
Cryptanalysis of JAMBU

Thomas Peyrin
(j.w. with Siang Meng Sim and Lei Wang and Guoyan Zhang)

NTU - Singapore

ESC 2015
Clervaux, Luxembourg - January 16, 2015



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Outline

1 The JAMBU candidate

2 Performance and security claims

3 Nonce-misuse attack on JAMBU
. Differential structure in JAMBU
. Details of the attack

4 Conclusion



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

CAESAR candidate: JAMBU

Designers: Hongjun WU, Tao HUANG (NTU)
. 2n-bit block cipher as underlying cipher
. mode of operation is similar to OFB
. process blocks of n-bit information



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

AES-JAMBU: parameters

AES-JAMBU is JAMBU with AES-128 as underlying cipher:
. associated data + plaintext < 264 bits under the same key
. message blocks = 64 bits
. key = 128 bits
. tag = 64 bits
. Initialization Vector/Nonce = 64 bits



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

AES-JAMBU: initialisation

Initial input: 64-bit zeroes and 64-bit nonce (IV)



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

AES-JAMBU: processing of associated data

A is split into 64-bit blocks Ai



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

AES-JAMBU: processing of plaintext

Plaintext P is split into 64-bit blocks Pi
Ciphertext C is split into 64-bit blocks Ci



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

AES-JAMBU: tag generation

Last block PM is padded with 1‖0∗ and output is truncated.
If last block is a full block, an additional block of 1‖063 is
processed without output.



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Outline

1 The JAMBU candidate

2 Performance and security claims

3 Nonce-misuse attack on JAMBU
. Differential structure in JAMBU
. Details of the attack

4 Conclusion



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

JAMBU: hardware performance

JAMBU is a hardware-oriented candidate:

compared with other AE modes instantiated with a 2n-bit block
cipher, JAMBU minimizes the state size, which is an advantage
for hardware implementations

Modes State size
GCM 6n
OCB3 6n
EAX 8n
JAMBU 3n



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

JAMBU: software performance

On an Intel Core i5-2540M 2.6GHz processor with AES-NI:

512-byte messages
AES-128-CCM 5.19 c/B
AES-128-GCM 3.33 c/B
AES-128-OCB3 1.34 c/B
AES-JAMBU 12.27 c/B

According to the designers, AES-JAMBU should be about two
times slower than AES-GCM (their implementation is not
optimized yet)



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

JAMBU: security claims

confidentiality integrity
(bits) (bits)

nonce-respecting 128 64
nonce-misuse 128∗ not specified

* except for first block or common prefix of the message.

The authors give very good arguments why a successful
forgery should require 264 computations



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

JAMBU: security claims

“In case that the IV is reused under the same key, the confidentiality of
AES-JAMBU is only partially compromised as it only leaks the
information of the first block or the common prefix of the message.
And the integrity of AES-JAMBU will be less secure but not
completely compromised.”



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

JAMBU: security claims

confidentiality integrity
(bits) (bits)

nonce-respecting 128 64
nonce-misuse 128∗ not specified

* except for first block or common prefix of the message.

Our attack:
with about 234 queries and computations, we can produce a
valid ciphertext block corresponding to some plaintext with a
prefix that has never been queried before



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Outline

1 The JAMBU candidate

2 Performance and security claims

3 Nonce-misuse attack on JAMBU
. Differential structure in JAMBU
. Details of the attack

4 Conclusion



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Outline

1 The JAMBU candidate

2 Performance and security claims

3 Nonce-misuse attack on JAMBU
. Differential structure in JAMBU
. Details of the attack

4 Conclusion



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Observation 1

. no difference in Vi+1
⇒ the differences in Ri and Yi are the same ∆s

. let the difference in Xi be ∆r



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Observation 2

. if the input difference in Pi is equal to ∆r
⇒ the difference in Ui+1 will be cancelled out, and with no
difference in Pi+1
⇒ the output difference in Ci+1 to be ∆s



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Attack overview

Objective
Build such a diff. structure and find the values of ∆r and ∆s

Problem
Seems hard to achieve: naively building the structure costs 264
computations, and we have no way of checking if we indeed
found it (∆s is secret)

Solution
“Divide-and-conquer”

. use birthday attack to find a pair of nonce values that partially
follows this differential structure (nonce-respecting)

. enumerate all possible input differences in the plaintext block to
force the rest of the differential structure and to find ∆r and ∆s
(nonce-misuse)



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Outline

1 The JAMBU candidate

2 Performance and security claims

3 Nonce-misuse attack on JAMBU
. Differential structure in JAMBU
. Details of the attack

4 Conclusion



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Step 1: birthday attack on Vi+1

Using birthday attack, a collision on Vi+1 can be found with
about 232 encryption queries ... and we can detect it:

. query for encryption for the same one block of plaintext P1 with
232 difference nonce IV

. find a collision in the ciphertext C1 = C′
1

. store the pair of nonce values IV and IV′



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Step 2: finding ∆r and ∆s

Question: How do we know that we insert the right ∆r in Pi ?

