Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End

Structural Evaluation of AES and Chosen-Key Distinguisher of 9-round AES-128

Thomas Peyrin

joint work with Pierre-Alain Fouque and Jérémy Jean (CRYPTO 2013)

NTU - Singapore

ISCAS Seminar

Beijing, China - October 23, 2013

うして ふゆう ふほう ふほう うらつ

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	000000000	00000	00

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128
- 5 The End

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
	000000	000000000	00000	00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128
- 5 The End

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
●0000000	000000	000000000	00000	00

Block Ciphers

Iterated SPN Block Ciphers

- Internal Permutation : f
- Number of Iterations : r
- SPN : $f = P \circ S$ applies Substitution (S) and Permutation (P).
- Secret Key : k
- Key Scheduling Algorithm : $k \rightarrow (k_0, \ldots, k_r)$
- Ex : AES, PRESENT, SQUARE, Serpent, etc.

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
0000000	000000	00000000	00000	00

Differentials and Differential Characteristics

Differential (Characteristics)

- Used in differential cryptanalysis
- Sequence of differences at each round for an iterated primitive.
- A differential is a collection of characteristics.

Examples

- $\delta \to \Delta$ is a differential.
- $\delta \to \delta_1 \to \delta_2 \to \delta_3 \to \Delta$ is a differential characteristic.
- $\mathbb{P}(\delta \to \delta_1 \to \delta_2 \to \delta_3 \to \Delta)$ is its differential probability.

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
0000000	000000	00000000	00000	00

Differentials and Differential Characteristics

Differential Characteristics

- Differential characteristics are easier to handle than differentials
 We usually focus on characteristics
- Designers' goal : upper-bound the differential probability of characteristics.

Example : 4-round AES

 \square Difference

No difference

- 4-round characteristic with 25 active S-Boxes (minimal).
- AES S-Box : $p_{max} = 2^{-6}$.
- Differential probability : $p \le 2^{-6 \times 25} = 2^{-150}$.

Motivations 000●0000	Algorithms 000000	Application to AES-128 000000000	Distinguishing 9R AES-128 00000	The End 00
AES				

Design of the AES

- AES Permutation : structurally bounded diffusion for any rounds
- Provably resistant to Single-Key differential attacks
- Very easy get the bounds by hand (just using the fact that the MixColumns matrix is MDS)

Mini	imal Numbei	r of A	Active	S-Bo	xes fo	or AES	5 in th	ie SK	mode			
I	Rounds	1	2	3	4	5	6	7	8	9	10	
-	min	1	5	9	25	26	30	34	50	51	55	

Question

What would this table look like for the AES structure in the RK model?

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
0000●000	000000	000000000	00000	00

AES key schedule

Design of the AES key schedule

- Ad-hoc key schedule \implies RK Attacks for AES-192/256 [BKN-C09], [BK-A09], [BN-E10].
- hard to analyze, so far no simple proof/analysis exist, except the computer-based ones.

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000●00	000000	000000000	00000	00

Related-key attacks

Why studying related-keys attacks?

- some protocols might use simple updates to generate new keys
- RK analysis helps to understand hash functions
- in the ideal case, the cipher shouldn't have any structural flaw, so we can even extend the SK/RK model to known-key/chosen-key analysis

Our current knowledge for building key schedules/message expansion is sparse

- AES has a rather efficient key schedule (about 25% to 40% of the internal permutation part), but no clue about its security
- in order to get simple provable confidence in the key schedule, designers proposed inefficient solutions :
 - Whirlpool has a very strong message expansion, but then one round is not efficient
 - $\bullet~\mbox{LED}$ has no key schedule, but requires more rounds to resist RK

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
000000●0	000000	000000000	00000	00

Our Contributions

Main contribution

We propose an algorithm finding all the "smallest" RK characteristics :

