Cryptanalysis of RIPEMD-128/160

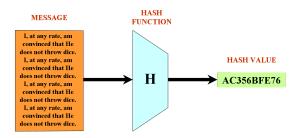
Thomas Peyrin

NTU - Singapore

ChinaCrypt 2013

Fuzhou, China - October 25, 2013

What is a Hash Function?



- H maps an **arbitrary length input** (the message M) to a **fixed length output** (typically n = 128, n = 160 or n = 256).
- no secret parameter.
- H must be easy to compute.

pre-image resistance:

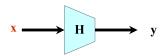
given an output challenge y, the attacker can not find a message x such that H(x) = y, in less than $\theta(2^n)$ operations.

2nd pre-image resistance

given a challenge (x, y) so that H(x) = y, the attacker can not find a message $x' \neq x$ such that H(x') = y, in less than $\theta(2^n)$ operations.

collision resistance

the attacker can not find two messages (x, x') such that H(x) = H(x'), in less than $\theta(2^{n/2})$ operations (a generic attack with the birthday paradox exists [Yuval-79]).



pre-image resistance:

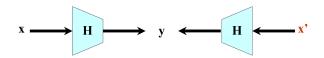
given an output challenge y, the attacker can not find a message x such that H(x) = y, in less than $\theta(2^n)$ operations.

2nd pre-image resistance:

given a challenge (x, y) so that H(x) = y, the attacker can not find a message $x' \neq x$ such that H(x') = y, in less than $\theta(2^n)$ operations.

collision resistance

the attacker can not find two messages (x, x') such that H(x) = H(x'), in less than $\theta(2^{n/2})$ operations (a generic attack with the birthday paradox exists [Yuval-79]).



pre-image resistance:

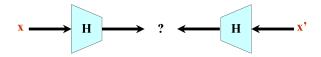
given an output challenge y, the attacker can not find a message x such that H(x) = y, in less than $\theta(2^n)$ operations.

2nd pre-image resistance:

given a challenge (x, y) so that H(x) = y, the attacker can not find a message $x' \neq x$ such that H(x') = y, in less than $\theta(2^n)$ operations.

collision resistance:

the attacker can not find two messages (x, x') such that H(x) = H(x'), in less than $\theta(2^{n/2})$ operations (a generic attack with the birthday paradox exists [Yuval-79]).



pre-image resistance:

given an output challenge y, the attacker can not find a message x such that H(x) = y, in less than $\theta(2^n)$ operations.

2nd pre-image resistance:

given a challenge (x, y) so that H(x) = y, the attacker can not find a message $x' \neq x$ such that H(x') = y, in less than $\theta(2^n)$ operations.

collision resistance:

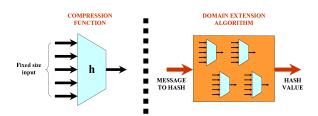
the attacker can not find two messages (x, x') such that H(x) = H(x'), in less than $\theta(2^{n/2})$ operations (a generic attack with the birthday paradox exists [Yuval-79]).

And other ones: near collisions, multicollisions, random oracle look-alike. ...

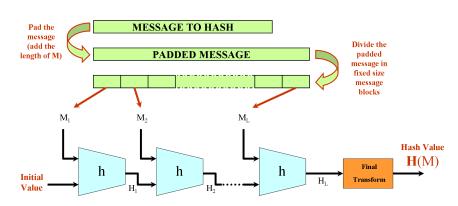
General construction

For historical reasons, most hash functions are composed of two elements:

- a compression function h: a function for which the input and output size is fixed.
- a domain extension algorithm: an iterative process that uses the compression function h so that the hash function H can handle inputs of arbitrary length.



The most famous domain extension algorithm used is called the **Merkle-Damgård** [Merkle Damgård-89] iterative algorithm.



General design and security notions

• A collision on an iterated hash function \mathcal{H} always comes from a collision on the compression function h:

$$\mathcal{H}(M) = \mathcal{H}(M^*) \Longrightarrow h(cv, m) = h(cv^*, m^*)$$

The conditions on cv and m give different kind of attacks:

Collision $cv = cv^*$ fixed and $m \neq m^*$ free.

