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CAESAR candidate: JAMBU

Designers: Hongjun WU, Tao HUANG (NTU)
. 2n-bit block cipher as underlying cipher
. mode of operation is similar to OFB
. process blocks of n-bit information
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AES-JAMBU: parameters

AES-JAMBU is JAMBU with AES-128 as underlying cipher:
. associated data + plaintext < 264 bits under the same key
. message blocks = 64 bits
. key = 128 bits
. tag = 64 bits
. Initialization Vector/Nonce = 64 bits
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AES-JAMBU: initialisation

Initial input: 64-bit zeroes and 64-bit nonce (IV)
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AES-JAMBU: processing of associated data

A is split into 64-bit blocks Ai
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AES-JAMBU: processing of plaintext

Plaintext P is split into 64-bit blocks Pi
Ciphertext C is split into 64-bit blocks Ci
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AES-JAMBU: tag generation

Last block PM is padded with 1‖0∗ and output is truncated.
If last block is a full block, an additional block of 1‖063 is
processed without output.
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JAMBU: hardware performance

JAMBU is a hardware-oriented candidate:

compared with other AE modes instantiated with a 2n-bit block
cipher, JAMBU minimizes the state size, which is an advantage
for hardware implementations

Modes State size
GCM 6n
OCB3 6n
EAX 8n
JAMBU 3n
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JAMBU: software performance

On an Intel Core i5-2540M 2.6GHz processor with AES-NI:

512-byte messages
AES-128-CCM 5.19 c/B
AES-128-GCM 3.33 c/B
AES-128-OCB3 1.34 c/B
AES-JAMBU 12.27 c/B

According to the designers, AES-JAMBU should be about two
times slower than AES-GCM (their implementation is not
optimized yet)
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JAMBU: security claims

confidentiality integrity
(bits) (bits)

nonce-respecting 128 64
nonce-misuse 128∗ not specified

* except for first block or common prefix of the message.

The authors give very good arguments why a successful
forgery should require 264 computations
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JAMBU: security claims

“In case that the IV is reused under the same key, the confidentiality of
AES-JAMBU is only partially compromised as it only leaks the
information of the first block or the common prefix of the message.
And the integrity of AES-JAMBU will be less secure but not
completely compromised.”
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JAMBU: security claims

confidentiality integrity
(bits) (bits)

nonce-respecting 128 64
nonce-misuse 128∗ not specified

* except for first block or common prefix of the message.

Our attack:
with about 234 queries and computations, we can produce a
valid ciphertext block corresponding to some plaintext with a
prefix that has never been queried before



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Outline

1 The JAMBU candidate

2 Performance and security claims

3 Nonce-misuse attack on JAMBU
. Differential structure in JAMBU
. Details of the attack

4 Conclusion



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Outline

1 The JAMBU candidate

2 Performance and security claims

3 Nonce-misuse attack on JAMBU
. Differential structure in JAMBU
. Details of the attack

4 Conclusion



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Observation 1

. no difference in Vi+1
⇒ the differences in Ri and Yi are the same ∆s

. let the difference in Xi be ∆r
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Observation 2

. if the input difference in Pi is equal to ∆r
⇒ the difference in Ui+1 will be cancelled out, and with no
difference in Pi+1
⇒ the output difference in Ci+1 to be ∆s



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Attack overview

Objective
Build such a diff. structure and find the values of ∆r and ∆s

Problem
Seems hard to achieve: naively building the structure costs 264
computations, and we have no way of checking if we indeed
found it (∆s is secret)

Solution
“Divide-and-conquer”

. use birthday attack to find a pair of nonce values that partially
follows this differential structure (nonce-respecting)

. enumerate all possible input differences in the plaintext block to
force the rest of the differential structure and to find ∆r and ∆s
(nonce-misuse)
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Step 1: birthday attack on Vi+1

Using birthday attack, a collision on Vi+1 can be found with
about 232 encryption queries ... and we can detect it:

. query for encryption for the same one block of plaintext P1 with
232 difference nonce IV

. find a collision in the ciphertext C1 = C′
1

. store the pair of nonce values IV and IV′
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Step 2: finding ∆r and ∆s

Question: How do we know that we insert the right ∆r in Pi ?

Answer: the right ∆r will give the same output difference ∆s in
the second block independent of the plaintext value in the first
block.
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Step 2: finding ∆r and ∆s

To enumerate all 264 possible input differences of Pi, we use 2
sets of 232 plaintext blocks:

i and j ranged from 0 to 232 − 1

Any possible input difference [i‖j] can be formed with a pair of
plaintext blocks [i‖032] and [032‖j]



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Step 2: finding ∆r and ∆s

Pi+1 is set to a constant value (i.e. all zeros)

We ask for the encryption of [i‖032]‖[064] with nonce IV and
[032‖j]‖[064] with nonce IV′
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Step 2: finding ∆r and ∆s

The right ∆r will give the same output difference ∆s
independently of the value of Pi, so we build a few tables:

i and j range from 0 to 232 − 1

If ∆r = [i‖j], then C2[i‖0]⊕ C2[0‖j] = C2[i ⊕ 1‖0]⊕ C2[1‖j] = ∆s

Note that first and third tables are the same up to permutation:
we need 3 · 232 encryption queries
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Step 2: summary

. query for 3 · 232 encryptions

. compute and store the difference of the second block of the
ciphertexts

. find the collision
C2[i‖0]⊕ C2[0‖j] = C2[i ⊕ 1‖0]⊕ C2[1‖j] = ∆s

. obtain ∆r = [i‖j] and ∆s = C2[i‖0]⊕ C2[0‖j]
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Step 3: forging a valid ciphertext block

For any choice of plaintext blocks P1, P2, by querying
[P1 ⊕∆r]‖[P2 ⊕∆], we can deduce the ciphertext encrypted
with nonce IV′ to be [C1 ⊕∆r]‖[C2 ⊕∆⊕∆s], where ∆ can be
any difference.

Note that [P1 ⊕∆r] is a different prefix that has never been
queried before.
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Complexity evaluation of the attack

. Step 1 requires about 232 queries (nonce-respecting)

. Step 2 requires 3 · 232 queries (nonce-misuse)

. Step 3 requires a single query

With only about 234 queries, we can deduce the ciphertext
corresponding to a plaintext with a prefix that has never been
queried before

Attack has been implemented and verified !
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Conclusion

We have shown a generic confidentiality attack on the JAMBU
operating mode:

. in the nonce-misuse scenario

. practical when instantiated with AES:
only about 234 queries

. attack verified by implementation
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What about nonce-respecting scenario ?

One can apply the same idea to break IND-CCA2 security of
JAMBU in the nonce-respecting scenario:

. apply exactly the same 232 attack using decryption queries,
so you can repeat nonces ...

. ... but every time you query a ciphertext, you have to pay
264 to guess the tag and get the corresponding plaintext
from the oracle

. final complexity of 232 × 264 = 296 queries and
computations to break IND-CCA2 security

... but the security model for the security claims of JAMBU was
not given by the designers (they didn’t mean IND-CCA2)
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Thank you !
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