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How to build a hash function (usually) ?

Merkle-Damgård algorithm + Davies-Meyer
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How to build a hash function (usually) ?

Generalization

• use an output function (for example
truncation in double pipe construction)

• use another method for introducing message
chunks

• c represents the capacity.

• r represents the bit-rate.

• R represents the number of rounds.
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What is a stream-based hash function ?

Block/stream-based hash functions

• block-based hash:
r is bigger or at least the same size than c

• stream-based hash:
r is small compared to c

• increasing c/r improves security: less control
to the attacker

• increasing R improves security: less good
differential paths

• stream-based hashes internal function is in
general a permutation
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Output function

• you can add blank rounds
(Grindahl, RadioGatun, Lux,
CubeHash, ...)

• option 1: just truncate the
internal state to obtain the hash
value (Grindahl, CubeHash, ...)

• option 2: you can continue
iterating the round function
without introducing messages
and slowly extracting chunk of
the internal state to build the
hash value (RadioGatun, Lux,
Keccak, ...)
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The sponge functions [BDPV-ECRYPTHW07]

• sponge functions: introduced by Bertoni,
Daemen, Peeters and Van Assche in 2007.

• Example: Keccak.

• Particularities:
• special padding rule (that implies last

message block 6= 0)
• insert message chunks with a XOR
• use squeezing process as output function

(with the same internal state words than
insertion): allows to be very flexible on the
hash output size, with the same internal
function ... can be used as a stream cipher.

• the round function should presents no
structural property (hermetic sponge)
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Security proofs for sponge functions [BDPV-EC08]

• white box model: the attacker has access to the internal round
function. Use the indifferentiability framework from Maurer et al.
[MRH-TCC04].

• assume the internal function is a random permutation

• Theorem: a random sponge can be differentiated from a
random oracle only with probability ' N(N + 1)/2c+1, with
N < 2c , where N is the total number of calls to the internal round
function.

• generic attacks require 2c/2.

• as long as you can’t say anything on the actual internal
permutation (i.e. structural properties), the sponge looks like a
random oracle (resistant to multicollisions, long 2nd preimage,
length-extension attacks, ...)
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Examples

name capacity bit-rate nb rounds insert output
c r R function function

Panama 8480 256 1 XOR BR + trunc
RadioGatun 1760 96 1 XOR BR + squeeze

Keccak 512 1088 24 XOR squeeze
Grindahl 384 32 1 ERASE BR + trunc
Fugue 928 32 1 XOR BR + trunc
LUX 736 32 1 XOR BR + squeeze

HAMSI 256 32 3 special BR + trunc
Luffa 512 256 1 special BR + squeeze

CubeHash 768 256 16 XOR BR + trunc
EnRupt 576 64 8 XOR BR + squeeze

SHABAL 896 512 3 MIX BR + squeeze
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CubeHash-R/b

• SHA-3 candidate of Dan Bernstein

• internal state of 1024 bits (32 words of 32
bits each)

• insert b bytes of message (with xor) each
iteration

• process R rounds of the permutation each
iteration

• xor 1 and execute 10R blank rounds

• truncate the internal state to the appropriate
hash size

• capacity = 1024 - 8b.
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CubeHash round function
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Meet-in-the-middle attacks

• assume we use an internal
permutation, let’s try to find a preimage

• invert the output function

• compute 2c/2 candidates forward and
backward ...

• ... and meet-in-the-middle

• to be preimage resistant, the capacity
should be c ≥ 2n

• in the case of CubeHash, we need
2(1024−8b)/2 = 2512−4b operations to
find a preimage
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CubeHash round function structural property [ABMNP-ACISP09]
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Improving meet-in-the-middle attacks with structural property

• find all symmetry classes in CubeHash internal function

• 16 classes of 2512 elements each, a total of 2516 symmetric
states

• let’s find a preimage:
• invert the output function
• from this internal state, compute backward and reach a

symmetric state (21024−516−8b = 2508−8b operations)
• from the IV, compute forward and reach a symmetric state

(21024−516−8b = 2508−8b operations)
• do a meet-in-the-middle while remaining in the symmetry

class SF ∩ SB (2512/2 = 2256 operations)

• total complexity 2512−8b < 2512−4b
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Slide attacks on stream-based hash functions

If the addition of X is neutral, then output1 = round(output2).
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Slide attacks for hash functions

What can we obtain from slide attacks ?
• slide attacks are a typical block cipher cryptanalysis technique.

• doesn’t seem useful for collision or preimage attacks ...

• ... but we can ”distinguish” the hash function from a random
oracle.

• the key recovery attack may also be useful if some secret is
used in the hash function: we can attack a MAC construction
using a hash function.