Semi-free-start Collision $cv = cv^*$ and $m \neq m^*$ are free.

Free-start Collision $(cv, m) \neq (cv^*, m^*)$ are free.

The cryptanalysis history of MD5 is a good example of why (semi)-free-start collisions are a serious warning.

Motivations to study RIPEMD

MDx-like hash function is a very frequent design :

```
1990' MDx (MD4, MD5, SHA-1, HAVAL, RIPEMD)
2002 SHA-2 (SHA-224, ..., SHA-512)
```

Some old hash functions are still unbroken :

```
Broken MD4, MD5, RIPEMD-0
Broken HAVAL
Broken SHA-1
Unbroken RIPEMD-128, RIPEMD-160
Unbroken SHA-2
```

• RIPEMD-128/RIPEMD-160

```
Design 15 years old.
unbroken 9 years after Wang's attacks [WLF+05].
```


Introduction

000000000

Thomas Peyrin

joint work with Franck Landelle

(accepted at Eurocrypt 2013)

ChinaCrypt 2013

Fuzhou, China - October 25, 2013

Results on RIPEMD-128 compression function

RIPEMD-128 parameters:

Digest 128 bits

Steps 64 steps (4 rounds of 16 steps each)

Known and new results on RIPEMD-128 compression function:

Target	#Steps	Complexity	Ref.
collision	48	2 ⁴⁰	[MNS12]
collision	60	2 ^{57.57}	new
collision	63	2 ^{59.91}	new
collision	Full	2 ^{61.57}	new
non-randomness	52	2 ¹⁰⁷	[SW12]
non-randomness	Full	2 ^{59.57}	new

Function RIPEMD-128 compression function

Attack a semi-free-start collision

Find $cv, m \neq m^* / h(cv, m) = h(cv, m^*)$.

Strategy

- Choose a message difference $\delta_m = m \oplus m^*$
 - → new message difference used
- Find a differential path on all intermediate state variables
 - → new type of differential path with two non-linear parts
- Find conforming cv and m
 - → new branch merging technique for collision search

Outline

Description of RIPEMD-128

Finding a differential path Finding a message difference Finding the non-linear part

Finding a conforming pair Generating a starting point Merging the 2 branches

Conclusion

Introduction

Outline

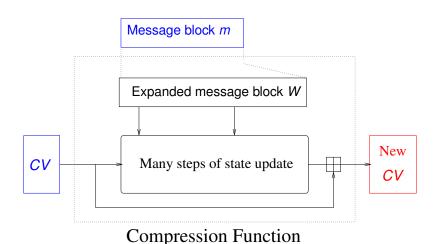
Description of RIPEMD-128

Finding the non-linear part

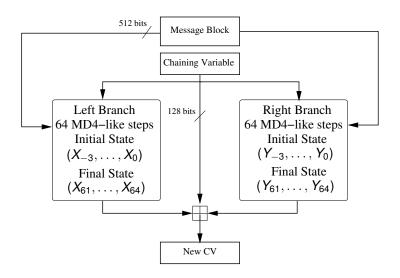
Merging the 2 branches

A compression function

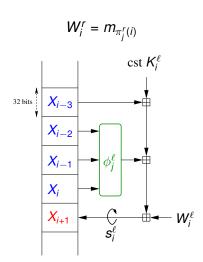
$$m = m_0 ||m_1|| \cdots ||m_{15}||$$



Overview of RIPEMD-128 compression function



The step function



 $W_i^\ell=m_{\pi_i^\ell(i)}$ cst K'

Left Branch - step *i*, round *j*

Right Branch - step *i*, round *j*

The boolean functions

Boolean functions in RIPEMD-128:

- $XOR(x, y, z) := x \oplus y \oplus z$,
- $\mathsf{IF}(x, y, z) := x \wedge y \oplus \bar{x} \wedge z$
- ONX $(x, y, z) := (x \lor \bar{y}) \oplus z$

Steps i	Round j	$\phi_j^\ell(x,y,z)$	$\phi_j^r(x,y,z)$
0 to 15	0	XOR(x, y, z)	IF(z, x, y)
16 to 31	1	IF(x, y, z)	ONX(x, y, z)
32 to 47	2	ONX(x, y, z)	IF(x, y, z)
48 to 63	3	IF(z, x, y)	XOR(x, y, z)

