
Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Cryptanalysis of Stream-Based Hashes

ECRYPT II
Hash3: Proofs, Analysis, and Implementation

Thomas Peyrin
Ingenico

November 17th 2009 - Tenerife

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

How to build a hash function (usually) ?

Merkle-Damgård algorithm + Davies-Meyer

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

How to build a hash function (usually) ?

Generalization

• use an output function (for example
truncation in double pipe construction)

• use another method for introducing message
chunks

• c represents the capacity.

• r represents the bit-rate.

• R represents the number of rounds.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

How to build a hash function (usually) ?

Generalization

• use an output function (for example
truncation in double pipe construction)

• use another method for introducing message
chunks

• c represents the capacity.

• r represents the bit-rate.

• R represents the number of rounds.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

How to build a hash function (usually) ?

Generalization

• use an output function (for example
truncation in double pipe construction)

• use another method for introducing message
chunks

• c represents the capacity.

• r represents the bit-rate.

• R represents the number of rounds.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

How to build a hash function (usually) ?

Generalization

• use an output function (for example
truncation in double pipe construction)

• use another method for introducing message
chunks

• c represents the capacity.

• r represents the bit-rate.

• R represents the number of rounds.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

What is a stream-based hash function ?

Block/stream-based hash functions

• block-based hash:
r is bigger or at least the same size than c

• stream-based hash:
r is small compared to c

• increasing c/r improves security: less control
to the attacker

• increasing R improves security: less good
differential paths

• stream-based hashes internal function is in
general a permutation

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

What is a stream-based hash function ?

Block/stream-based hash functions

• block-based hash:
r is bigger or at least the same size than c

• stream-based hash:
r is small compared to c

• increasing c/r improves security: less control
to the attacker

• increasing R improves security: less good
differential paths

• stream-based hashes internal function is in
general a permutation

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

What is a stream-based hash function ?

Block/stream-based hash functions

• block-based hash:
r is bigger or at least the same size than c

• stream-based hash:
r is small compared to c

• increasing c/r improves security: less control
to the attacker

• increasing R improves security: less good
differential paths

• stream-based hashes internal function is in
general a permutation

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Output function

• you can add blank rounds
(Grindahl, RadioGatun, Lux,
CubeHash, ...)

• option 1: just truncate the
internal state to obtain the hash
value (Grindahl, CubeHash, ...)

• option 2: you can continue
iterating the round function
without introducing messages
and slowly extracting chunk of
the internal state to build the
hash value (RadioGatun, Lux,
Keccak, ...)

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Output function

• you can add blank rounds
(Grindahl, RadioGatun, Lux,
CubeHash, ...)

• option 1: just truncate the
internal state to obtain the hash
value (Grindahl, CubeHash, ...)

• option 2: you can continue
iterating the round function
without introducing messages
and slowly extracting chunk of
the internal state to build the
hash value (RadioGatun, Lux,
Keccak, ...)

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

The sponge functions [BDPV-ECRYPTHW07]

• sponge functions: introduced by Bertoni,
Daemen, Peeters and Van Assche in 2007.

• Example: Keccak.

• Particularities:
• special padding rule (that implies last

message block 6= 0)
• insert message chunks with a XOR
• use squeezing process as output function

(with the same internal state words than
insertion): allows to be very flexible on the
hash output size, with the same internal
function ... can be used as a stream cipher.

• the round function should presents no
structural property (hermetic sponge)

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Security proofs for sponge functions [BDPV-EC08]

• white box model: the attacker has access to the internal round
function. Use the indifferentiability framework from Maurer et al.
[MRH-TCC04].

• assume the internal function is a random permutation

• Theorem: a random sponge can be differentiated from a
random oracle only with probability ' N(N + 1)/2c+1, with
N < 2c , where N is the total number of calls to the internal round
function.

• generic attacks require 2c/2.

• as long as you can’t say anything on the actual internal
permutation (i.e. structural properties), the sponge looks like a
random oracle (resistant to multicollisions, long 2nd preimage,
length-extension attacks, ...)

