Stream-based hash functions Generic attacks Differential attacks
00000 0000 000

0000 0000000 0000000

000 00000

Using the freedom degrees References

Cryptanalysis of Stream-Based Hashes

ECRYPT II
Hash?3: Proofs, Analysis, and Implementation

Thomas Peyrin
Ingenico

November 17th 2009 - Tenerife

beyond
payment

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References
00000 0000 000
0000 0000000 0000000

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks
Meet-in-the-middle attacks
Slide attacks

Differential attacks
Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

000 00000

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples

A perfect example: CubeHash
Generic attacks

Meet-in-the-middle attacks
Slide attacks

Differential attacks

Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

«O>» «Fr «=>»

<

i
v

DA

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees

References
©0000 0000 000
0000 0000000 0000000
000 00000

Outline

Stream-based hash functions
What is a stream-based hash function ?

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References
00000 0000 000

0000 0000000 0000000

000 00000

How to build a hash function (usually) ?

Merkle-Damgard algorithm + Davies-Meyer

padding divide

mm——'&h
N

N
T

; =

HOM)

me>nomz

Stream-based hash functions Generic attacks

Differential attacks Using the freedom degrees References
00000 0000 000
0000 0000000 0000000

How to build a hash function (usually) ?

Generalization

=

M, !

Comp.

e use an output function (for example
truncation in double pipe construction)

nctiol

H(M)

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

00e00 0000 000
0000 0000000 0000000
000 00000

How to build a hash function (usually) ?

Generalization

v

l e use an output function (for example
+ l truncation in double pipe construction)

Output
function

H(M)

Stream-based hash functions
00e00

How to build a hash function (usually) ?

Generalization

e use an output function (for example
truncation in double pipe construction)

e use another method for introducing message
chunks

Output
function

H(M)

Stream-based hash functions
00e00

rounds

Bitrate r Capacity ¢

Output
function

H(M)

How to build a hash function (usually) ?

Generalization

use an output function (for example
truncation in double pipe construction)

use another method for introducing message
chunks

¢ represents the capacity.
r represents the bit-rate.

R represents the number of rounds.

Stream-based hash functions
000e0

What is a stream-based hash function ?

Block/stream-based hash functions

¢ block-based hash:
r is bigger or at least the same size than ¢

Stream-based hash functions
000e0

What is a stream-based hash function ?

Block/stream-based hash functions

¢ block-based hash:
r is bigger or at least the same size than ¢

:
2

M,

e stream-based hash:
ris small compared to ¢

M,

g
—

o

M,

Stream-based hash functions
000e0

What is a stream-based hash function ?

Block/stream-based hash functions

¢ block-based hash:
r is bigger or at least the same size than c

e stream-based hash:
rounds ris small compared to ¢

e increasing c/r improves security: less control
Mo to the attacker

e increasing R improves security: less good
differential paths

Bitrate r

Output
function

H(M)

Capacity ¢

e stream-based hashes internal function is in
general a permutation

Stream-based hash functions
0000e

Output function

Blank u .
rounds e option 1: just truncate the

e you can add blank rounds
(Grindahl, RadioGatun, Lux,
CuboHash,)

<
. <

s l internal state to obtain the hash
value (Grindahl, CubeHash, ...)

!

l
S

l«—
l«——

l«——

«——

truncation

Vs
<«
<«

HM)

Stream-based hash functions
0000e

Output function

e you can add blank rounds
(Grindahl, RadioGatun, Lux,
Guberash, -
Blank

rounds e option 1: just truncate the

<
. <

s internal state to obtain the hash

|4
Cunction) value (Grindahl, CubeHash, ...)

option 2: you can continue
iterating the round function
without introducing messages

Input block

=

A

Output block

!

Chaion l | and slowly extracting chunk of
the internal state to build the
hash value (RadioGatun, Lux,

Keccak, ...)

Stream-based hash functions

Generic attacks Differential attacks Using the freedom degrees References
00000 0000 000
@000 0000000 0000000
000 00000

Outline

Stream-based hash functions

Some examples

Stream-based hash functions

0e00

The sponge functions [BDPV-ECRYPTHWO07]

e sponge functions: introduced by Bertoni,
Daemen, Peeters and Van Assche in 2007.