We’ll try to attack the following MAC construction:

MAC(K , M) = H(K ||M).
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Slide attacks for hash functions

We’ll try to attack the following MAC construction:

MAC(K , M) = H(K ||M).

• ... which is secure if the hash function is modeled as a
random oracle.

• Merkle-Damgård already known to be weak against
this construction: given MAC(K , M) = H(K ||M), compute
MAC(K , M||Y ) = H(K ||M||Y ) without knowing the secret
key K .

• patch provided in Coron et al.’s paper [CDMP-CRYPTO05].
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Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries Mi
and receive replies H(K ||M). He then tries to get
some non trivial information from the secret K or
manage to forge another MAC with good probability.

The attack will be in three steps:

• Find and detect slid pairs of messages.

• Recover the internal state.

• Uncover some part of the secret key (or forge a
new MAC).

The padding must also be taken in account !
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Find and detect slid pairs of messages.

If you are inserting message blocks with XOR:
• very easy to slide, just use 0
• you don’t need to detect it, you know it will slide
• impossible in the original sponge framework (in which the last

inserted word must be different from 0) ...
• ... but possible if a different padding is used !

If you are inserting message blocks with ERASE:
• you can slide if you replace exactly what you erased
• happens with probability P = 2−r

• detection depends on the output function:
• very easy with the squeezing process (all the output words are

shifted by one iteration).
• more complicated with a direct truncation.

Recovering the internal state and uncovering the secret key both
depend on the whole hash function (require a case by case analysis).
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Patches

This attacks works against:
• Grindahl [GLP-AC08]
• LUX [P-SHA3list09] (with chosen salt)

It is very easy (and costless) for the designers to protect
themselves against slide attacks:
• add a constant to the internal state just before the blank rounds

to clearly separate them from the normal rounds (CubeHash).
• use a different transformation during the blank rounds (Panama,

SHABAL).
• If you’re inserting message blocks with a XOR: just use

exactly the sponge framework and make sure that the last
inserted message work is different from zero (RadioGatun,
Keccak, EnRupt).
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General principles

• internal collisions: the collision occurs on the whole
internal state, before the blank rounds or the output
function.
• advantages: you can use the freedom degrees MUCH more

efficiently
• drawbacks: you have to collide on the entire big internal state

• external collisions: the internal state before the blank
rounds or the output function contains some differences:
• advantages: you only have to collide on the (small) hash output

size.
• drawbacks: you have no freedom degree to use

• Finding internal near collisions is useless (the output function is
often strong because it doesn’t affect the efficiency for long
messages)

• Finding free-start collisions is useless in practice (and very easy
since one can invert the internal function)
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General principles
Situation different for stream-cipher based and block-based hash
functions (not a rule, just a general observation):

• block-based:
• finding a differential path is not the most difficult part (e.g. we

know very good differential paths for SHA-1)
• using the freedom degrees is hard, because they are all located at

the same place while the conditions are everywhere (many
freedom degrees are wasted in SHA-1 attacks) you may find good
differential characteristics for the internal functions used in
stream-based hashes ...

• ... but the problem is how to link them

• stream-based:
• finding a differential path is hard, because the internal state is

really big (many conditions to take care of). Moreover, you often
need several iterations in order to get a collision.

• using the freedom degrees is rather easy, because you only have
a few incoming each iteration: it is easy to use each of them to
take care of a condition.
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Linear differential paths

• try to linearize the scheme ... for example, simply replace
additions by XORs

• solve the set of linear equations and try to find a good differential
trail (in general, good = low weight)

Complexity computation:

• two situations have to be considered in order to compute the success
probability of the differential path in the non-linearized case (both with
probability 1/2):

• move: a perturbation at a certain bit position is added to another
bit containing no difference.

• correction: a perturbation at a certain bit position is added to
another bit containing a difference.

• for the addition of two words A + B, the probability of a linear behavior is
HW((∆A ∨∆B) ∧ 0x7fffffff).

Works rather well for (32 or 64-bit)-word oriented primitives (ex: EnRupt
[IP-FSE09], CubeHash [D-SHA3list09] [BP-ACNS09] [BKMP-AC09])
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Linear differential paths: example for CubeHash-2/4

• add a one bit difference on X0 (at
position i).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
positions i+4, i+14, i+22).

• do one iteration (2 rounds).

• erase all the differences in X0 (at
position i+4).

• 46 bit conditions in total.
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Truncated differential paths: CubeHash-1/36 example
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Truncated differential paths: CubeHash-1/36 results

Results (using freedom degrees):

• a collision for CubeHash-1/36 in 232 operations.

• a collision for CubeHash-2/36 in 296 operations.

• ... seems hard to go further !

