Structural Evaluation of AES and Chosen-Key Distinguisher of 9-round AES-128

Thomas Peyrin

joint work with Pierre-Alain Fouque and Jérémy Jean (CRYPTO 2013)

NTU - Singapore

ISCAS Seminar

Beijing, China - October 23, 2013

Outline
(1) Motivations
(2) Algorithms
(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Outline

(1) Motivations

(2) Algorithms

(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Block Ciphers

Iterated SPN Block Ciphers

- Internal Permutation : f
- Number of Iterations: r
- SPN : $f=\mathrm{P} \circ \mathrm{S}$ applies Substitution (S) and Permutation (P).
- Secret Key : k
- Key Scheduling Algorithm : $k \rightarrow\left(k_{0}, \ldots, k_{r}\right)$
- Ex : AES, PRESENT, SQUARE, Serpent, etc.

Differentials and Differential Characteristics

Differential (Characteristics)

- Used in differential cryptanalysis
- Sequence of differences at each round for an iterated primitive.
- A differential is a collection of characteristics.

Examples

- $\delta \rightarrow \Delta$ is a differential.
- $\delta \rightarrow \delta_{1} \rightarrow \delta_{2} \rightarrow \delta_{3} \rightarrow \Delta$ is a differential characteristic.
- $\mathbb{P}\left(\delta \rightarrow \delta_{1} \rightarrow \delta_{2} \rightarrow \delta_{3} \rightarrow \Delta\right)$ is its differential probability.

Differentials and Differential Characteristics

Differential Characteristics

- Differential characteristics are easier to handle than differentials \Longrightarrow We usually focus on characteristics
- Designers' goal : upper-bound the differential probability of characteristics.

Example : 4-round AES

Difference
No difference

- 4-round characteristic with 25 active S-Boxes (minimal).
- AES S-Box : $p_{\max }=2^{-6}$.
- Differential probability : $p \leq 2^{-6 \times 25}=2^{-150}$.

AES

Design of the AES

- AES Permutation : structurally bounded diffusion for any rounds
- Provably resistant to Single-Key differential attacks
- Very easy get the bounds by hand (just using the fact that the MixColumns matrix is MDS)

Minimal Number of Active S-Boxes for AES in the SK model

Rounds	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{m i n}$	1	5	9	25	26	30	34	50	51	55

Question

What would this table look like for the AES structure in the RK model?

AES key schedule

Design of the AES key schedule

- Ad-hoc key schedule
\Longrightarrow RK Attacks for AES-192/256 [BKN-C09], [BK-A09], [BN-E10].
- hard to analyze, so far no simple proof/analysis exist, except the computer-based ones.

(a) AES-128.

(b) AES-192.

(c) AES-256.

Related-key attacks

Why studying related-keys attacks?

- some protocols might use simple updates to generate new keys
- RK analysis helps to understand hash functions
- in the ideal case, the cipher shouldn't have any structural flaw, so we can even extend the SK/RK model to known-key/chosen-key analysis

Our current knowledge for building key schedules/message expansion is sparse

- AES has a rather efficient key schedule (about 25% to 40% of the internal permutation part), but no clue about its security
- in order to get simple provable confidence in the key schedule, designers proposed inefficient solutions :
- Whirlpool has a very strong message expansion, but then one round is not efficient
- LED has no key schedule, but requires more rounds to resist RK

Our Contributions

Main contribution

We propose an algorithm finding all the "smallest" RK characteristics :

- runs in time linear in the number of rounds, exponential in the state size (previous algorithms are exponential in both)
- for AES-128, requires a few hours on a single PC instead of several days previously
- for AES-128, depending on the output required, memory usually ranges from 0.5 GB to 60 GB (100 GB in the worst case where one wants all the best characteristics)

Side results for AES-128

- we provide the first chosen-key distinguisher for 9-round AES-128
- AES-128 can not be proven secure against RK attacks with structural arguments only
- best RK characteristic for 5 rounds AES-128 has probability 2^{-105} (not 2^{-102} as previously believed)

Outline
(1) Motivations
(2) Algorithms
(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Outline

(1) Motivations

(2) Algorithms
(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Δ_{1}

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction : derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Pros

- works on DES in single-key

Drawbacks

- Rely on non-equivalent differential probabilities : needs dominant characteristic(s)
- Poor performances for AES
- Differences visited several times

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (2/2)

