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What is a stream-based hash function ?
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How to build a hash function (usually) ?

Merkle-Damgard algorithm + Davies-Meyer
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How to build a hash function (usually) ?

Generalization

e use an output function (for example
truncation in double pipe construction)

e use another method for introducing message
chunks

Output
function

H(M)
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rounds

Bitrate r Capacity ¢

Output
function

H(M)

How to build a hash function (usually) ?

Generalization

use an output function (for example
truncation in double pipe construction)

use another method for introducing message
chunks

¢ represents the capacity.
r represents the bit-rate.

R represents the number of rounds.
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What is a stream-based hash function ?

Block/stream-based hash functions

¢ block-based hash:
r is bigger or at least the same size than ¢
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Block/stream-based hash functions

¢ block-based hash:
r is bigger or at least the same size than ¢
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What is a stream-based hash function ?

Block/stream-based hash functions

¢ block-based hash:
r is bigger or at least the same size than c

e stream-based hash:
rounds ris small compared to ¢

e increasing c/r improves security: less control
Mo to the attacker

e increasing R improves security: less good
differential paths

Bitrate r

Output
function

H(M)

Capacity ¢

e stream-based hashes internal function is in
general a permutation
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Output function
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Output function

e you can add blank rounds
(Grindahl, RadioGatun, Lux,
Guberash, -
Blank

rounds e option 1: just truncate the

<
. <

s internal state to obtain the hash

|4
Cunction) value (Grindahl, CubeHash, ...)

option 2: you can continue
iterating the round function
without introducing messages

Input block

=

A

Output block

!

Chaion l | and slowly extracting chunk of
the internal state to build the
hash value (RadioGatun, Lux,

Keccak, ...)
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The sponge functions [BDPV-ECRYPTHWO07]

e sponge functions: introduced by Bertoni,
Daemen, Peeters and Van Assche in 2007.

Input block

e Example: Keccak.

o Particularities:

e special padding rule (that implies last

message block # 0)
e insert message chunks with a XOR
function) e use squeezing process as output function
insartion): allows o be very flexile on the
i hash output size, with the same internal
function ... can be used as a stream cipher.

¢ the round function should presents no
structural property (hermetic sponge)
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Security proofs for sponge functions [BDPV-ECO08]

white box model: the attacker has access to the internal round
function. Use the indifferentiability framework from Maurer et al.
[MRH-TCCO04].

assume the internal function is a random permutation

Theorem: a random sponge can be differentiated from a
random oracle only with probability ~ N(N + 1)/2°+1, with

N < 2°, where N is the total number of calls to the internal round
function.

generic attacks require 2°/2.

as long as you can’t say anything on the actual internal
permutation (i.e. structural properties), the sponge looks like a
random oracle (resistant to multicollisions, long 2nd preimage,
length-extension attacks, ...)
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Examples

name capacity | bit-rate | nb rounds insert output
c r R function function
Panama 8480 256 1 XOR BR + trunc
RadioGatun 1760 96 1 XOR BR + squeeze
Keccak 512 1088 24 XOR squeeze
Grindahl 384 32 1 ERASE BR + trunc
Fugue 928 32 1 XOR BR + trunc
LUX 736 32 1 XOR BR + squeeze
HAMSI 256 32 3 special BR + trunc
Luffa 512 256 1 special | BR + squeeze
CubeHash 768 256 16 XOR BR + trunc
EnRupt 576 64 8 XOR BR + squeeze
SHABAL 896 512 3 MIX BR + squeeze
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A perfect example: CubeHash
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1024 bits

—
b bytes v
—
R rounds
Vol

Input block o

Blank
rounds

CubeHash-R/b

SHA-3 candidate of Dan Bernstein

internal state of 1024 bits (32 words of 32
bits each)

insert b bytes of message (with xor) each
iteration

process R rounds of the permutation each
iteration

xor 1 and execute 10R blank rounds

truncate the internal state to the appropriate
hash size

capacity = 1024 - 8b.
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Meet-in-the-middle attacks

e assume we use an internal
permutation, let’s try to find a preimage

¢ invert the output function
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Meet-in-the-middle attacks

assume we use an internal
permutation, let’s try to find a preimage

- invert the output function

compute 2°/2 candidates forward and
backward ...