- runs in time linear in the number of rounds, exponential in the state size (previous algorithms are exponential in both)
- for AES-128, requires a few hours on a single PC instead of several days previously
- for AES-128, depending on the output required, memory usually ranges from 0.5GB to 60GB (100 GB in the worst case where one wants **all** the best characteristics)

Side results for AES-128

- we provide the first chosen-key distinguisher for 9-round AES-128
- AES-128 can not be proven secure against RK attacks with structural arguments only
- best RK characteristic for 5 rounds AES-128 has probability 2⁻¹⁰⁵ (not 2⁻¹⁰² as previously believed)

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
0000000●	000000	000000000	00000	00

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128
- 5 The End

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	000000000	00000	00

Outline

2 Algorithms

- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128

5 The End

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction : derive best *n*-round char. from best chars. on 1,..., n - 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_i^j \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_i o \Delta_j)$$

 Δ_1

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction : derive best *n*-round char. from best chars. on 1,..., n – 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_i^j \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_i o \Delta_j)$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction : derive best *n*-round char. from best chars. on 1,..., n - 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_i^j \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_i o \Delta_j)$$

< 미 > < 四 > < 문 > < 문 > < 문 >

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction : derive best *n*-round char. from best chars. on 1,..., n - 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_{i}^{j} \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_{i} o \Delta_{j})$$

-≣ ≯

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction : derive best *n*-round char. from best chars. on 1,..., n - 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_{i}^{j} \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_{i} o \Delta_{j})$$

Application to AES-128 00000000 Distinguishing 9R AES-128 00000

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction : derive best *n*-round char. from best chars. on 1,..., n - 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_i^j \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_i o \Delta_j)$$

-

Existing Algorithms (1/2)

Matsui's Algorithm (e.g. DES)

- Works by induction : derive best *n*-round char. from best chars. on 1,..., n - 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim)

Pros

works on DES in single-key

Drawbacks

- Rely on non-equivalent differential probabilities : needs dominant characteristic(s)
- Poor performances for AES
- Differences visited several times

Tree Example

Application to AES-128 000000000 Distinguishing 9R AES-128 00000

Existing Algorithms (2/2)

Biryukov-Nikolic [BN-E10]

- Adapt Matsui's algorithm
- Different algos for several KS

Pros

- Switch to truncated differences
 less edges
- Representation of trunc. differences
 ⇒ handle branching in the KS
- Works on AES

Cons

- Not that fast because AES-128 has no predominant char.
- Differences visited several times
- Nodes visited exponential in the number of rounds

Tree Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	00●000	000000000	00000	00

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Path search seen as Markov process

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	00●000	000000000	00000	

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Path search seen as Markov process

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	00●000	000000000	00000	00

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Path search seen as Markov process

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	00●000	000000000	00000	00

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Path search seen as Markov process

Pros

- Each difference in each round is visited only once
- Numbers of nodes and edges are linear in the number of rounds
- A* optimization still applies

Notes

- Only partial information propagated
- Need to adapt the Markov process

Graph Example

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

(d) Graph G.

(e) Graph G₅.

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	0000●0	000000000	00000	00

Implementation tricks

Implementation tricks

- we store only the graph G for one round, the entire graph is obtained by repeating G.
- instead of storing a huge graph G of all the best differential transitions for one round, we store separate graphs G_{BC} and G_{KS} . Then, G can be obtained by making the product of G_{BC} and G_{KS} .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Motivations 00000000	Algorithms 00000●	Application to AES-128 000000000	Distinguishing 9R AES-128 00000	The End 00
Outline				

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000		00000	00
Outline				

- 2 Algorithms
- 3 Application to AES-128
 - Truncated differences
 Actual differences
- Distinguishing 9R AES-128
- 5 The End

Motivations 00000000	Algorithms 000000	Application to AES-128 ••••••	Distinguishing 9R AES-128 00000	The End 00
Truncated differe	ences			
Outling				

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	0●0000000	00000	00
Truncated differen				