Truncated differential paths don’t work well for CubeHash.
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Truncated differential paths: Grindahl
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Truncated differential paths: attacking Grindahl [P-AC07]

• Building a differential path is really hard because of the two
security properties:
• a collision requires intermediate states with at least half of the

bytes active.
• an internal collision requires at least 5 rounds.

• idea - take the all-difference state as a check point:
• from a no-difference state to an all-difference state: hopefully very

easy ! No need for a differential path here.
• from an all-difference state to a no-difference state: harder ! Build

the differential path backward and search for a collision onward.

• the costly part when searching for a collision is obviously the
second stage !

Very unintuitive strategy (letting all the differences spread), this is surely not
the best path one could find for Grindahl. However, it is a very handy method
in order to find a rather good candidate trail.
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Truncated differential paths

Reducing the ”zoom” with truncated differentials allows to simplify the
path search, but also decrease the probability that a good path exist
in the search space. In general truncated differentials works well for
byte-oriented primitives, not against bit-oriented, 32-bit or 64-bit hash
functions.

• bit-oriented schemes (e.g. RadioGatun): bit-wise diffusion will
make the truncated differential analysis fail

• byte-oriented schemes (e.g. Grindahl): simplifies the path
search while not reducing too much the search space

• word-oriented schemes (e.g. CubeHash): simplifies the path
search too much, only very costly trails are likely to be found

Fugue presents security arguments regarding this kind of attacks.
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Symmetric differences: RadioGatun-32

• initialize the state with zeros.

• for each round do (while all the
padded message hasn’t been
processed):

• XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.

• do Milt.
• do Bell.
• do Mill function.
• do Belt function.

• do 16 blank rounds.

• do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.
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Symmetric differences

Consider symmetric differences for each word: only
”all-different” or ”equal”.
• analysis REALLY simplified: you only have to study RadioGatun with

w=1 (internal state of 58 bits).
• but each uncontrolled event cost a lot: all the complexity comes from

the non-linear part in the Mill function.
• each event you want to force costs you one word of message freedom.
• the conditions can sometime be compressed (two same conditions on

the same word).
• there may be contradicting conditions.

This techniques works well for bit-oriented primitives
(RadioGatun [BDPV-RG06] [FP-FSE09] or PANAMA
[RRPV-FSE01] [DV-FSE07])
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Using the freedom degrees

• The techniques used are similar to the block-based hash
functions: message modification, neutral bits, etc. For example the
control words used for attacking Grindahl ([P-AC07]) can be seen as
byte-level message modifications.

• they lead to HUGE improvements. For example, from 2440 to 2112 for
Grindahl [P-AC07].

• but because many freedom degrees can be used, and because the
paths sometimes requires a few hundreds steps (RadioGatun
[FP-FSE09]), one very often uses automated tools (Grindahl
[P-AC07], RadioGatun [FP-FSE09], CubeHash [BKMP-AC09])

• Those tools are generally integrated directly during the path search
(avoid the problem of ”good raw probability, but no freedom degrees
possibility”)

• you can use structures (Grindahl or RadioGatun [K-SAC09]) or
algebraic techniques (RadioGatun [BF-SAC08])
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Using the freedom degrees: the trail backtracking cost

Trail backtracking [BDPV-RG06] is a method for estimating
the cost of staying in a differential path when searching for
collisions in hash functions.

• find a t-round trail starting and ending
with no difference

• Idea:
• start with T pairs at the beginning of

the trail

• each round i you go through, you
have to ”pay” a probability Pi

• each round i , you get r bits of freedom
degrees
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Using the freedom degrees: the trail backtracking cost

• The number of valid pairs at the end of a k -round trail is

N(k) = T × 2k ·r × 2−
∑k

i=1 Pi

• at each round, you must have that the number of valid
pairs is always ≥ 1 (can be removed if considering average
cost), thus

T ≥ max
0<k≤t

{2(
∑k

i=1 Pi )−k ·r}

• total cost for the trail is the sum
of the number of pairs entering
the rounds

cost =
t∑

j=1

N(j)
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Using the freedom degrees: improving the trail backtracking

• Improvement: find a good differential trail and define how
you will use the freedom degrees at the same time.

• Search paths with a meet-in-the-middle tracking technique
(RadioGatun [FP-FSE09]):
• keep track of the cost for forward paths (and cut off costly

branches)
• keep track of the cost for backward paths (and cut off costly

branches)
• meet-in-the-middle the two sets
• adjust the costs during the meeting phase

• Example: for RadioGatun, with trail backtracking best attack
found 246·w operations, with meet-in-the-middle tracking 211·w

operations.

• to simplify the search, instead of randomly meeting in the
middle, you can meet to a fixed difference (all-difference state for
Grindahl [P-AC07]).
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That’s all folks !
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