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Examples

name capacity bit-rate nb rounds insert output
c r R function function

Panama 8480 256 1 XOR BR + trunc
RadioGatun 1760 96 1 XOR BR + squeeze

Keccak 512 1088 24 XOR squeeze
Grindahl 384 32 1 ERASE BR + trunc
Fugue 928 32 1 XOR BR + trunc
LUX 736 32 1 XOR BR + squeeze

HAMSI 256 32 3 special BR + trunc
Luffa 512 256 1 special BR + squeeze

CubeHash 768 256 16 XOR BR + trunc
EnRupt 576 64 8 XOR BR + squeeze

SHABAL 896 512 3 MIX BR + squeeze

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

CubeHash-R/b

• SHA-3 candidate of Dan Bernstein

• internal state of 1024 bits (32 words of 32
bits each)

• insert b bytes of message (with xor) each
iteration

• process R rounds of the permutation each
iteration

• xor 1 and execute 10R blank rounds

• truncate the internal state to the appropriate
hash size

• capacity = 1024 - 8b.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

CubeHash round function

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Meet-in-the-middle attacks

• assume we use an internal
permutation, let’s try to find a preimage

• invert the output function

• compute 2c/2 candidates forward and
backward ...

• ... and meet-in-the-middle

• to be preimage resistant, the capacity
should be c ≥ 2n

• in the case of CubeHash, we need
2(1024−8b)/2 = 2512−4b operations to
find a preimage

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Meet-in-the-middle attacks

• assume we use an internal
permutation, let’s try to find a preimage

• invert the output function

• compute 2c/2 candidates forward and
backward ...

• ... and meet-in-the-middle

• to be preimage resistant, the capacity
should be c ≥ 2n

• in the case of CubeHash, we need
2(1024−8b)/2 = 2512−4b operations to
find a preimage

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Meet-in-the-middle attacks

• assume we use an internal
permutation, let’s try to find a preimage

• invert the output function

• compute 2c/2 candidates forward and
backward ...

• ... and meet-in-the-middle

• to be preimage resistant, the capacity
should be c ≥ 2n

• in the case of CubeHash, we need
2(1024−8b)/2 = 2512−4b operations to
find a preimage

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

CubeHash round function structural property [ABMNP-ACISP09]

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Improving meet-in-the-middle attacks with structural property

• find all symmetry classes in CubeHash internal function

• 16 classes of 2512 elements each, a total of 2516 symmetric
states

• let’s find a preimage:
• invert the output function
• from this internal state, compute backward and reach a

symmetric state (21024−516−8b = 2508−8b operations)
• from the IV, compute forward and reach a symmetric state

(21024−516−8b = 2508−8b operations)
• do a meet-in-the-middle while remaining in the symmetry

class SF ∩ SB (2512/2 = 2256 operations)

• total complexity 2512−8b < 2512−4b

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Slide attacks on stream-based hash functions

If the addition of X is neutral, then output1 = round(output2).

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Slide attacks on stream-based hash functions

If the addition of X is neutral, then output1 = round(output2).

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Slide attacks for hash functions

What can we obtain from slide attacks ?
• slide attacks are a typical block cipher cryptanalysis technique.

• doesn’t seem useful for collision or preimage attacks ...

• ... but we can ”distinguish” the hash function from a random
oracle.

• the key recovery attack may also be useful if some secret is
used in the hash function: we can attack a MAC construction
using a hash function.

We’ll try to attack the following MAC construction:

MAC(K , M) = H(K ||M).

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Slide attacks for hash functions

We’ll try to attack the following MAC construction:

MAC(K , M) = H(K ||M).

• ... which is secure if the hash function is modeled as a
random oracle.

• Merkle-Damgård already known to be weak against
this construction: given MAC(K , M) = H(K ||M), compute
MAC(K , M||Y) = H(K ||M||Y) without knowing the secret
key K .

• patch provided in Coron et al.’s paper [CDMP-CRYPTO05].

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries Mi
and receive replies H(K ||M). He then tries to get
some non trivial information from the secret K or
manage to forge another MAC with good probability.

