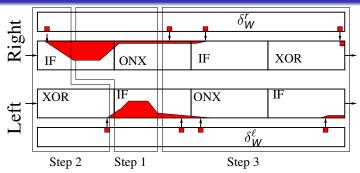
Introduction


Probabilities of the linear parts are fixed after the first step:

- The probability of the left branch is 2^{-15} .
- The probability of the right branch is $2^{-14.32}$.
- one extra bit condition in order to get a collision when adding the two branches
- ullet The overall probability for collision is $2^{-30.32}$.

(these probabilities have been verified experimentally)

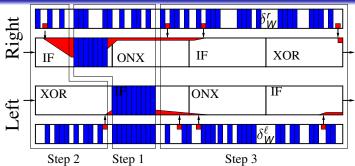
- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches


 \rightarrow we need to obtain $2^{30.32}$ solutions of the merging system

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

- Description of RIPEMD-128
- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches
- 4 Conclusion

Our collision search is composed of three subparts:


- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this starting point, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Merging the 2 branches

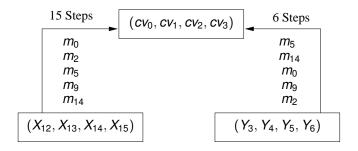
Introduction

The starting point

What is fixed?

Message m_{12} , m_3 , m_{10} , m_1 , m_8 , m_{15} , m_6 , m_{13} , m_4 , m_{11} , m_7 .

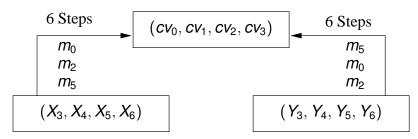
Left State (X_{12},\ldots,X_{24})


Right State $(Y_3, Y_4, \ldots, Y_{14})$.

What is free?

Message $m_0, m_2, m_5, m_9, m_{14}$.

The system is quite complex:


The probability that a random choice of m_0 , m_2 , m_5 , m_9 , m_{14} gives a solution is

$$2^{-128}$$

Reducing the merging system

- in the search for a starting point (step 1), we chose m_{11} such that: $Y_3 = Y_4$
- randomly chose a m_{14} value and deduce m_9 such that: $X_5^{>>>5} \boxminus m_4 = 0$ xffffffff

 \rightarrow the system becomes \color{red} much simpler and represents less steps of the compression function.

Solving the merging system

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	X_0	Y_0	X_{-1}	Y_{-1}	<i>X</i> ₋₂	Y_{-2}	<i>X</i> ₋₃	<i>Y</i> ₋₃
m_2		\checkmark	✓	√	√	\checkmark	√	√
m_0		√					√	
m_5					√		√	✓

- ① find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- ② deduce m_0 to fulfill $X_0 = Y_0$
- obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- ① finally the 4^{th} equation is verified with probability 2^{-32}

Solving the merging system

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	X_0	Y_0	<i>X</i> ₋₁	Y_{-1}	<i>X</i> ₋₂	Y_{-2}	<i>X</i> ₋₃	Y_{-3}
m_2		\checkmark	\checkmark	\checkmark	✓	√	√	√
m_0		√					√	
m_5					√		√	√

- find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- ② deduce m_0 to fulfill $X_0 = Y_0$
- obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- ① finally the 4^{th} equation is verified with probability 2^{-32}

Solving the merging system

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	<i>X</i> ₀	<i>Y</i> ₀	X_{-1}	Y_{-1}	X_{-2}	Y_{-2}	<i>X</i> ₋₃	Y_{-3}
m_2		\checkmark	$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$	\checkmark
m_0		√					√	
m_5					√		√	√

- find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- 2 deduce m_0 to fulfill $X_0 = Y_0$
- obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- ① finally the 4^{th} equation is verified with probability 2^{-32}

Solving the merging system

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	X_0	Y_0	X_{-1}	Y_{-1}	<i>X</i> ₋₂	Y_2	<i>X</i> ₋₃	<i>Y</i> ₋₃
m_2		\checkmark	$\sqrt{}$	\checkmark	√	\checkmark	$\sqrt{}$	\checkmark
m_0		\checkmark					$\sqrt{}$	
<i>m</i> ₅					√		√	√

- find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- 2 deduce m_0 to fulfill $X_0 = Y_0$
- obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- ① finally the 4^{th} equation is verified with probability 2^{-32}

Solving the merging system

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	X_0	Y_0	X_{-1}	Y_{-1}	<i>X</i> ₋₂	Y_{-2}	<i>X</i> ₋₃	Y ₋₃
m_2		\checkmark	\checkmark	\checkmark	√	\checkmark	√	\checkmark
m_0		\checkmark				l	√	
m_5					√		√	$\sqrt{}$

- find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- 2 deduce m_0 to fulfill $X_0 = Y_0$
- **3** obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- In finally the 4th equation is verified with probability 2^{-32}

- Solving the merging system costs 19 RIPEMD-128 step computations (19/128 of the compression function cost).
- The probability of success of the merging is 2⁻³⁴ (because of 4th equation and 2 extra hidden bit conditions)
- We need to find 2^{30.32} solutions of the merging system.

The total complexity is therefore

$$19/128\times 2^{34}\times 2^{30.32}\simeq 2^{61.57}$$

calls to the compression function.

Outline

Introduction

- Description of RIPEMD-12
- Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches
- 4 Conclusion

Conclusion

Introduction

This work:

- a new cryptanalysis technique for parallel branches based functions
- a collision attack on the full compression function of RIPEMD-128
- a distinguisher on the hash function of RIPEMD-128
- a LOT of details (many not described here)

Perspectives:

- improvements of this technique
- an example of collision for RIPEMD-128?
- apply to other 2-branch hash functions
- what about RIPEMD-160?

Cryptanalysis of RIPEMD-160

Thomas Peyrin

joint work with F. Mendel, M. Schläffer, L. Wang and S. Wu

(accepted at Asiacrypt 2013)

ASK 2013

Weihai, China - August 29, 2013

Results on RIPEMD-160 compression function

RIPEMD-160 parameters:

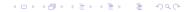
Digest 160 bits

Steps 80 steps (5 rounds of 16 steps each)

Known and new results on ${\tt RIPEMD-160}$ compression function:

Target	#Steps	Complexity	Ref.
semi-free-start collision	36	low (practical)	[MNS12]
1 st round			
semi-free-start collision	36	2 ^{70.4}	new
semi-free-start collision	42	2 ^{75.5}	new

RIPEMD-160 >> RIPEMD-128


Why are the improvements far less impressive for RTPEMD-160?

The technique we applied on RIPEMD-128 is much harder to apply on RIPEMD-160:

- finding non-linear parts is more difficult than for RIPEMD-128
- evaluating the probability of a differential path is hard (because two additions are interlinked)
- ... so more complicated to have a global view of what will and what won't work when trying to organize the attack

On top of that, RIPEMD-160 has

- better diffusion (impossible to force no diffusion, even in IF rounds)
- more steps ...

Thank you for your attention!

We are looking for good PhD students in symmetric key crypto.

If interested, please contact me at: thomas.peyrin@ntu.edu.sq