Input block

e Example: Keccak.

o Particularities:

e special padding rule (that implies last

message block # 0)
e insert message chunks with a XOR
function) e use squeezing process as output function
insartion): allows o be very flexile on the
i hash output size, with the same internal
function ... can be used as a stream cipher.

¢ the round function should presents no
structural property (hermetic sponge)

Stream-based hash functions

[e]e] o]

Security proofs for sponge functions [BDPV-ECO08]

white box model: the attacker has access to the internal round
function. Use the indifferentiability framework from Maurer et al.
[MRH-TCCO04].

assume the internal function is a random permutation

Theorem: a random sponge can be differentiated from a
random oracle only with probability ~ N(N + 1)/2°+1, with

N < 2°, where N is the total number of calls to the internal round
function.

generic attacks require 2°/2.

as long as you can’t say anything on the actual internal
permutation (i.e. structural properties), the sponge looks like a
random oracle (resistant to multicollisions, long 2nd preimage,
length-extension attacks, ...)

Stream-based hash functions

oooe

Examples

name capacity | bit-rate | nb rounds insert output
c r R function function
Panama 8480 256 1 XOR BR + trunc
RadioGatun 1760 96 1 XOR BR + squeeze
Keccak 512 1088 24 XOR squeeze
Grindahl 384 32 1 ERASE BR + trunc
Fugue 928 32 1 XOR BR + trunc
LUX 736 32 1 XOR BR + squeeze
HAMSI 256 32 3 special BR + trunc
Luffa 512 256 1 special | BR + squeeze
CubeHash 768 256 16 XOR BR + trunc
EnRupt 576 64 8 XOR BR + squeeze
SHABAL 896 512 3 MIX BR + squeeze

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees

References
00000 0000 000
0000 0000000 0000000
@00 00000

Outline

Stream-based hash functions

A perfect example: CubeHash

Stream-based hash functions

oeo

1024 bits

—
b bytes v
—
R rounds
Vol

Input block o

Blank
rounds

CubeHash-R/b

SHA-3 candidate of Dan Bernstein

internal state of 1024 bits (32 words of 32
bits each)

insert b bytes of message (with xor) each
iteration

process R rounds of the permutation each
iteration

xor 1 and execute 10R blank rounds

truncate the internal state to the appropriate
hash size

capacity = 1024 - 8b.

Stream-based hash functions
00000

0000

ooe

Generic attacks Differential attacks Using the freedom degrees
0000 000
0000000 0000000

00000

CubeHash round function

ey

Ga1d

EEB Y

A
|
%
%

References

000 00000

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples
A perfect example: CubeHash

Generic attacks

Meet-in-the-middle attacks
Slide attacks

Differential attacks

Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

«O>» «F»r « =)

<

DA

Stream-based hash functions Generic attacks Differential attacks

Using the freedom degrees References
00000 €000 000
0000 0000000 0000000
000 00000

Outline

Generic attacks
Meet-in-the-middle attacks

Stream-based hash functions Generic attacks

Differential attacks Using the freedom degrees References
00000 000 000
0000 0000000 0000000
000 00000

Meet-in-the-middle attacks

e assume we use an internal
permutation, let’s try to find a preimage

¢ invert the output function

I

V

Input block D

R rounds

[

2

Input block D l

R rounds

Input block D

<«
| «———|

i

Input block D

<—!<—<—
“—EJe— <«

Generic attacks
[e] le]e}

Meet-in-the-middle attacks

assume we use an internal
permutation, let’s try to find a preimage

- invert the output function

compute 2°/2 candidates forward and
backward ...

... and meet-in-the-middle

2¢/2

I

Input block D

R rounds

V

2

Input block D

R rounds

Input block D

J

!(—(—
P

Input block D

<«

[

|

—— < \Bje—

\

y

Generic attacks
[e] le]e}

Meet-in-the-middle attacks

e assume we use an internal
permutation, let’s try to find a preimage

- e invert the output function

e compute 2°/2 candidates forward and
backward ...

e ... and meet-in-the-middle

¢ to be preimage resistant, the capacity
should be ¢ > 2n

2: e in the case of CubeHash, we need
2(1024-8b)/2 _ p512-4b pnerations to
find a preimage