The attack will be in three steps:

• Find and detect slid pairs of messages.

• Recover the internal state.

• Uncover some part of the secret key (or forge a
new MAC).

The padding must also be taken in account !

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries Mi
and receive replies H(K ||M). He then tries to get
some non trivial information from the secret K or
manage to forge another MAC with good probability.

The attack will be in three steps:

• Find and detect slid pairs of messages.

• Recover the internal state.

• Uncover some part of the secret key (or forge a
new MAC).

The padding must also be taken in account !

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries Mi
and receive replies H(K ||M). He then tries to get
some non trivial information from the secret K or
manage to forge another MAC with good probability.

The attack will be in three steps:

• Find and detect slid pairs of messages.

• Recover the internal state.

• Uncover some part of the secret key (or forge a
new MAC).

The padding must also be taken in account !

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Find and detect slid pairs of messages.

If you are inserting message blocks with XOR:
• very easy to slide, just use 0
• you don’t need to detect it, you know it will slide
• impossible in the original sponge framework (in which the last

inserted word must be different from 0) ...
• ... but possible if a different padding is used !

If you are inserting message blocks with ERASE:
• you can slide if you replace exactly what you erased
• happens with probability P = 2−r

• detection depends on the output function:
• very easy with the squeezing process (all the output words are

shifted by one iteration).
• more complicated with a direct truncation.

Recovering the internal state and uncovering the secret key both
depend on the whole hash function (require a case by case analysis).

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Patches

This attacks works against:
• Grindahl [GLP-AC08]
• LUX [P-SHA3list09] (with chosen salt)

It is very easy (and costless) for the designers to protect
themselves against slide attacks:
• add a constant to the internal state just before the blank rounds

to clearly separate them from the normal rounds (CubeHash).
• use a different transformation during the blank rounds (Panama,

SHABAL).
• If you’re inserting message blocks with a XOR: just use

exactly the sponge framework and make sure that the last
inserted message work is different from zero (RadioGatun,
Keccak, EnRupt).

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

General principles

• internal collisions: the collision occurs on the whole
internal state, before the blank rounds or the output
function.
• advantages: you can use the freedom degrees MUCH more

efficiently
• drawbacks: you have to collide on the entire big internal state

• external collisions: the internal state before the blank
rounds or the output function contains some differences:
• advantages: you only have to collide on the (small) hash output

size.
• drawbacks: you have no freedom degree to use

• Finding internal near collisions is useless (the output function is
often strong because it doesn’t affect the efficiency for long
messages)

• Finding free-start collisions is useless in practice (and very easy
since one can invert the internal function)

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

General principles
Situation different for stream-cipher based and block-based hash
functions (not a rule, just a general observation):

• block-based:
• finding a differential path is not the most difficult part (e.g. we

know very good differential paths for SHA-1)
• using the freedom degrees is hard, because they are all located at

the same place while the conditions are everywhere (many
freedom degrees are wasted in SHA-1 attacks) you may find good
differential characteristics for the internal functions used in
stream-based hashes ...

• ... but the problem is how to link them

• stream-based:
• finding a differential path is hard, because the internal state is

really big (many conditions to take care of). Moreover, you often
need several iterations in order to get a collision.

• using the freedom degrees is rather easy, because you only have
a few incoming each iteration: it is easy to use each of them to
take care of a condition.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths

• try to linearize the scheme ... for example, simply replace
additions by XORs

• solve the set of linear equations and try to find a good differential
trail (in general, good = low weight)

Complexity computation:

• two situations have to be considered in order to compute the success
probability of the differential path in the non-linearized case (both with
probability 1/2):

• move: a perturbation at a certain bit position is added to another
bit containing no difference.

• correction: a perturbation at a certain bit position is added to
another bit containing a difference.

• for the addition of two words A + B, the probability of a linear behavior is
HW((∆A ∨∆B) ∧ 0x7fffffff).