Biryukov-Nikolic [BN-E10]

- Adapt Matsui's algorithm
- Different algos for several KS

Pros

- Switch to truncated differences \Longrightarrow less edges
- Representation of trunc. differences \Longrightarrow handle branching in the KS
- Works on AES

Cons

- Not that fast because AES-128 has no predominant char.
- Differences visited several times
- Nodes visited exponential in the number of rounds

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Path search seen as Markov process

Graph Example

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Path search seen as Markov process

Graph Example

Δ_{1}

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Path search seen as Markov process

Graph Example

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Path search seen as Markov process

Pros

- Each difference in each round is visited only once
- Numbers of nodes and edges are linear in the number of rounds
- A^{*} optimization still applies

Notes

- Only partial information propagated
- Need to adapt the Markov process

Graph Example

The graph G

(d) Graph G

(e) Graph G_{5}.
G is a bipartite directed acyclic graph, with the weight on the nodes

Implementation tricks

Implementation tricks

- we store only the graph G for one round, the entire graph is obtained by repeating G.
- instead of storing a huge graph G of all the best differential transitions for one round, we store separate graphs $G_{B C}$ and $G_{K S}$. Then, G can be obtained by making the product of $G_{B C}$ and $G_{K S}$.

(f) Graph $G_{B C}$.

(g) Graph $G_{K S}$.

(h) Graph G.

Outline
(1) Motivations
(2) Algorithms
(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Outline

(1) Motivations

(2) Algorithms

(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Outline
(1) Motivations
(2) Algorithms
(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Application to the Structure of AES-128

Structural Analysis

- We ignore the semantic definition of the S-Box and the MDS matrix
- We count the number of active S-Boxes (truncated differences)
- Do not apply to AES-128 with the instantiated S and P
- Give an estimation of the structural quality of the AES family

Related-Key Model (XOR difference of the keys)

Rounds	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{m i n}$	0	1	3	9	11	13	15	21	23	25

Hash Function Setting (KS considered independently)

Rounds	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
minmax	0	1	3	6	7	9	11	14	15	17

Examples of best truncated differential characteristics

Figure: Best truncated differential characteristics for AES-128 when $r=5$ rounds with 11 active Sboxes.

Figure: Best truncated differential characteristics for AES-128 when $r=10$ rounds with 25 active Sboxes.

Impossibility Results for the Structure of AES-128

There exists a characteristic on 10 rounds with only 25 active S-Boxes \Longrightarrow best RK differential attack in $p_{\max }^{-25}$ computations.

Result 1

It is impossible to prove the security of the full AES-128 against related-key differential attacks without considering the differential property of the S-Box.

Notes

- With a random S-Box, $p_{\max }^{-25}$ might be smaller than 2^{128} \Longrightarrow when $p_{\max } \geq 2^{-5}$
- AES structure on its own not enough for RK security
- For a specified S-Box with bounded $p_{\max } \leq 2^{-6}$ \Longrightarrow security against RK attacks
(1) Motivations
(2) Algorithms
(3) Application to AES-128
- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Markov process and filtering

Example of linear incompatibility in the case of AES-128:

The linearity of the key schedule imposes all the active columns $[a, b, c, d]^{T}$ to be equal, which contradicts the first key addition (AK) $\mathbf{M} \cdot[x, 0,0,0]^{\mathrm{T}} \oplus\left[x^{\prime}, 0,0,0\right]^{\mathrm{T}}=\mathbf{M} \cdot[y, 0,0,0]^{\mathrm{T}} \oplus\left[0, y^{\prime}, 0,0\right]^{\mathrm{T}}$.

Post-filtering

The problem with Markov process is that we loose all information from the past (how did I get to this difference?) ... which is exactly what we need to detect the incompatibilities.
We can still apply a filter on the output of the diff. characteristic search algorithm : test all the paths one by one and try to instantiate them.

State compression

State compression

Example of compressed truncated state and semi-compressed truncated state from a truncated state

(a) Truncated state. (b) Semi-compressed state. (c) Compressed state.

Dilemma

- if we compress the state too much, there will be too many inconsistent path, the filtering process will be too long
- if we don't compress enough, the differential characteristic search will be too long (or require too much memory)

Related-Key attacks on AES-128

RK attacks against AES-128

- After 6 rounds, there is no RK characteristic for AES-128 with a probability greater than 2^{-128}.
- For $1, \ldots, 5$ rounds, our algorithm has found the best characteristics
- Same truncated characteristics as [BN-E10]
- Best instantiations of differences : maximal probabilities.