Outline

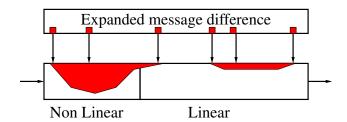
Finding a differential path

Finding the non-linear part

Merging the 2 branches

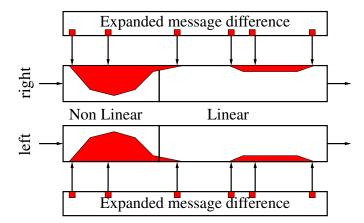
The classical strategy (example SHA-1)

- 1. Find a message difference δ_m and a differential path with high probability on the middle and last steps (ideally after the first round).
- 2. Find a "realistic" non-linear differential path on the first steps (ideally on the first round for a semi-free-start collision).
- 3. Find a chaining variable *cv* and a message *m* such that the state differential path is followed (use special freedom degrees tricks like neutral bits, message modification, boomerangs, etc.).



The classical strategy (example RIPEMD-128)

- 1. Find a message difference δ_m and a differential path with high probability on the middle and last steps for both branches.
- 2. Find a "realistic" non-linear differential path on the first steps.
- 3. Find a conforming chaining variable *cv* and a message *m*.



What shape should have the differential path?

Boolean functions can help to control the diff. propagation.

Properties of the boolean functions:

- XOR: no control of differential propagation
- ONX: some control of differential propagation and permits low diffusion.
- IF: a good control of differential propagation and permits no diffusion.

Steps i	Round j	$\phi_j^l(x,y,z)$	$\phi_j^r(x,y,z)$
0 to 15	0	XOR(x, y, z)	IF(Z, X, y)
16 to 31	1	IF(x, y, z)	ONX(x, y, z)
32 to 47	2	ONX(x, y, z)	IF(x, y, z)
48 to 63	3	IF(z, x, y)	XOR(x, y, z)

Outline

Description of RIPEMD-128

Finding a differential path Finding a message difference

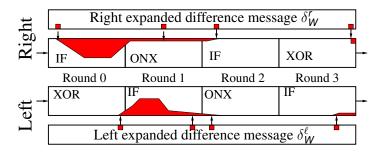
Finding a conforming pair

Merging the 2 branches

Conclusion

Choosing the message block difference

Goals keep low ham. weight on the expanded message block Choice Put a difference on a single word of message



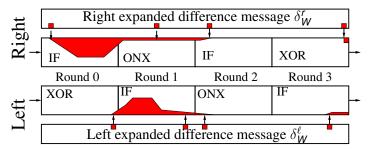
With the message block difference on m_{14} :

- "no difference" on rounds with XOR function.
- Non-linear differential paths are in the round with IF

Choosing the message block difference

 m_{14} is really "**magic**" with regards to our criteria.

However, how to handle these two non-linear parts which are in different branches, and not in the first round?



Outline

Description of RIPEMD-128

Finding a differential path

Finding a message difference Finding the non-linear part

Finding a conforming pair

Generating a starting point Merging the 2 branches

Conclusion

Automatic tool on generalized conditions

We implemented a tool similar to [CR06] for SHA-1 that uses generalized conditions.

	(b, b^*)	(0,0)	(1,0)	(0, 1)	(1, 1)
Hexa	Notation				
0xF	?	✓	✓	✓	✓
0x9	_	✓			✓
0x6	Х		✓	✓	
0x1	0	✓			
0x2	u		✓		
0x4	n			✓	
0x8	1				✓

Where

- b: a bit during the treatment the message m
- b*: the same bit for the second message m*.