Stream-based hash functions Generic attacks

00000
0000
000

[ele] 1o
0000000

Differential attacks Using the freedom degrees References
000

0000000

00000

CubeHash round function structural property [ABMNP-ACISP09]

Generic attacks
oooe

Improving meet-in-the-middle attacks with structural property

e find all symmetry classes in CubeHash internal function

« 16 classes of 2°12 elements each, a total of 2516 symmetric
states

e let’s find a preimage:
¢ invert the output function

o from this internal state, compute backward and reach a
symmetric state (21024-516-8b _ 2508-8b gperations)

o from the IV, compute forward and reach a symmetric state
(2102475167817 — 250878b operations)

¢ do a meet-in-the-middle while remaining in the symmetry
class Sg N Sp (2512/2 = 2256 gperations)

o total complexity 251280 2512-4b

0000 0000000 0000000
ooo 00000

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples

A perfect example: CubeHash
Generic attacks

Meet-in-the-middle attacks
Slide attacks

Differential attacks

Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

«O>» «Fr «=>»

<

i
v

DA

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

00000 0000 000
0000 0O®@00000 0000000
000 00000

Slide attacks on stream-based hash functions

unctloD
functiorD

|7
_'<
y

1

1

= 1

S T

k= 1
=

= I
=

unction

Output
function

=
=

Generic attacks

0O®@00000

Slide attacks on stream-based hash functions

If the addition of X is neutral, then output1 = round(output2).

- =
g 5 5 2\ |5 &
S S 2 S 2 : &g
=} =} =1 =} =} . :g
2 2 E 2 = —\E|—>\0 &
.
.
=
.
.
LM [M| m|x |3
5
D
.
5
AN Al
.
. - =
5 £ £\ ¥s —ls 5 5
= = =3 I =] M k=]
7] 7] S| - 7] . 7] - 9
=} =1 = =1 . :g
2 = FE = —>\2 © 3
Blank

=
=
=

rounds

ased hash functions Using the freedom degrees References

Slide attacks for hash functions
What can we obtain from slide attacks ?
e slide attacks are a typical block cipher cryptanalysis technique.
e doesn’t seem useful for collision or preimage attacks ...

e ... but we can "distinguish” the hash function from a random
oracle.

o the key recovery attack may also be useful if some secret is
used in the hash function: we can attack a MAC construction
using a hash function.

We’'ll try to attack the following MAC construction:

MAC(K, M) = H(K||M).

Generic attacks

000@e000

Slide attacks for hash functions

We'll try to attack the following MAC construction:
MAC(K, M) = H(K||M).

e ... which is secure if the hash function is modeled as a
random oracle.

o Merkle-Damgard already known to be weak against
this construction: given MAC(K, M) = H(K||M), compute
MAC(K, M||Y) = H(K||M||Y) without knowing the secret
key K.

e patch provided in Coron et al.’s paper [CDMP-CRYPTOO05].

n-based hash functions Generic attacks Differential attacks Using the freedom degrees References

0000000

Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries M;
and receive replies H(K||M). He then tries to get
some non trivial information from the secret K or
manage to forge another MAC with good probability.

The attack will be in three steps:

e Find and detect slid pairs of messages.
e Recover the internal state.

e Uncover some part of the secret key (or forge a
new MAC).

. . Output \(
The padding must also be taken in account ! function

Generic attacks

0000e00

Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries M;
and receive replies H(K||M). He then tries to get
some non trivial information from the secret K or
manage to forge another MAC with good probability.

The attack will be in three steps:

e Find and detect slid pairs of messages.
e Recover the internal state.

e Uncover some part of the secret key (or forge a
new MAC).

The padding must also be taken in account !

Blank
rounds

ased hash functions Using the freedom degrees References

Slide attacks on stream-based hash functions

The Attack Scenario: the attacker makes queries M;
and receive replies H(K||M). He then tries to get

some non trivial information from the secret K or
manage to forge another MAC with good probability. A
Th k will be in th teps: A

e attack will be in three steps: —

e Find and detect slid pairs of messages.

e Recover the internal state. S) gi

e Uncover some part of the secret key (or forge a

new MAC).
)

The padding must also be taken in account !

i

Generic attacks

00000e0

Find and detect slid pairs of messages.