... and meet-in-the-middle

2¢/2
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Meet-in-the-middle attacks

e assume we use an internal
permutation, let’s try to find a preimage

- e invert the output function

e compute 2°/2 candidates forward and
backward ...

e ... and meet-in-the-middle

¢ to be preimage resistant, the capacity
should be ¢ > 2n

2: e in the case of CubeHash, we need
2(1024-8b)/2 _ p512-4b pnerations to
find a preimage
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CubeHash round function structural property [ABMNP-ACISP09]
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Improving meet-in-the-middle attacks with structural property

e find all symmetry classes in CubeHash internal function

« 16 classes of 2°12 elements each, a total of 2516 symmetric
states

e let’s find a preimage:
¢ invert the output function

o from this internal state, compute backward and reach a
symmetric state (21024-516-8b _ 2508-8b gperations)

o from the IV, compute forward and reach a symmetric state
(2102475167817 — 250878b operations)

¢ do a meet-in-the-middle while remaining in the symmetry
class Sg N Sp (2512/2 = 2256 gperations)

o total complexity 251280  2512-4b
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Slide attacks on stream-based hash functions
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Slide attacks on stream-based hash functions

If the addition of X is neutral, then output1 = round(output2).
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Slide attacks for hash functions
What can we obtain from slide attacks ?
e slide attacks are a typical block cipher cryptanalysis technique.
e doesn’t seem useful for collision or preimage attacks ...

e ... but we can "distinguish” the hash function from a random
oracle.

o the key recovery attack may also be useful if some secret is
used in the hash function: we can attack a MAC construction
using a hash function.

We’'ll try to attack the following MAC construction:

MAC(K, M) = H(K||M).
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Slide attacks for hash functions

We'll try to attack the following MAC construction:
MAC(K, M) = H(K||M).

e ... which is secure if the hash function is modeled as a
random oracle.

o Merkle-Damgard already known to be weak against
this construction: given MAC(K, M) = H(K||M), compute
MAC(K, M||Y) = H(K||M||Y) without knowing the secret
key K.

e patch provided in Coron et al.’s paper [CDMP-CRYPTOO05].
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Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries M;
and receive replies H(K||M). He then tries to get
some non trivial information from the secret K or
manage to forge another MAC with good probability.

The attack will be in three steps:

e Find and detect slid pairs of messages.
e Recover the internal state.

e Uncover some part of the secret key (or forge a
new MAC).

. . Output \(
The padding must also be taken in account ! function
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Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries M;
and receive replies H(K||M). He then tries to get
some non trivial information from the secret K or
manage to forge another MAC with good probability.

The attack will be in three steps:

e Find and detect slid pairs of messages.
e Recover the internal state.

e Uncover some part of the secret key (or forge a
new MAC).

The padding must also be taken in account !

Blank
rounds
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Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries M;
and receive replies H(K||M). He then tries to get

some non trivial information from the secret K or
manage to forge another MAC with good probability. A
Th k will be in th teps: A

e attack will be in three steps: —

e Find and detect slid pairs of messages.

e Recover the internal state. S ) gi

e Uncover some part of the secret key (or forge a

new MAC).
)

The padding must also be taken in account !

i
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Find and detect slid pairs of messages.

If you are inserting message blocks with XOR:
e very easy to slide, just use 0
e you don’t need to detect it, you know it will slide

e impossible in the original sponge framework (in which the last
inserted word must be different from 0) ...

e ... but possible if a different padding is used !
If you are inserting message blocks with ERASE:
e you can slide if you replace exactly what you erased
e happens with probability P =2~"
e detection depends on the output function:
e very easy with the squeezing process (all the output words are
shifted by one iteration).
e more complicated with a direct truncation.
Recovering the internal state and uncovering the secret key both
depend on the whole hash function (require a case by case analysis).
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Patches

This attacks works against:
e Grindahl [GLP-ACO08]
o LUX [P-SHABIist09] (with chosen salt)

It is very easy (and costless) for the designers to protect
themselves against slide attacks:

e add a constant to the internal state just before the blank rounds
to clearly separate them from the normal rounds (CubeHash).

e use a different transformation during the blank rounds (Panama,
SHABAL).

¢ If you’re inserting message blocks with a XOR: just use
exactly the sponge framework and make sure that the last
inserted message work is different from zero (RadioGatun,
Keccak, EnRupt).
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Differential attacks

General principles

internal collisions: the collision occurs on the whole
internal state, before the blank rounds or the output
function.
e advantages: you can use the freedom degrees MUCH more
efficiently
e drawbacks: you have to collide on the entire big internal state

external collisions: the internal state before the blank
rounds or the output function contains some differences:
e advantages: you only have to collide on the (small) hash output
size.
e drawbacks: you have no freedom degree to use

Finding internal near collisions is useless (the output function is
often strong because it doesn’t affect the efficiency for long
messages)

Finding free-start collisions is useless in practice (and very easy
since one can invert the internal function)