Application to the Structure of AES-128

Structural Analysis

- We ignore the semantic definition of the S-Box and the MDS matrix
- We count the number of active S-Boxes (truncated differences)
- $\bullet~$ Do not apply to <code>AES-128</code> with the instantiated S and P
- Give an estimation of the structural quality of the AES family

Related-Key Model (XOR difference of the keys)Rounds12345678910

min	0	1	2	0	11	12	15	21	22	25
	0	T	3	9	ТТ	15	15	21	23	20

Hash Function Setting (KS considered independently)										
Rounds	1	2	3	4	5	6	7	8	9	10
minmax	0	1	3	6	7	9	11	14	15	17

Motivations 00000000	Algorithms 000000	Application to AES-128	Distinguishing 9R AES-128 00000	The End 00
Truncated differe	ences			
Example	s of hest t	runcated differer	itial characteristics	

Figure: Best truncated differential characteristics for AES-128 when r = 5 rounds with 11 active Sboxes.

Figure: Best truncated differential characteristics for AES-128 when r = 10 rounds with 25 active Sboxes.

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End	
		00000000			
Truncated differe	nces				

Impossibility Results for the Structure of AES-128

There exists a characteristic on 10 rounds with only 25 active S-Boxes \implies best RK differential attack in p_{max}^{-25} computations.

Result 1

It is impossible to prove the security of the full AES-128 against related-key differential attacks without considering the differential property of the S-Box.

Notes

- With a random S-Box, p_{max}^{-25} might be smaller than 2^{128} \implies when $p_{max} \ge 2^{-5}$
- AES structure on its own not enough for RK security
- For a specified S-Box with bounded p_{max} ≤ 2⁻⁶ ⇒ security against RK attacks

Motivations 00000000	Algorithms 000000	Application to AES-128 0000●0000	Distinguishing 9R AES-128 00000	The End 00
Actual differences				
Outline				

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Actual differences				
Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000		00000	00

Markov process and filtering

Example of linear incompatibility in the case of AES-128 :

The linearity of the key schedule imposes all the active columns $[a, b, c, d]^T$ to be equal, which contradicts the first key addition (AK) $\mathbf{M} \cdot [x, 0, 0, 0]^T \oplus [x', 0, 0, 0]^T = \mathbf{M} \cdot [y, 0, 0, 0]^T \oplus [0, y', 0, 0]^T$.

Post-filtering

The problem with Markov process is that we loose all information from the past (how did I get to this difference?) ... which is exactly what we need to detect the incompatibilities.

We can still apply a filter on the output of the diff. characteristic search algorithm : test all the paths one by one and try to instantiate them.

Motivations 00000000	Algorithms 000000	Application to AES-128	Distinguishing 9R AES-128 00000	The End 00
Actual difference	es			
State co	mpression			

State compression

Example of compressed truncated state and semi-compressed truncated state from a truncated state

Dilemma

- if we compress the state too much, there will be too many inconsistent path, the filtering process will be too long
- if we don't compress enough, the differential characteristic search will be too long (or require too much memory)

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	○○○○○○○●○	00000	00
Actual differences				

Related-Key attacks on AES-128

RK attacks against AES-128

- After 6 rounds, there is no RK characteristic for AES-128 with a probability greater than 2⁻¹²⁸.
- For 1,...,5 rounds, our algorithm has found the best characteristics
- Same truncated characteristics as [BN-E10]
- Best instantiations of differences : maximal probabilities.

Best bounds on RK attacks for AES-128						
Rounds	1	2	3	4	5	
#S-Boxes	0	1	5	13	17	
[BN-E10]	0	-6	-30	-78	-102	
$\max \log_2(p)$	0	-6	-31	-81	-105	

Motivations 00000000	Algorithms 000000	Application to AES-128 ○○○○○○○●	Distinguishing 9R AES-128 00000	The End 00
Actual differences				
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	000000000	00000	○○

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Outline

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128
- 5 The End

Distinguishing 9R AES-128 •0000 The End

Distinguishing model [KR-A07, BKN-C09]

Solve Open-Problem

We can use the best 5-round characteristic to construct a chosen-key distinguisher for 9-round AES-128.