If you are inserting message blocks with XOR:
e very easy to slide, just use 0
e you don’t need to detect it, you know it will slide

e impossible in the original sponge framework (in which the last
inserted word must be different from 0) ...

e ... but possible if a different padding is used !
If you are inserting message blocks with ERASE:
e you can slide if you replace exactly what you erased
e happens with probability P =2~"
e detection depends on the output function:
e very easy with the squeezing process (all the output words are
shifted by one iteration).
e more complicated with a direct truncation.
Recovering the internal state and uncovering the secret key both
depend on the whole hash function (require a case by case analysis).

Generic attacks

000000e

Patches

This attacks works against:
e Grindahl [GLP-ACO08]
o LUX [P-SHABIist09] (with chosen salt)

It is very easy (and costless) for the designers to protect
themselves against slide attacks:

e add a constant to the internal state just before the blank rounds
to clearly separate them from the normal rounds (CubeHash).

e use a different transformation during the blank rounds (Panama,
SHABAL).

¢ If you’re inserting message blocks with a XOR: just use
exactly the sponge framework and make sure that the last
inserted message work is different from zero (RadioGatun,
Keccak, EnRupt).

000 00000

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples

A perfect example: CubeHash
Generic attacks

Meet-in-the-middle attacks
Slide attacks

Differential attacks

Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

«O>» «F»r « =)

<

DA

Differential attacks

General principles

internal collisions: the collision occurs on the whole
internal state, before the blank rounds or the output
function.
e advantages: you can use the freedom degrees MUCH more
efficiently
e drawbacks: you have to collide on the entire big internal state

external collisions: the internal state before the blank
rounds or the output function contains some differences:
e advantages: you only have to collide on the (small) hash output
size.
e drawbacks: you have no freedom degree to use

Finding internal near collisions is useless (the output function is
often strong because it doesn’t affect the efficiency for long
messages)

Finding free-start collisions is useless in practice (and very easy
since one can invert the internal function)

Differential attacks

General principles
Situation different for stream-cipher based and block-based hash
functions (not a rule, just a general observation):

e block-based:

e finding a differential path is not the most difficult part (e.g. we
know very good differential paths for SHA-1)

e using the freedom degrees is hard, because they are all located at
the same place while the conditions are everywhere (many
freedom degrees are wasted in SHA-1 attacks) you may find good
differential characteristics for the internal functions used in
stream-based hashes ...

e ... but the problem is how to link them

e stream-based:

e finding a differential path is hard, because the internal state is
really big (many conditions to take care of). Moreover, you often
need several iterations in order to get a collision.

e using the freedom degrees is rather easy, because you only have
a few incoming each iteration: it is easy to use each of them to
take care of a condition.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References
00000 0000 @00

0000 0000000 0000000

000 00000

Outline

Differential attacks
Linear differential paths

Differential attacks
(o] le}

Linear differential paths

e try to linearize the scheme ... for example, simply replace
additions by XORs

e solve the set of linear equations and try to find a good differential
trail (in general, good = low weight)

Complexity computation:

e two situations have to be considered in order to compute the success
probability of the differential path in the non-linearized case (both with
probability 1/2):

e move: a perturbation at a certain bit position is added to another
bit containing no difference.

e correction: a perturbation at a certain bit position is added to
another bit containing a difference.

e for the addition of two words A + B, the probability of a linear behavior is
HW((AaV Ap) A OXTEEEEEEE).

Works rather well for (32 or 64-bit)-word oriented primitives (ex: EnRupt
[IP-FSEQ9], CubeHash [D-SHASIist09] [BP-ACNS09] [BKMP-AC09])

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees

References
00000 0000 ooe
0000 0000000 0000000
000 00000

Linear differential paths: example for CubeHash-2/4

¢ add a one bit difference on X (at
position i).