Left branch

Step	Xi	Wi	Пі
			13
14:		- x	14
15: ???	?????????????????????????????	?	15
16: ???	????????????????????????????	?	7
17: ???	????????????????????????????	?	4
18: ???	????????????????????????????	?	13
19: ???	????????????????????????????	?	1
20: ???	??????????????????????????????	?	10
21: ???	????????????????????????????	?	6
22: ???	????????????????????????????	?	15
23: ???	??????????????????????????????	?	
24: ???	??????????????????????????????	?	12
25: ???	??????????????????????????????	?	· 0
26:	u	.	9
27: 1	0u	.	5
28: 0	1	.	2
29: n	1	- x	14
30: u		.	11
31: u		.	
		ı	_
55.		. x	
		. ^	-:

Left branch

Step Xi 13:	1	Wi	Πi 13
14:	ı		14
15:	.n ^		 15
16:unnnn	-0i		 7
17:n00000	-1 1		 4
18:001111			 13
19:u1n	- 1		1
20:0	- 1		10
21:11			- 6
22:unnnn			15
23:00000 24:n-11101			12
25:n-0	. !		0
26:u0-1	- 1		 9
27: 101-u	ı		 5
28: 010			 2
29: n1	x		 14
30: u	·		 11
31: u			 8
32: 1			 3
33:	ı		10
34:	1 ^		14
35:	1		 4

Right branch

Step	o Yi	Wi	πi
:			
:			
:			
:			5
01:		x	14
02:	???????????????????????????????		7
03:	??????????????????????????????		0
04:	???????????????????????????????		9
05:	???????????????????????????????		2
06:	??????????????????????????????		11
07:	??????????????????????????????		4
08:	???????????????????????????????		13
09:	??????????????????????????????		6
10:	??????????????????????????????		15
11:	???????????????????????????????		8
12:	??????????????????????????????		1
13:	??????????????????????????????		10
14:	???????????????????????????????		3
15:	u		12
16:	uu		6
17:	u-0u		11
18:	u0		3
19:	00		7
20.	11	1	Λ

Υi Wi Step Πi ----------: -----0----01: -----1----x-----02: ----n----n 03: -----04: --0000000-----_____ 9 05: --11111111-----______ 06: --nuuuuuu-----_____ 07: --01-----0-000 --1-----08: -01-----0-011 09: -1----n-nn 10: 1n010000-----_____ 001111111-----00--0nu-n-----12: nuuuuuuu----11--11--0-----13: -----_____ 14: -----1----01----u------15: -----u---10----0-----_____ 16: ----0-11----1 _____ 17: ----u-0----u------_____ 18: ----u----0-----19: 0----0 20: 11----------

Outline

Description of RIPEMD-128

Finding a differential path
Finding a message difference
Finding the non-linear part

Finding a conforming pair

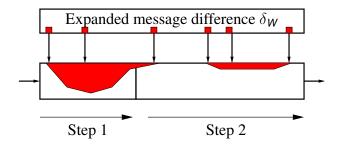
Generating a starting point Merging the 2 branches

Conclusion

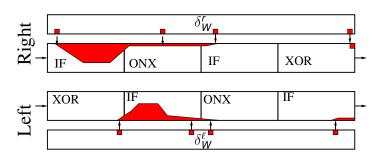
Following a classical differential path

A classical collision search is composed of two subparts:

- step 1 handling the low-probability non-linear parts using the message block freedom
- step 2 the remaining steps in both branches are verified probabilistically



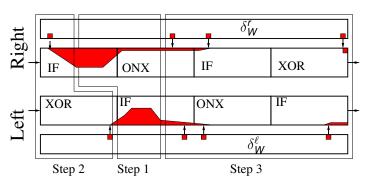
Finding a conforming pair



Our collision search is composed of three subparts:

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Finding a conforming pair



Our collision search is composed of three subparts:

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Outline

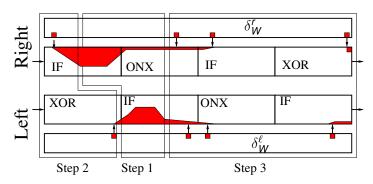
Description of RIPEMD-128

Finding a differential path

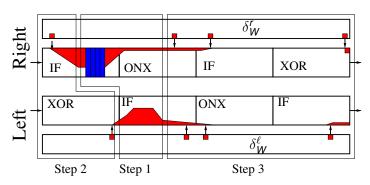
Finding a message difference Finding the non-linear part