Differential attacks

General principles
Situation different for stream-cipher based and block-based hash
functions (not a rule, just a general observation):

e block-based:

e finding a differential path is not the most difficult part (e.g. we
know very good differential paths for SHA-1)

e using the freedom degrees is hard, because they are all located at
the same place while the conditions are everywhere (many
freedom degrees are wasted in SHA-1 attacks) you may find good
differential characteristics for the internal functions used in
stream-based hashes ...

e ... but the problem is how to link them

e stream-based:

e finding a differential path is hard, because the internal state is
really big (many conditions to take care of). Moreover, you often
need several iterations in order to get a collision.

e using the freedom degrees is rather easy, because you only have
a few incoming each iteration: it is easy to use each of them to
take care of a condition.
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Differential attacks
Linear differential paths



Differential attacks
(o] le}

Linear differential paths

e try to linearize the scheme ... for example, simply replace
additions by XORs

e solve the set of linear equations and try to find a good differential
trail (in general, good = low weight)

Complexity computation:

e two situations have to be considered in order to compute the success
probability of the differential path in the non-linearized case (both with
probability 1/2):

e move: a perturbation at a certain bit position is added to another
bit containing no difference.

e correction: a perturbation at a certain bit position is added to
another bit containing a difference.

e for the addition of two words A + B, the probability of a linear behavior is
HW((AaV Ap) A OXTEEEEEEE).

Works rather well for (32 or 64-bit)-word oriented primitives (ex: EnRupt
[IP-FSEQ9], CubeHash [D-SHASIist09] [BP-ACNS09] [BKMP-AC09])
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Linear differential paths: example for CubeHash-2/4

¢ add a one bit difference on X (at
position i).
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Linear differential paths: example for CubeHash-2/4

B cost=1
@ ¢ add a one bit difference on X (at
@ FFFFFR R position i).
é « do one iteration (2 rounds).
b, G0
H Cost=3
@D
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Linear differential paths: example for CubeHash-2/4

B cost=8
@ ¢ add a one bit difference on X (at
@ FRREFR FEErr position i).
é « do one iteration (2 rounds).
o 55,0
B cost=12
@D
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Linear differential paths: example for CubeHash-2/4

[EEEEE ]

¢ add a one bit difference on X (at
position i).

¢ do one iteration (2 rounds).

e erase all the differences in Xy (at
positions i+4, i+14, i+22).
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Linear differential paths: example for CubeHash-2/4

00000 0000
0000 0000000
000
OO OO o MMM O OoETrTrTrm
H cost=10
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add a one bit difference on X (at
position i).

do one iteration (2 rounds).

erase all the differences in Xy (at
positions i+4, i+14, i+22).

do one iteration (2 rounds).
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Linear differential paths: example for CubeHash-2/4
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add a one bit difference on X (at
position i).

do one iteration (2 rounds).

erase all the differences in Xy (at
positions i+4, i+14, i+22).

do one iteration (2 rounds).
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Linear differential paths: example for CubeHash-2/4

e add a one bit difference on X (at
position i).

¢ do one iteration (2 rounds).

e erase all the differences in Xy (at
positions i+4, i+14, i+22).

e do one iteration (2 rounds).

e erase all the differences in Xj (at
position i+4).

e 46 bit conditions in total.

[EEEEEEEE) O 1T OTTTTT1]
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Truncated differential paths: CubeHash-1/36 example
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Truncated differential paths: CubeHash-1/36 results

Results (using freedom degrees):

« a collision for CubeHash-1/36 in 232 operations.
« a collision for CubeHash-2/36 in 2% operations.

e ... seems hard to go further !

Truncated differential paths don’t work well for CubeHash.
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Truncated differential paths: Grindahl
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Truncated differential paths: attacking Grindahl [P-ACQ7]

e Building a differential path is really hard because of the two
security properties:
e a collision requires intermediate states with at least half of the

bytes active.
e an internal collision requires at least 5 rounds.

¢ idea - take the all-difference state as a check point:

e from a no-difference state to an all-difference state: hopefully very
easy | No need for a differential path here.

e from an all-difference state to a no-difference state: harder ! Build
the differential path backward and search for a collision onward.

e the costly part when searching for a collision is obviously the
second stage !

Very unintuitive strategy (letting all the differences spread), this is surely not
the best path one could find for Grindahl. However, it is a very handy method
in order to find a rather good candidate trail.
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Truncated differential paths

Reducing the "zoom” with truncated differentials allows to simplify the
path search, but also decrease the probability that a good path exist
in the search space. In general truncated differentials works well for
byte-oriented primitives, not against bit-oriented, 32-bit or 64-bit hash
functions.

o bit-oriented schemes (e.g. RadioGatun): bit-wise diffusion will
make the truncated differential analysis fail

e byte-oriented schemes (e.g. Grindahl): simplifies the path
search while not reducing too much the search space

o word-oriented schemes (e.g. CubeHash): simplifies the path
search too much, only very costly trails are likely to be found

Fugue presents security arguments regarding this kind of attacks.
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Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the |:| |:|
Mill Belt

padded message hasn’'t been

processed): ¢
 XOR 3 words of the Mill and 3 of —
the Belt to 3 new message words.

do Milt.
do Bell. i
do Mill function. @@

do Belt function.