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

00000 0000 ooe
0000 0000000 0000000
000 00000

Linear differential paths: example for CubeHash-2/4

B cost=1
@ ¢ add a one bit difference on X (at
@ FFFFFR R position i).
é « do one iteration (2 rounds).
b, G0
H Cost=3
@D

5

s e Y T
|

|

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References
00000 0000 ooe

0000 0000000 0000000

000 00000

Linear differential paths: example for CubeHash-2/4

B cost=8
@ ¢ add a one bit difference on X (at
@ FRREFR FEErr position i).
é « do one iteration (2 rounds).
o 55,0
B cost=12
@D

5

e e Y VHTD
|

|

Stream-based hash functions Generic attacks

00000 0000
0000 0000000
000

Differential attacks Using the freedom degrees References
ooe

0000000

00000

Linear differential paths: example for CubeHash-2/4

[EEEEE]

¢ add a one bit difference on X (at
position i).

¢ do one iteration (2 rounds).

e erase all the differences in Xy (at
positions i+4, i+14, i+22).

Stream-based hash functions

Generic attacks

Differential attacks
ooe

0000000
00000

Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

00000 0000
0000 0000000
000
OO OO o MMM O OoETrTrTrm
H cost=10
@D
CEE D EEEEEE

add a one bit difference on X (at
position i).

do one iteration (2 rounds).

erase all the differences in Xy (at
positions i+4, i+14, i+22).

do one iteration (2 rounds).

Stream-based hash functions

Generic attacks

Differential attacks

ooe

Using the freedom degrees References

0000000
00000

Linear differential paths: example for CubeHash-2/4

00000 0000
0000 0000000
000
OITTTT T T T OTTTTHE0 T T
H cost=3
)
O] OO
O

add a one bit difference on X (at
position i).

do one iteration (2 rounds).

erase all the differences in Xy (at
positions i+4, i+14, i+22).

do one iteration (2 rounds).

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Linear differential paths: example for CubeHash-2/4

e add a one bit difference on X (at
position i).

¢ do one iteration (2 rounds).

e erase all the differences in Xy (at
positions i+4, i+14, i+22).

e do one iteration (2 rounds).

e erase all the differences in Xj (at
position i+4).

e 46 bit conditions in total.

[EEEEEEEE) O 1T OTTTTT1]

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References
00000 0000 000

0000 0000000 ©000000

000 00000

Outline

Differential attacks

Truncated differential paths

Stream-based hash functions
00000

0000

000

Generic attacks

0000
0000000

Differential attacks
000

0e00000
00000

Using the freedom degrees

Truncated differential paths: CubeHash-1/36 example

BT W

2]

[EEEEEEEE]EEEEEEEE)

[EEEEEEEEEEEEEEEE)

H

References

Differential attacks

[e]e] le]elele)

Truncated differential paths: CubeHash-1/36 results

Results (using freedom degrees):

« a collision for CubeHash-1/36 in 232 operations.
« a collision for CubeHash-2/36 in 2% operations.

e ... seems hard to go further !

Truncated differential paths don’t work well for CubeHash.

GENERAL VIEW

Truncated differential paths: Grindahl

4

Differential attacks

0O00@000

|

ROUND VIEW

|
> 4 ‘ AddConstant
7 1

'::H | shiftRows

Initilisation
M p
E
: | «<— |§
Message 1 e— |s SubBytes
| —
Rounds A A
o G
E
8 Blank 1
Rounds 416
bits
Truncation B 1
256
bits

MixColumns r
m II ﬂ

Differential attacks

0O000e00

Truncated differential paths: attacking Grindahl [P-ACQ7]

e Building a differential path is really hard because of the two
security properties:
e a collision requires intermediate states with at least half of the

bytes active.
e an internal collision requires at least 5 rounds.

¢ idea - take the all-difference state as a check point:

e from a no-difference state to an all-difference state: hopefully very
easy | No need for a differential path here.

e from an all-difference state to a no-difference state: harder ! Build
the differential path backward and search for a collision onward.

e the costly part when searching for a collision is obviously the
second stage !

Very unintuitive strategy (letting all the differences spread), this is surely not
the best path one could find for Grindahl. However, it is a very handy method
in order to find a rather good candidate trail.