Finding a conforming pair Generating a starting point Merging the 2 branches

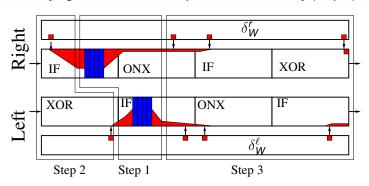
Conclusion



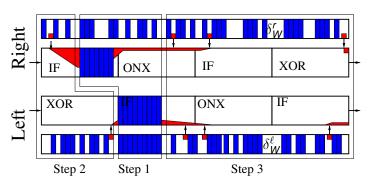
- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches



- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches



- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches



- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

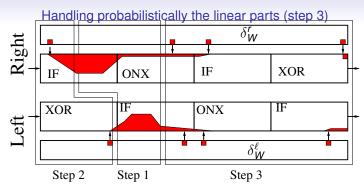
Handling probabilistically the linear parts (step 3)

Probabilities of the linear parts are fixed after the first step:

- The probability of the left branch is 2^{-15} .
- The probability of the right branch is $2^{-14.32}$.
- one extra bit condition in order to get a collision when adding the two branches
- \rightarrow The overall probability for collision is $2^{-30.32}$.

(these probabilities have been verified experimentally)

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches



ightarrow we need to obtain $2^{30.32}$ solutions of the merging system

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this starting point, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Outline

Description of RIPEMD-128

Finding a differential path

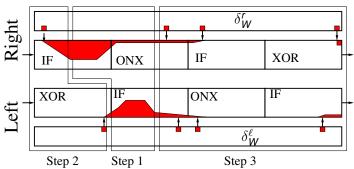
Finding the non-linear part

Finding a conforming pair

Merging the 2 branches

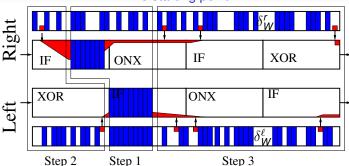
Conclusion

Merging the two branches (step 2)



- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this starting point, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

The starting point



What is fixed?

Message m_{12} , m_3 , m_{10} , m_1 , m_8 , m_{15} , m_6 , m_{13} , m_4 , m_{11} , m_7 .

Left State (X_{12},\ldots,X_{24})

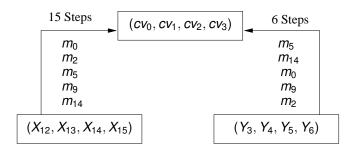
Right State $(Y_3, Y_4, \ldots, Y_{14})$.

What is free?

Message $m_0, m_2, m_5, m_9, m_{14}$.

Prepare the merging system

The system is quite complex:

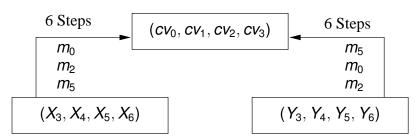


The probability that a random choice of m_0 , m_2 , m_5 , m_9 , m_{14} gives a solution is

$$2^{-128}$$

Reducing the merging system

- in the search for a starting point (step 1), we chose m_{11} such that: $Y_3 = Y_4$
- randomly chose a m_{14} value and deduce m_9 such that: $X_5^{>>>5} \boxminus m_4 = 0 \times \text{fffffff}$
- \rightarrow the system becomes $\frac{\text{much simpler}}{\text{simpler}}$ and represents less steps of the compression function.



The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	<i>X</i> ₀	Y_0	X_{-1}	Y_{-1}	<i>X</i> ₋₂	Y_{-2}	X_{-3}	Y_{-3}
m_2		√	√	√	√	✓	√	√
m_0		√					√	
m_5		l '			√		√	√

- 1. find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- 2. deduce m_0 to fulfill $X_0 = Y_0$
- 3. obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- 4. finally the 4^{th} equation is verified with probability 2^{-32}

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	<i>X</i> ₀	Y_0	<i>X</i> ₋₁	Y_{-1}	<i>X</i> ₋₂	Y_{-2}	X_{-3}	Y_{-3}
m_2		\checkmark	√	√	√	\checkmark	√	√
m_0		√					√	
m_5					√		√	✓

- 1. find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- 2. deduce m_0 to fulfill $X_0 = Y_0$
- 3. obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- 4. finally the 4^{th} equation is verified with probability 2^{-32}

