Cryptanalysis of JAMBU

Thomas Peyrin
(j-w. with Siang Meng Sim and Lei Wang and Guoyan Zhang)

NTU - Singapore

ESC 2015

Clervaux, Luxembourg - January 16, 2015

NANYANG

\Q =3 TECHNOLOGICAL
Y UNIVERSITY

The JAMBU candidate

® The JAMBU candidate

The JAMBU candidate

Designers: Hongjun WU, Tao HUANG (NTU)
> 2n-bit block cipher as underlying cipher
> mode of operation is similar to OFB

> process blocks of n-bit information

The JAMBU candidate

AES-JAMBU is JAMBU with AES-128 as underlying cipher:
> associated data + plaintext < 2% bits under the same key
> message blocks = 64 bits
> key = 128 bits
> tag = 64 bits
> Initialization Vector/Nonce = 64 bits

AES-JAMBU: initialisation

Voo T

Initial input: 64-bit zeroes and 64-bit nonce (IV)

AES-JAMBU: processing of associated data

O Nk

A is split into 64-bit blocks A;

AES-JAMBU: processing of plaintext

vl e

Plaintext P is split into 64-bit blocks P;
Ciphertext C is split into 64-bit blocks C;

AES-JAMBU: tag generation

vl | T

Last block Py is padded with 1||0* and output is truncated.
If last block is a full block, an additional block of 1||0 is

processed without output.

Performance and security claims

@ Performance and security claims

Performance and security claims

JAMBU is a hardware-oriented candidate:

compared with other AE modes instantiated with a 2n-bit block
cipher, JAMBU minimizes the state size, which is an advantage
for hardware implementations

Modes | State size

GCM 6n
OCB3 6n
EAX 8n

JAMBU 3n

Performance and security claims

On an Intel Core i5-2540M 2.6GHz processor with AES-NI:

512-byte messages
AES-128-CCM 5.19¢/B
AES-128-GCM 3.33¢/B
AES-128-OCB3 1.34c/B
AES-JAMBU 12.27 ¢/B

According to the designers, AES-JAMBU should be about two
times slower than AES-GCM (their implementation is not
optimized yet)

Performance and security claims

confidentiality integrity
(bits) (bits)
nonce-respecting 128 64
nonce-misuse 128~ not specified

* except for first block or common prefix of the message.

The authors give very good arguments why a successful
forgery should require 2% computations

Performance and security claims

“In case that the IV is reused under the same key, the confidentiality of
AES-JAMBU is only partially compromised as it only leaks the
information of the first block or the common prefix of the message.
And the integrity of AES-JAMBU will be less secure but not

completely compromised.”

Performance and security claims

confidentiality | integrity
(bits) (bits)
nonce-respecting 128 64
nonce-misuse 128* not specified

* except for first block or common prefix of the message.

Our attack:

with about 2** queries and computations, we can produce a
valid ciphertext block corresponding to some plaintext with a
prefix that has never been queried before

Nonce-misuse attack on JAMBU

@ Nonce-misuse attack on JAMBU
> Differential structure in JAMBU
> Details of the attack

Nonce-misuse attack on JAMBU @000

@ Nonce-misuse attack on JAMBU
> Differential structure in JAMBU

Observation 1

no difference in V1
= the differences in R; and Y; are the same As

let the difference in X; be Ar

Observation 2

if the input difference in P; is equal to Ar

= the difference in U;.1 will be cancelled out, and with no
difference in P;q
= the output difference in C; 11 to be As

Nonce-misuse attack on JAMBU oooe

Objective
Build such a diff. structure and find the values of Ar and As

Problem
Seems hard to achieve: naively building the structure costs 2%

computations, and we have no way of checking if we indeed
found it (As is secret)

Solution
“Divide-and-conquer”
> use birthday attack to find a pair of nonce values that partially
follows this differential structure (nonce-respecting)

> enumerate all possible input differences in the plaintext block to
force the rest of the differential structure and to find Ar and As
(nonce-misuse)

Nonce-misuse attack on JAMBU ©00000000

@ Nonce-misuse attack on JAMBU

> Details of the attack

Step 1: birthday attack on V;;

Using birthday attack, a collision on V; 1 can be found with
about 27~ encryption queries ... and we can detect it:

query for encryption for the same one block of plaintext P; with
232 difference nonce IV

find a collision in the ciphertext C; = C}
store the pair of nonce values IV and IV’

Step 2: finding Ar and As

Question: How do we know that we insert the right Ar in P; ?