Differential attacks

[e]e]ele]e] o)

Truncated differential paths

Reducing the "zoom” with truncated differentials allows to simplify the
path search, but also decrease the probability that a good path exist
in the search space. In general truncated differentials works well for
byte-oriented primitives, not against bit-oriented, 32-bit or 64-bit hash
functions.

o bit-oriented schemes (e.g. RadioGatun): bit-wise diffusion will
make the truncated differential analysis fail

e byte-oriented schemes (e.g. Grindahl): simplifies the path
search while not reducing too much the search space

o word-oriented schemes (e.g. CubeHash): simplifies the path
search too much, only very costly trails are likely to be found

Fugue presents security arguments regarding this kind of attacks.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees

References
00000 0000 000
0000 0000000 0000000
000 @®0000

Outline

Differential attacks

Symmetric differential paths

Differential attacks

O@000

Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the |:| |:|
Mill Belt

padded message hasn’'t been

processed): ¢
 XOR 3 words of the Mill and 3 of —
the Belt to 3 new message words.

do Milt.
do Bell. i
do Mill function. @@

do Belt function.

Belt
function

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the -
padded message hasn’t been @ @
processed): ¢

e XOR 3 words of the Mill and 3 of
the Belt to 3 new message words.
do Milt.

do Bell. @D
do Mill function. function

do Belt function.

Belt
function

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Differential attacks

O@000

Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the |:| |:|
Mill Belt

padded message hasn’'t been

processed): ¢
 XOR 3 words of the Mill and 3 of —
the Belt to 3 new message words.

do Milt.
do Bell. i
do Mill function. @@

do Belt function.

Belt
function

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Differential attacks

O@000

Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the

padded message hasn’'t been Mill Belt

processed):

« XOR 3 words of the Mill and 3 of S, !
the Belt to 3 new message words.
do Milt.

do Bell.

do Mill function.

do Belt function.

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Differential attacks

O@000

Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the

padded message hasn’'t been Mill Belt

processed):

« XOR 3 words of the Mill and 3 of S, !
the Belt to 3 new message words.
do Milt.

do Bell.

do Mill function.

do Belt function.

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Differential attacks

O@000

Symmetric differences: RadioGatun-32

¢ initialize the state with zeros.

e for each round do (while all the

padded message hasn’'t been Mill Belt

processed):

« XOR 3 words of the Mill and 3 of S, !
the Belt to 3 new message words.
do Milt.

do Bell.

do Mill function.

do Belt function.

e do 16 blank rounds.

e do (until we reach the good output
size): a blank iteration and output 2
words from the Mill.

Stream-based hash functions

Generic attacks Differential attacks
00000

Using the freedom degrees

References
0000 000
0000 0000000 0000000
000 [ele] le]e]

Symmetric differences: RadioGatun-32

Input
block

Mill

Stream-based hash functions

Generic attacks Differential attacks
00000

Using the freedom degrees

References
0000 000
0000 0000000 0000000
000 [ele] le]e]

Symmetric differences: RadioGatun-32

Input Belt function)
block

A

Belt

it [16]17]us]o [1 [2 T3 Ta]sTe 7 s o ro]11]i2]13]14]15]
|¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢i¢

Mill function

Differential attacks

[ele] le]e]

Symmetric differences: RadioGatun-32
Input Belt func@
block
Em NANNNNNRRERYN
Belt
13

min [16]17[18] 0 [1]2 |

TTT1

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees

References
00000 0000 000
0000 0000000 0000000
000 [ele] le]e]

Symmetric differences: RadioGatun-32

Input Belt func@
block

2 \ i e e e s s s s s s s e %
1 \ \ e e e B B s B s s i B e ,)
0 > > = > 2| 2 > > 2| 2| 2 2

Belt

vy v dvdbvdvivivvevley

Mill function

it [16]17]1s]o [1 2]34 s 67]8]o J10]11]12]13]14]15]
11 Q

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees

References
00000 0000 000
0000 0000000 0000000
000 [ele] le]e]

Symmetric differences: RadioGatun-32

gt
mapping

Input Belt function)

block

2 \ A A
1 \ \ A A A
0 A A Y
\ \(X o
v [se[i7Tss[0 T+ T [s [+ Ts Te [T o ToTuTuaTooT el

SRR R R R RN ¢¢¢¢Q
| Mill function

ooooo

k
=waS

g & 5 ‘

" ’
eeﬁx—éﬁ?’?@ S O
AT AAA
e e e

Al 0 All AlZ AIJ Al4 ‘L\IS A16 ‘L\l’,' AlS AO A1 A2 AJ A4 ‘L\S AG ‘L\7 AS A9

Differential attacks

O000e

Symmetric differences

Consider symmetric differences for each word: only
"all-different” or "equal”.
e analysis REALLY simplified: you only have to study RadioGatun with
w=1 (internal state of 58 bits).

e but each uncontrolled event cost a lot: all the complexity comes from
the non-linear part in the Mill function.

e each event you want to force costs you one word of message freedom.

e the conditions can sometime be compressed (two same conditions on
the same word).

e there may be contradicting conditions.