Works rather well for (32 or 64-bit)-word oriented primitives (ex: EnRupt
[IP-FSE09], CubeHash [D-SHA3list09] [BP-ACNS09] [BKMP-AC09])

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

• add a one bit difference on X0 (at
position i).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
positions i+4, i+14, i+22).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
position i+4).

• 46 bit conditions in total.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

• add a one bit difference on X0 (at
position i).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
positions i+4, i+14, i+22).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
position i+4).

• 46 bit conditions in total.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

• add a one bit difference on X0 (at
position i).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
positions i+4, i+14, i+22).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
position i+4).

• 46 bit conditions in total.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

• add a one bit difference on X0 (at
position i).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
positions i+4, i+14, i+22).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
position i+4).

• 46 bit conditions in total.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

• add a one bit difference on X0 (at
position i).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
positions i+4, i+14, i+22).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
position i+4).

• 46 bit conditions in total.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

• add a one bit difference on X0 (at
position i).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
positions i+4, i+14, i+22).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
position i+4).

• 46 bit conditions in total.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

• add a one bit difference on X0 (at
position i).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
positions i+4, i+14, i+22).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
position i+4).

• 46 bit conditions in total.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Truncated differential paths: CubeHash-1/36 example

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Truncated differential paths: CubeHash-1/36 results

Results (using freedom degrees):

• a collision for CubeHash-1/36 in 232 operations.

• a collision for CubeHash-2/36 in 296 operations.

• ... seems hard to go further !

Truncated differential paths don’t work well for CubeHash.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Truncated differential paths: Grindahl

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Truncated differential paths: attacking Grindahl [P-AC07]

• Building a differential path is really hard because of the two
security properties:
• a collision requires intermediate states with at least half of the

bytes active.
• an internal collision requires at least 5 rounds.

• idea - take the all-difference state as a check point:
• from a no-difference state to an all-difference state: hopefully very

easy ! No need for a differential path here.
• from an all-difference state to a no-difference state: harder ! Build

the differential path backward and search for a collision onward.

• the costly part when searching for a collision is obviously the
second stage !

Very unintuitive strategy (letting all the differences spread), this is surely not
the best path one could find for Grindahl. However, it is a very handy method
in order to find a rather good candidate trail.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Truncated differential paths

Reducing the ”zoom” with truncated differentials allows to simplify the
path search, but also decrease the probability that a good path exist
in the search space. In general truncated differentials works well for
byte-oriented primitives, not against bit-oriented, 32-bit or 64-bit hash
functions.

• bit-oriented schemes (e.g. RadioGatun): bit-wise diffusion will
make the truncated differential analysis fail

• byte-oriented schemes (e.g. Grindahl): simplifies the path
search while not reducing too much the search space

• word-oriented schemes (e.g. CubeHash): simplifies the path
search too much, only very costly trails are likely to be found

Fugue presents security arguments regarding this kind of attacks.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

• initialize the state with zeros.

• for each round do (while all the
padded message hasn’t been
processed):

• XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.

• do Milt.
• do Bell.
• do Mill function.
• do Belt function.

• do 16 blank rounds.

• do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

• initialize the state with zeros.

• for each round do (while all the
padded message hasn’t been
processed):

• XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.

• do Milt.
• do Bell.
• do Mill function.
• do Belt function.

• do 16 blank rounds.

• do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

• initialize the state with zeros.

• for each round do (while all the
padded message hasn’t been
processed):

• XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.

• do Milt.
• do Bell.
• do Mill function.
• do Belt function.

• do 16 blank rounds.

• do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

• initialize the state with zeros.

• for each round do (while all the
padded message hasn’t been
processed):

• XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.

• do Milt.
• do Bell.
• do Mill function.
• do Belt function.

• do 16 blank rounds.

• do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

• initialize the state with zeros.

• for each round do (while all the
padded message hasn’t been
processed):

• XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.

• do Milt.
• do Bell.
• do Mill function.
• do Belt function.

• do 16 blank rounds.

• do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

• initialize the state with zeros.

• for each round do (while all the
padded message hasn’t been
processed):

• XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.