Best bounds on RK attacks for AES-128

Rounds	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
\#S-Boxes	0	1	5	13	17
$[B N-E 10]$	0	-6	-30	-78	-102
$\boldsymbol{m a x} \log _{\mathbf{2}}(\boldsymbol{p})$	0	-6	-31	-81	-105

(1) Motivations
(2) Algorithms
(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Outline

(1) Motivations

(2) Algorithms

(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Distinguishing model [KR-A07, BKN-C09]

Solve Open-Problem
We can use the best 5 -round characteristic to construct a chosen-key distinguisher for 9-round AES-128.

Let E_{k} be the 9-round AES-128 block cipher using key k.

Limited Birthday Problem [GP-FSE10]

Given

- a fully instantiated difference δ in the key,
- a partially instantiated difference $\Delta_{I N}$ in the plaintext,
- a partially instantiated difference $\Delta_{\text {OUT }}$ in the ciphertext, find
- a key k,
- a pair of messages (m, m^{\prime}),
such that :

$$
\begin{aligned}
& m \oplus m^{\prime} \in \Delta_{I N} \\
\text { and }: & E_{k}(m) \oplus E_{k \oplus \delta}\left(m^{\prime}\right) \in \Delta_{\text {OUT }} .
\end{aligned}
$$

9-Round characteristic for AES-128

Construction of the characteristic
Take the best 5-round characteristic for AES-128 we have found.

9-Round characteristic for AES-128

Construction of the characteristic
Prepend three rounds to be controlled by the SuperSBox technique.
Controlled by SuperSBox

9-Round characteristic for AES-128

Construction of the characteristic
Prepend one other round, as inactive as possible.

9-Round CK Distinguisher for AES-128

Distinguishing algorithm

- Generate 2^{15} valid pairs of keys (about 2^{27} of them exist, since $\mathbb{P}_{K S}=2^{-101}$)
- Store the i th SuperSBox from $S_{\text {start }}^{\prime}$ to $S_{\text {end }}$ in T_{i} (costs 2^{32})
- For all 5 differences at $S_{\text {start }}\left(\operatorname{costs} 2^{40}\right)$, check the tables and :
- Check backward direction : $p=2^{-7}$ (a single S-Box)
- Check forward direction: $p=2^{-6 \times 8}=2^{-48}$ (8 S-Boxes)

Time complexity

Complexity of the distinguishing algorithm

- Check probability : $2^{-7-48}=2^{-55}$
- Time complexity :

$$
2^{15} \times\left(2^{32}+2^{40}\right) \approx 2^{55} \text { computations }
$$

- For 2^{15} different pairs of keys :
- Construct the SuperSBoxes in 2^{32} operations
- Try all values for the 5 byte-differences in 2^{40} operations

Generic time complexity

- Limited-Birthday Problem [GP-FSE10]
- Input space $\left(\Delta_{I N}\right)$ of size $4 \times 8+7=39$ bits
- Output space ($\Delta_{\text {OUT }}$) of size $3 \times 7=21$ bits
- Time complexity : 2^{68} encryptions
(1) Motivations
(2) Algorithms
(3) Application to AES-128
- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Outline

(1) Motivations

(2) Algorithms

(3) Application to AES-128

- Truncated differences
- Actual differences

4 Distinguishing 9R AES-128
(5) The End

Conclusion

- New differential characteristics finding algorithm for SPN ciphers
- Graph-based approach: Dijkstra and A^{*} optimization
- Search the best truncated differential characteristics
- Time complexity linear in the number of rounds considered

■ Applications to the structure of AES-128:

- Impossibility results for related-key attacks
- Impossibility results for the hash function setting
- Exact probabilities for the best differential characteristics (eg. 2^{-105} for 5 rounds)

■ Chosen-key distinguisher for 9-round AES-128

- Solve open problem
- Time Complexity : 2^{55} encryptions
- Generic Complexity : 2^{68} encryptions

■ More details in the paper and its extended version (ePrint/2013/366)

Thank you for your attention!

We are looking for good PhD students in symmetric key crypto.

If interested, please contact me at : thomas.peyrin@ntu.edu.sg

NANYANG
technological UNIVERSITY