This techniques works well for bit-oriented primitives
(RadioGatun [BDPV-RGO06] [FP-FSE09] or PANAMA
[RRPV-FSEO1] [DV-FSEOQ7])

000 00000

Outline

Stream-based hash functions
What is a stream-based hash function ?
Some examples

A perfect example: CubeHash
Generic attacks

Meet-in-the-middle attacks
Slide attacks

Differential attacks

Linear differential paths
Truncated differential paths
Symmetric differential paths

Using the freedom degrees

«O>» «Fr «=>»

<

i
v

DA

Using the freedom degrees

Using the freedom degrees

The techniques used are similar to the block-based hash
functions: message modification, neutral bits, etc. For example the
control words used for attacking Grindahl ([P-AC07]) can be seen as
byte-level message modifications.

they lead to HUGE improvements. For example, from 2% to 22 for
Grindahl [P-AC07].

but because many freedom degrees can be used, and because the
paths sometimes requires a few hundreds steps (RadioGatun
[FP-FSEOQ9]), one very often uses automated tools (Grindahl
[P-ACO07], RadioGatun [FP-FSEQ9], CubeHash [BKMP-AC09])

Those tools are generally integrated directly during the path search
(avoid the problem of "good raw probability, but no freedom degrees
possibility”)

you can use structures (Grindahl or RadioGatun [K-SAC09]) or
algebraic techniques (RadioGatun [BF-SAC08])

Using the freedom degrees

Using the freedom degrees: the trail backtracking cost

Trail backtracking [BDPV-RGO06] is a method for estimating
the cost of staying in a differential path when searching for
collisions in hash functions.

e find a f-round trail starting and ending
with no difference T

Input pairs

e Ildea:
o start with T pairs at the beginning of
the trail

e each round i/ you go through, you
have to "pay” a probability P; T. 2. 2®
Output pairs

e each round /, you get r bits of freedom
degrees

Using the freedom degrees

Using the freedom degrees: the trail backtracking cost
e The number of valid pairs at the end of a k-round trail is

N(k) = T x 2k7 x 2= 2 P

e at each round, you must have that the number of valid
pairs is always > 1 (can be removed if considering average

cost), thus
T > max {2(25(:1 P/)—k'r}
O<k<t
o total cost for the trail is the sum pairs
of the number of pairs entering
the rounds

t
cost =Y _N())

j=1 rounds

Using the freedom degrees

Using the freedom degrees: improving the trail backtracking

Improvement: find a good differential trail and define how
you will use the freedom degrees at the same time.

Search paths with a meet-in-the-middle tracking technique
(RadioGatun [FP-FSEQ9]):
e keep track of the cost for forward paths (and cut off costly
branches)
e keep track of the cost for backward paths (and cut off costly
branches)
e meet-in-the-middle the two sets
e adjust the costs during the meeting phase

Example: for RadioGatun, with trail backtracking best attack
found 246" gperations, with meet-in-the-middle tracking 2%
operations.

to simplify the search, instead of randomly meeting in the
middle, you can meet to a fixed difference (all-difference state for
Grindahl [P-ACO07]).

Using the freedom degrees

That’s all folks !

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

References

® [ABMNP-ACISP09]: J-P. Aumasson, E. Brier, W. Meier, M. Naya-Plasencia and T. Peyrin, "Inside the
Hypercube”, ACISP 2009.

® [BDPV-RGO6]: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "The RadioGatun Hash Function
Family”, second NIST Hash Workshop, 2006.

® [BDPV-ECRYPTHWO07]: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "Sponge Functions”,
ECRYPT Hash Workshop, 2007.

® [BDPV-ECO08]: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "On the Indifferentiability of the
Sponge Construction”, Eurocrypt 2008.