Belt
function

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.
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Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the -
padded message hasn’t been @ @
processed): ¢

e XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.
do Milt.

do Bell. @D
do Mill function. function

do Belt function.

Belt
function

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.
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Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the |:| |:|
Mill Belt

padded message hasn’'t been

processed): ¢
 XOR 3 words of the Mill and 3 of —
the Belt to 3 new message words.

do Milt.
do Bell. i
do Mill function. @@

do Belt function.

Belt
function

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.
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Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the

padded message hasn’'t been Mill Belt

processed):

« XOR 3 words of the Mill and 3 of S, !
the Belt to 3 new message words.
do Milt.

do Bell.

do Mill function.

do Belt function.

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.
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Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the

padded message hasn’'t been Mill Belt

processed):

« XOR 3 words of the Mill and 3 of S, !
the Belt to 3 new message words.
do Milt.

do Bell.

do Mill function.

do Belt function.

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.
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Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the

padded message hasn’'t been Mill Belt

processed):

« XOR 3 words of the Mill and 3 of S, !
the Belt to 3 new message words.
do Milt.

do Bell.

do Mill function.

do Belt function.

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.
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Symmetric differences: RadioGatun-32
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Differential attacks
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Symmetric differences

Consider symmetric differences for each word: only
"all-different” or "equal”.
e analysis REALLY simplified: you only have to study RadioGatun with
w=1 (internal state of 58 bits).

e but each uncontrolled event cost a lot: all the complexity comes from
the non-linear part in the Mill function.

e each event you want to force costs you one word of message freedom.

e the conditions can sometime be compressed (two same conditions on
the same word).

e there may be contradicting conditions.

This techniques works well for bit-oriented primitives
(RadioGatun [BDPV-RGO06] [FP-FSE09] or PANAMA
[RRPV-FSEO1] [DV-FSEOQ7])
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Using the freedom degrees

Using the freedom degrees

The techniques used are similar to the block-based hash
functions: message modification, neutral bits, etc. For example the
control words used for attacking Grindahl ([P-AC07]) can be seen as
byte-level message modifications.

they lead to HUGE improvements. For example, from 2% to 22 for
Grindahl [P-AC07].

but because many freedom degrees can be used, and because the
paths sometimes requires a few hundreds steps (RadioGatun
[FP-FSEOQ9]), one very often uses automated tools (Grindahl
[P-ACO07], RadioGatun [FP-FSEQ9], CubeHash [BKMP-AC09])

Those tools are generally integrated directly during the path search
(avoid the problem of "good raw probability, but no freedom degrees
possibility”)

you can use structures (Grindahl or RadioGatun [K-SAC09]) or
algebraic techniques (RadioGatun [BF-SAC08])
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Using the freedom degrees: the trail backtracking cost

Trail backtracking [BDPV-RGO06] is a method for estimating
the cost of staying in a differential path when searching for
collisions in hash functions.

e find a f-round trail starting and ending
with no difference T

Input pairs

e Ildea:
o start with T pairs at the beginning of
the trail

e each round i/ you go through, you
have to "pay” a probability P; T. 2. 2®
Output pairs

e each round /, you get r bits of freedom
degrees
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Using the freedom degrees: the trail backtracking cost
e The number of valid pairs at the end of a k-round trail is

N(k) = T x 2k7 x 2= 2 P

e at each round, you must have that the number of valid
pairs is always > 1 (can be removed if considering average

cost), thus
T > max {2(25(:1 P/)—k'r}
O<k<t
o total cost for the trail is the sum pairs
of the number of pairs entering
the rounds

t
cost =Y _N())

j=1 rounds
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Using the freedom degrees: improving the trail backtracking

Improvement: find a good differential trail and define how
you will use the freedom degrees at the same time.

Search paths with a meet-in-the-middle tracking technique
(RadioGatun [FP-FSEQ9]):
e keep track of the cost for forward paths (and cut off costly
branches)
e keep track of the cost for backward paths (and cut off costly
branches)
e meet-in-the-middle the two sets
e adjust the costs during the meeting phase

Example: for RadioGatun, with trail backtracking best attack
found 246" gperations, with meet-in-the-middle tracking 2%
operations.

to simplify the search, instead of randomly meeting in the
middle, you can meet to a fixed difference (all-difference state for
Grindahl [P-ACO07]).



Using the freedom degrees

That’s all folks !
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