Let E_k be the 9-round AES-128 block cipher using key k.

Limited Birthday Problem [GP-FSE10]

Given

- a fully instantiated difference δ in the key,
- $\bullet\,$ a partially instantiated difference Δ_{IN} in the plaintext,
- a partially instantiated difference Δ_{OUT} in the ciphertext,

find

- a key <mark>k</mark>,
- a pair of messages (m, m'),

such that :

 $m \oplus m' \in \Delta_{IN}$ and : $E_k(m) \oplus E_{k \oplus \delta}(m') \in \Delta_{OUT}$.

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
			00000	

9-Round characteristic for AES-128

Construction of the characteristic

Take the best 5-round characteristic for AES-128 we have found.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Motivations Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
0000000 000000	00000000	0000	

9-Round characteristic for AES-128

Construction of the characteristic

Prepend three rounds to be controlled by the SuperSBox technique.

0000000 000000 0000000 00000 00	Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
				0000	

9-Round characteristic for AES-128

Construction of the characteristic

Prepend one other round, as inactive as possible.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Distinguishing algorithm

- Generate 2^{15} valid pairs of keys (about 2^{27} of them exist, since $\mathbb{P}_{KS} = 2^{-101}$)
 - Store the *i*th SuperSBox from S'_{start} to S_{end} in T_i (costs 2³²)
 - For all 5 differences at S_{start} (costs 2⁴⁰), check the tables and :
 - Check backward direction $p = 2^{-7}$ (a single S-Box)
 - Check forward direction : $p = 2^{-6 \times 8} = 2^{-48}$ (8 S-Boxes)

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	000000000	000●0	00

Time complexity

Complexity of the distinguishing algorithm

- Check probability : $2^{-7-48} = 2^{-55}$
- Time complexity :

 $2^{15} \times (2^{32} + 2^{40}) \approx 2^{55}$ computations

• For 2¹⁵ different pairs of keys :

- Construct the SuperSBoxes in 2³² operations
- Try all values for the 5 byte-differences in 2⁴⁰ operations

Generic time complexity

- Limited-Birthday Problem [GP-FSE10]
- Input space (Δ_{IN}) of size $4 \times 8 + 7 = 39$ bits
- Output space (Δ_{OUT}) of size $3 \times 7 = 21$ bits
- Time complexity : 2⁶⁸ encryptions

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	000000000	0000●	00

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128

5 The End

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	000000000	00000	00

Outline

Motivations

- 2 Algorithms
- Application to AES-128
 Truncated differences
 Actual differences
- Distinguishing 9R AES-128

Motivations 00000000	Algorithms 000000	Application to AES-128 000000000	Distinguishing 9R AES-128 00000	The End ●○
Conclusi	on			

New differential characteristics finding algorithm for SPN ciphers

- Graph-based approach : Dijkstra and A^* optimization
- Search the best truncated differential characteristics
- Time complexity linear in the number of rounds considered
- Applications to the structure of AES-128 :
 - Impossibility results for related-key attacks
 - Impossibility results for the hash function setting
 - Exact probabilities for the best differential characteristics (eg. 2^{-105} for 5 rounds)

■ Chosen-key distinguisher for 9-round AES-128

- Solve open problem
- Time Complexity : 2⁵⁵ encryptions
- Generic Complexity : 2⁶⁸ encryptions

■ More details in the paper and its extended version (ePrint/2013/366)

Motivations	Algorithms	Application to AES-128	Distinguishing 9R AES-128	The End
00000000	000000	000000000	00000	⊙●

Thank you for your attention !

We are looking for good PhD students in symmetric key crypto.

If interested, please contact me at : thomas.peyrin@ntu.edu.sg