® [BF-SAC08]: C. Bouillaguet and PA. Fouque, "Analysis of the Radiogatun Hash Function”, SAC 2008.

[BKMP-ACO09]: E. Brier, S. Khazaei, W. Meier and T. Peyrin, "Linearization Framework for Collision Attacks:
Application to CubeHash and MD6", Asiacrypt 2009.

® [BP-ACNS09]: E. Brier and T. Peyrin, "Cryptanalysis of CubeHash”, ACNS 2009.

[CDMP-CRYPTOO5]: J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya, "Merkle-Damgard Revisited: How to
Construct a Hash Function”, CRYPTO 2005.

® [D-SHAS3Iist09]: W. Dai, "Collisions for CubeHash1/45 and CubeHash2/89”, NIST mailing list, 2008.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

References

® [DV-FSE07]: J. Daemen and G. Van Assche, "Producing Collisions for Panama, Instantaneously”, FSE
2007.

® [FP-FSEO09]: T. Fuhr and T. Peyrin, "Cryptanalysis of RadioGatun”, FSE 2009.

[GLP-ACO08]: M. Gorski, S. Lucks and T. Peyrin, "Slide Attacks on a Class of Hash Functions”, Asiacrypt
2008.

® [IP-FSE09]: S. Indesteege and B. Preneel, "Practical Collisions for EnRUPT”, FSE 2009.
[K-SACO09]: D. Khovratovich, "Cryptanalysis of hash functions with structures”, SAC 2009.

[MRH-TCCO04]: U. Maurer, R. Renner, and C. Holenstein, "Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology”, TCC 2004.

[P-SHAZ3Iist09]: T. Peyrin, "Slide attacks on LUX”, NIST mailing list, 2008.
[P-ACO7]: T. Peyrin, "Cryptanalysis of Grindahl”, Asiacrypt 2007.

® [RRPV-FSEO01]: V. Rijmen, B. Van Rompay, B. Preneel and J. Vandewalle, "Producing Collisions for
PANAMA", FSE 2001.

Stream-based hash functions Generic attacks Differential attacks Using the freedom degrees References

References: the hash functions

CubeHash: D. Bernstein, "CubeHash specifiation”, NIST SHA-3 competition candidate, 2008.

® EnRupt: S. O'Neil, K. Nohl, L. Henzen, "EnRUPT Hash Function Specification”, NIST SHA-3 competition
candidate, 2008.

® FUGUE: S. Halevi, W.E. Hall and C.S. Jutla, "THE HASH FUNCTION FUGUE”, NIST SHA-3 competition
candidate, 2008.

Grindahl: L. Knudsen, C. Rechberger and S. Thomsen, "Grindahl - a family of hash functions”, FSE 2007.
HAMSI: Ozgiil Kiiclk, "The hash function Hamsi”, NIST SHA-3 competition candidate, 2008.

® Keccak: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "The Keccak sponge function family”, NIST
SHA-3 competition candidate, 2008.

® |uffa: C. De Canniére, H. Sato and D. Watanabe, "Hash function Luffa: Specification”, NIST SHA-3
competition candidate, 2008.

® LUX: I. Nikolic, A. Biryukov and D. Khovratovich, "Hash family LUX”, NIST SHA-3 competition candidate,
2008.

PANAMA: J. Daemen and C.S.K. Clapp, "Fast hashing and stream encryption with Panama”, FSE 1998.

RadioGatun: G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "The RadioGatun Hash Function
Family”, second NIST Hash Workshop, 2006.

® Shabal: A.Canteaut, E. Bresson, B.Chevallier-Mames, C. Clavier, T. Fuhr, A.Gouget, T. Icart, J-F. Misarsky,
M. Naya-Plasencia, P.Paillier, T.Pornin, J-R. Reinhard, C. Thuillet, M. Videau, "Shabal, a Submission to
NIST’s Cryptographic Hash Algorithm Competition”, NIST SHA-3 competition candidate, 2008.

	Stream-based hash functions
	What is a stream-based hash function ?
	Some examples
	A perfect example: CubeHash

	Generic attacks
	Meet-in-the-middle attacks
	Slide attacks

	Differential attacks
	Linear differential paths
	Truncated differential paths
	Symmetric differential paths

	Using the freedom degrees
	References