Answer: the right Ar will give the same output difference As in
the second block

Nonce-misuse attack on JAMBU 000800000

To enumerate all 26 possible input differences of P;, we use 2

sets of 2%2 plaintext blocks:

Encrypt with IV Encrypt with IV’

i and j ranged from 0 to 232 —

Any possible input difference [i|j] can be formed with a pair of
plaintext blocks [i]|0%%] and [0%2|]]]

Step 2: finding Ar and As

P11 is set to a constant value (i.e. all zeros)

We ask for the encryption of [i HO32] I [064] with nonce IV and
(03] il [0%4] with nonce IV’

Step 2: finding Ar and As

The right Ar will give the same output difference As
independently of the of P;, so we build a few tables:

i and j range from 0 to 232 —

It Ar = [i]|j], then C2[i[|0] ® C2[0]j] = Cali @ 1]|0] @ Ca[1[j] =

Note that first and third tables are the same up to permutation:
we need encryption queries

Step 2: summary

query for 3 - 232 encryptions

compute and store the difference of the second block of the
ciphertexts

find the collision

Co[i]|0] © C2[0[lf] = Coli @ 10] @ Co[1]}j] = As

obtain Ar = [i||j] and As = C[i||0] & C2[0]]}]

Step 3: forging a valid ciphertext block

For , by querying

[P1 @ Ar]||[P2 @ A], we can deduce the ciphertext encrypted
with nonce IV’ to be [C; ® Ar]||[C2 ® A & As|, where A can be
any difference.

Note that is a different prefix that has never been
queried before.

Nonce-misuse attack on JAMBU 000000000

> Step 1 requires about 232 queries (nonce-respecting)
> Step 2 requires 3 - 232 queries (nonce-misuse)

> Step 3 requires a single query

With only about 2** queries, we can deduce the ciphertext

corresponding to a plaintext with a prefix that has never been
queried before

Attack has been implemented and verified !

Conclusion

® Conclusion

Conclusion

We have shown a generic confidentiality attack on the JAMBU
operating mode:

> in the nonce-misuse scenario

> practical when instantiated with AES:
only about 2** queries

> attack verified by implementation

Conclusion

One can apply the same idea to break IND-CCA2 security of
JAMBU in the nonce-respecting scenario:

> apply exactly the same 232 attack using decryption queries,
SO you can repeat nonces ...

> ... but every time you query a ciphertext, you have to pay
264 to guess the tag and get the corresponding plaintext
from the oracle

> final complexity of 232 x 26 = 2% queries and
computations to break IND-CCAZ2 security

... but the security model for the security claims of JAMBU was
not given by the designers (they didn’'t mean IND-CCA?2)

Open positions @ NTU - Singapore

Guo Jian: guojian@ntu.edu.sg
4 postdoc positions (symmetric key - lightweight crypto)

Thomas Peyrin: thomas.peyrin@ntu.edu.sg

2 postdoc positions and 1 PhD position
(symmetric key - lightweight crypto - side channels)

Huaxiong Wang: hxwang@ntu.edu.sg
1 postdoc position (coding and lattice based crypto)

Hongjun Wu: wujh@ntu.edu.sg

2 postdoc positions (symmetric key - computer security)

The SYmmetric and Lightweight cryptography Lab (SYLLAB):
wwwl.spms.ntu.edu.sg/~syllab/m/index.php/Home

guojian@ntu.edu.sg
thomas.peyrin@ntu.edu.sg
hxwang@ntu.edu.sg
wujh@ntu.edu.sg
www1.spms.ntu.edu.sg/~syllab/m/index.php/Home

Thank you !

	The JAMBU candidate
	Performance and security claims
	Nonce-misuse attack on JAMBU
	Differential structure in JAMBU
	Details of the attack

	Conclusion