• do Milt.
• do Bell.
• do Mill function.
• do Belt function.

• do 16 blank rounds.

• do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences

Consider symmetric differences for each word: only
”all-different” or ”equal”.
• analysis REALLY simplified: you only have to study RadioGatun with

w=1 (internal state of 58 bits).
• but each uncontrolled event cost a lot: all the complexity comes from

the non-linear part in the Mill function.
• each event you want to force costs you one word of message freedom.
• the conditions can sometime be compressed (two same conditions on

the same word).
• there may be contradicting conditions.

This techniques works well for bit-oriented primitives
(RadioGatun [BDPV-RG06] [FP-FSE09] or PANAMA
[RRPV-FSE01] [DV-FSE07])

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Using the freedom degrees

• The techniques used are similar to the block-based hash
functions: message modification, neutral bits, etc. For example the
control words used for attacking Grindahl ([P-AC07]) can be seen as
byte-level message modifications.

• they lead to HUGE improvements. For example, from 2440 to 2112 for
Grindahl [P-AC07].

• but because many freedom degrees can be used, and because the
paths sometimes requires a few hundreds steps (RadioGatun
[FP-FSE09]), one very often uses automated tools (Grindahl
[P-AC07], RadioGatun [FP-FSE09], CubeHash [BKMP-AC09])

• Those tools are generally integrated directly during the path search
(avoid the problem of ”good raw probability, but no freedom degrees
possibility”)

• you can use structures (Grindahl or RadioGatun [K-SAC09]) or
algebraic techniques (RadioGatun [BF-SAC08])

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Using the freedom degrees: the trail backtracking cost

Trail backtracking [BDPV-RG06] is a method for estimating
the cost of staying in a differential path when searching for
collisions in hash functions.

• find a t-round trail starting and ending
with no difference

• Idea:
• start with T pairs at the beginning of

the trail

• each round i you go through, you
have to ”pay” a probability Pi

• each round i , you get r bits of freedom
degrees

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Using the freedom degrees: the trail backtracking cost

• The number of valid pairs at the end of a k -round trail is

N(k) = T × 2k ·r × 2−
∑k

i=1 Pi

• at each round, you must have that the number of valid
pairs is always ≥ 1 (can be removed if considering average
cost), thus

T ≥ max
0<k≤t

{2(
∑k

i=1 Pi)−k ·r}

• total cost for the trail is the sum
of the number of pairs entering
the rounds

cost =
t∑

j=1

N(j)

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Using the freedom degrees: improving the trail backtracking

• Improvement: find a good differential trail and define how
you will use the freedom degrees at the same time.

• Search paths with a meet-in-the-middle tracking technique
(RadioGatun [FP-FSE09]):
• keep track of the cost for forward paths (and cut off costly

branches)
• keep track of the cost for backward paths (and cut off costly

branches)
• meet-in-the-middle the two sets
• adjust the costs during the meeting phase

• Example: for RadioGatun, with trail backtracking best attack
found 246·w operations, with meet-in-the-middle tracking 211·w

operations.

• to simplify the search, instead of randomly meeting in the
middle, you can meet to a fixed difference (all-difference state for
Grindahl [P-AC07]).

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

That’s all folks !

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

References

• [ABMNP-ACISP09]: J-P. Aumasson, E. Brier, W. Meier, M. Naya-Plasencia and T. Peyrin, ”Inside the
Hypercube”, ACISP 2009.

• [BDPV-RG06]: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, ”The RadioGatún Hash Function
Family”, second NIST Hash Workshop, 2006.

• [BDPV-ECRYPTHW07]: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, ”Sponge Functions”,
ECRYPT Hash Workshop, 2007.

• [BDPV-EC08]: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, ”On the Indifferentiability of the
Sponge Construction”, Eurocrypt 2008.

• [BF-SAC08]: C. Bouillaguet and P.A. Fouque, ”Analysis of the Radiogatun Hash Function”, SAC 2008.