Answer: the right ∆r will give the same output difference ∆s in
the second block independent of the plaintext value in the first
block.



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Step 2: finding ∆r and ∆s

To enumerate all 264 possible input differences of Pi, we use 2
sets of 232 plaintext blocks:

i and j ranged from 0 to 232 − 1

Any possible input difference [i‖j] can be formed with a pair of
plaintext blocks [i‖032] and [032‖j]



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Step 2: finding ∆r and ∆s

Pi+1 is set to a constant value (i.e. all zeros)

We ask for the encryption of [i‖032]‖[064] with nonce IV and
[032‖j]‖[064] with nonce IV′



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Step 2: finding ∆r and ∆s

The right ∆r will give the same output difference ∆s
independently of the value of Pi, so we build a few tables:

i and j range from 0 to 232 − 1

If ∆r = [i‖j], then C2[i‖0]⊕ C2[0‖j] = C2[i ⊕ 1‖0]⊕ C2[1‖j] = ∆s

Note that first and third tables are the same up to permutation:
we need 3 · 232 encryption queries



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Step 2: summary

. query for 3 · 232 encryptions

. compute and store the difference of the second block of the
ciphertexts

. find the collision
C2[i‖0]⊕ C2[0‖j] = C2[i ⊕ 1‖0]⊕ C2[1‖j] = ∆s

. obtain ∆r = [i‖j] and ∆s = C2[i‖0]⊕ C2[0‖j]



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Step 3: forging a valid ciphertext block

For any choice of plaintext blocks P1, P2, by querying
[P1 ⊕∆r]‖[P2 ⊕∆], we can deduce the ciphertext encrypted
with nonce IV′ to be [C1 ⊕∆r]‖[C2 ⊕∆⊕∆s], where ∆ can be
any difference.

Note that [P1 ⊕∆r] is a different prefix that has never been
queried before.



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Complexity evaluation of the attack

. Step 1 requires about 232 queries (nonce-respecting)

. Step 2 requires 3 · 232 queries (nonce-misuse)

. Step 3 requires a single query

With only about 234 queries, we can deduce the ciphertext
corresponding to a plaintext with a prefix that has never been
queried before

Attack has been implemented and verified !



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Outline

1 The JAMBU candidate

2 Performance and security claims

3 Nonce-misuse attack on JAMBU
. Differential structure in JAMBU
. Details of the attack

4 Conclusion



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

Conclusion

We have shown a generic confidentiality attack on the JAMBU
operating mode:

. in the nonce-misuse scenario

. practical when instantiated with AES:
only about 234 queries

. attack verified by implementation



The JAMBU candidate Performance and security claims Nonce-misuse attack on JAMBU Conclusion

What about nonce-respecting scenario ?

One can apply the same idea to break IND-CCA2 security of
JAMBU in the nonce-respecting scenario:

. apply exactly the same 232 attack using decryption queries,
so you can repeat nonces ...

. ... but every time you query a ciphertext, you have to pay
264 to guess the tag and get the corresponding plaintext
from the oracle

. final complexity of 232 × 264 = 296 queries and
computations to break IND-CCA2 security

... but the security model for the security claims of JAMBU was
not given by the designers (they didn’t mean IND-CCA2)



Open positions @ NTU - Singapore

Guo Jian: guojian@ntu.edu.sg
4 postdoc positions (symmetric key - lightweight crypto)

Thomas Peyrin: thomas.peyrin@ntu.edu.sg
2 postdoc positions and 1 PhD position
(symmetric key - lightweight crypto - side channels)

Huaxiong Wang: hxwang@ntu.edu.sg
1 postdoc position (coding and lattice based crypto)

Hongjun Wu: wujh@ntu.edu.sg
2 postdoc positions (symmetric key - computer security)

The SYmmetric and Lightweight cryptography Lab (SYLLAB):
www1.spms.ntu.edu.sg/~syllab/m/index.php/Home

guojian@ntu.edu.sg
thomas.peyrin@ntu.edu.sg
hxwang@ntu.edu.sg
wujh@ntu.edu.sg
www1.spms.ntu.edu.sg/~syllab/m/index.php/Home


Thank you !


	The JAMBU candidate
	Performance and security claims
	Nonce-misuse attack on JAMBU
	Differential structure in JAMBU
	Details of the attack

	Conclusion