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	X_0	Y_0	X_{-1}	Y_{-1}	X_{-2}	Y_{-2}	<i>X</i> ₋₃	Y_{-3}
m_2		\checkmark	$\sqrt{}$	\checkmark	√	$\sqrt{}$	$\sqrt{}$	\checkmark
m_0		√				 	√	
m_5		l			√	l	√	√

- 1. find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- 2. deduce m_0 to fulfill $X_0 = Y_0$
- 3. obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- 4. finally the 4^{th} equation is verified with probability 2^{-32}

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	X_0	Y_0	X_{-1}	Y_{-1}	X_{-2}	Y_{-2}	<i>X</i> ₋₃	Y_{-3}
m_2		\checkmark	$\sqrt{}$	\checkmark	√	$\sqrt{}$	$\sqrt{}$	\checkmark
m_0		\checkmark					$\sqrt{}$	
m_5		l			√	l	√	✓

- 1. find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- 2. deduce m_0 to fulfill $X_0 = Y_0$
- 3. obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- 4. finally the 4^{th} equation is verified with probability 2^{-32}

The goal now is to find m_0 , m_2 , m_5 such that

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	X_0	Y_0	X_{-1}	Y_{-1}	X_{-2}	Y_{-2}	<i>X</i> ₋₃	Y ₋₃
m_2		\checkmark	$\sqrt{}$	\checkmark	√	$\sqrt{}$	√	\checkmark
m_0		\checkmark					√	
m_5		l			V	l	$\sqrt{}$	√

- 1. find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- 2. deduce m_0 to fulfill $X_0 = Y_0$
- 3. obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- 4. finally the 4^{th} equation is verified with probability 2^{-32}

Complexity of the semi-free-start collision attack

- Solving the merging system costs 19 RIPEMD-128 step computations (19/128 of the compression function cost).
- The probability of success of the merging is 2⁻³⁴ (because of 4th equation and 2 extra hidden bit conditions)
- We need to find 2^{30.32} solutions of the merging system.

The total complexity is therefore

$$19/128\times 2^{34}\times 2^{30.32}\simeq 2^{61.57}$$

calls to the compression function.

Description of RIPEMD-128

Finding a differential path
Finding a message difference
Finding the non-linear part

Finding a conforming pair Generating a starting point Merging the 2 branches

Conclusion

Conclusion

This work:

- a new cryptanalysis technique for parallel branches based functions
- a collision attack on the full compression function of RIPEMD-128
- a distinguisher on the hash function of RIPEMD-128
- a LOT of details (many not described here)

Perspectives:

- improvements of this technique
- an example of collision for RIPEMD-128?
- apply to other 2-branch hash functions
- what about RIPEMD-160?

Conclusion

Cryptanalysis of RIPEMD-160

Thomas Peyrin

joint work with F. Mendel, M. Schläffer, L. Wang and S. Wu

(accepted at Asiacrypt 2013)

ChinaCrypt 2013

Fuzhou, China - October 25, 2013

Results on RIPEMD-160 compression function

RIPEMD-160 parameters:

Digest 160 bits

Steps 80 steps (5 rounds of 16 steps each)

Known and new results on RIPEMD-160 compression function:

Target	#Steps	Complexity	Ref.
semi-free-start collision	36	low (practical)	[MNS12]
1 st round			
semi-free-start collision	36	2 ^{70.4}	new
semi-free-start collision	42	2 ^{75.5}	new

RIPEMD-160 >> RIPEMD-128

Why are the improvements far less impressive for RIPEMD-160?

The technique we applied on RIPEMD-128 is much harder to apply on RIPEMD-160:

- finding non-linear parts is more difficult than for RIPEMD-128
- evaluating the probability of a differential path is hard (because two additions are interlinked)
- ... so more complicated to have a global view of what will and what won't work when trying to organize the attack

On top of that, RIPEMD-160 has

- better diffusion (impossible to force no diffusion, even in IF rounds)
- more steps ...

Thank you for your attention!

We are looking for good PhD students in symmetric key crypto.

If interested, please contact me at: thomas.peyrin@ntu.edu.sg