• [BKMP-AC09]: E. Brier, S. Khazaei, W. Meier and T. Peyrin, ”Linearization Framework for Collision Attacks:
Application to CubeHash and MD6”, Asiacrypt 2009.

• [BP-ACNS09]: E. Brier and T. Peyrin, ”Cryptanalysis of CubeHash”, ACNS 2009.

• [CDMP-CRYPTO05]: J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya, ”Merkle-Damgard Revisited: How to
Construct a Hash Function”, CRYPTO 2005.

• [D-SHA3list09]: W. Dai, ”Collisions for CubeHash1/45 and CubeHash2/89”, NIST mailing list, 2008.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

References

• [DV-FSE07]: J. Daemen and G. Van Assche, ”Producing Collisions for Panama, Instantaneously”, FSE
2007.

• [FP-FSE09]: T. Fuhr and T. Peyrin, ”Cryptanalysis of RadioGatun”, FSE 2009.

• [GLP-AC08]: M. Gorski, S. Lucks and T. Peyrin, ”Slide Attacks on a Class of Hash Functions”, Asiacrypt
2008.

• [IP-FSE09]: S. Indesteege and B. Preneel, ”Practical Collisions for EnRUPT”, FSE 2009.

• [K-SAC09]: D. Khovratovich, ”Cryptanalysis of hash functions with structures”, SAC 2009.

• [MRH-TCC04]: U. Maurer, R. Renner, and C. Holenstein, ”Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology”, TCC 2004.

• [P-SHA3list09]: T. Peyrin, ”Slide attacks on LUX”, NIST mailing list, 2008.

• [P-AC07]: T. Peyrin, ”Cryptanalysis of Grindahl”, Asiacrypt 2007.

• [RRPV-FSE01]: V. Rijmen, B. Van Rompay, B. Preneel and J. Vandewalle, ”Producing Collisions for
PANAMA”, FSE 2001.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

References: the hash functions

• CubeHash: D. Bernstein, ”CubeHash specifiation”, NIST SHA-3 competition candidate, 2008.

• EnRupt: S. O’Neil, K. Nohl, L. Henzen, ”EnRUPT Hash Function Specification”, NIST SHA-3 competition
candidate, 2008.

• FUGUE: S. Halevi, W.E. Hall and C.S. Jutla, ”THE HASH FUNCTION FUGUE”, NIST SHA-3 competition
candidate, 2008.

• Grindahl: L. Knudsen, C. Rechberger and S. Thomsen, ”Grindahl - a family of hash functions”, FSE 2007.

• HAMSI: Özgül Kücük, ”The hash function Hamsi”, NIST SHA-3 competition candidate, 2008.

• Keccak: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, ”The Keccak sponge function family”, NIST
SHA-3 competition candidate, 2008.

• Luffa: C. De Cannière, H. Sato and D. Watanabe, ”Hash function Luffa: Specification”, NIST SHA-3
competition candidate, 2008.

• LUX: I. Nikolic, A. Biryukov and D. Khovratovich, ”Hash family LUX”, NIST SHA-3 competition candidate,
2008.

• PANAMA: J. Daemen and C.S.K. Clapp, ”Fast hashing and stream encryption with Panama”, FSE 1998.

• RadioGatun: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, ”The RadioGatún Hash Function
Family”, second NIST Hash Workshop, 2006.

• Shabal: A.Canteaut, E. Bresson, B.Chevallier-Mames, C. Clavier, T. Fuhr, A.Gouget, T. Icart, J-F. Misarsky,
M. Naya-Plasencia, P.Paillier, T.Pornin, J-R. Reinhard, C. Thuillet, M. Videau, ”Shabal, a Submission to
NIST’s Cryptographic Hash Algorithm Competition”, NIST SHA-3 competition candidate, 2008.

	Stream-based hash functions
	What is a stream-based hash function ?
	Some examples
	A perfect example: CubeHash

	Generic attacks
	Meet-in-the-middle attacks
	Slide attacks

	Differential attacks
	Linear differential paths
	Truncated differential paths
	Symmetric differential paths

	Using the freedom degrees
	References

