
Tweakable Block Cipher Based Cryptography

Thomas Peyrin

NTU - Singapore

FSE 2020
Athens, Greece - March 23, 2020
Virtual - November 12, 2020

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Collaborators

Based on works in collaboration with :

B. Cogliati

T. Iwata

J. Jean

M. Khairallah

S. Kölbl

G. Leander

K. Minematsu

A. Moradi

I. Nikolic

Y. Sasaki

P. Sasdrich

Y. Seurin

S.M. Sim

H. Wang

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Outline

1 Introduction

2 Tweakable Block Ciphers Designs
. Block Cipher-Based TBC
. Ad-hoc TBC Constructions

3 Tweakable Block Ciphers for AE

4 TBC for Side-Channels Protection
. Leakage Resilience and Protected Implementations

5 Conclusion

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Outline

1 Introduction

2 Tweakable Block Ciphers Designs
. Block Cipher-Based TBC
. Ad-hoc TBC Constructions

3 Tweakable Block Ciphers for AE

4 TBC for Side-Channels Protection
. Leakage Resilience and Protected Implementations

5 Conclusion

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

(Tweakable) Block Ciphers

A block cipher (BC) is a family of permu-
tations parametrized by a secret key K EP

n

K
k

C

A tweakable block cipher (TBC) is a fa-
mily of permutations parametrized by a
secret key K and a public tweak value T

ẼP
n

K
k

T
t

C

We denote
. P the n-bit plaintext
. C the n-bit ciphertext
. K the k-bit key
. T the t-bit tweak

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

(Tweakable) Block Ciphers

A block cipher (BC) is a family of permu-
tations parametrized by a secret key K EP

n

K
k

C

A tweakable block cipher (TBC) is a fa-
mily of permutations parametrized by a
secret key K and a public tweak value T

ẼP
n

K
k

T
t

C

A permutation on b = c + r bits, where c
is the capacity and r is the rate
(sponge framework [BDPV-07])

ΠS
b

S′
r

c

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

TBC History : Hasty Pudding Cipher

Some history : first tweakable block ciphers
Hasty Pudding Cipher from Schroeppel [Schroeppel-99]
. AES competition candidate
. introduces a 512-bit “spice” as a “secondary key, maybe

completely or partially concealed, or completely open” and notes
that “the spice can be changed very cheaply for each block
encrypted”. It is “expected to be changed often, perhaps for every
encrypted block (allows the primary key to have a long lifetime)”

. spice material is added to the cipher internal state every
round

. no claim against “chosen spice attack”

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

TBC History : Mercy

Some history : first tweakable block ciphers
Mercy cipher from Crowley [Cro-FSE00]

. includes a 128-bit randomizer or “spice”
(for disk sector encryption : sector
number would be used as a tweak)

. “The spice goes through a spice-scheduling
procedure, analogous with key scheduling
[...] this forms six 128-bit round spices”

. claims about TBC security for encryption
only

. broken [Flu-FSE01]

(picture from
[Cro-FSE00])

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

TBC History : formalisation

Some history : first formalisation and generic constructions

Liskov et al. [LRW-C02] introduce first formalisation of TBC :
. “we expect tweaks to be changed frequently, so a tweakable block
cipher should have the property that changing the tweak should
be efficient. [...] And, for any tweakable block cipher, changing
the tweak should be less costly than changing the key.”.

. “even if an adversary has control of the tweak input, we want the
tweakable block cipher to remain secure”

. introduces the two first BC-based generic TBC
constructions LRW1 and LRW2

. introduces new TBC-based modes, notably the hash
function TCH (broken for certain instantiations [BCS-EC05])
and the AE mode TAE

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Applications of TBCs

Some applications :
. many BC operating modes can be seen as TBC modes
(using XEX construction). Ex : PMAC, OCB [Rog-AC04]

. XTS disk encryption mode = XEX + Ciphertext Stealing

Is that all ?
No, TBCs are very interesting primitives to provide efficient,
highly secure, simple (to understand and to prove) operating
modes, for most classical symmetric-key security notions.

Standardization effort :
. XTS-AES is IEEE P1619 standard (2007), NIST SP 800-38E (2010)
. Deoxys and SKINNY Committee Draft stage at ISO (18033-7)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Outline

1 Introduction

2 Tweakable Block Ciphers Designs
. Block Cipher-Based TBC
. Ad-hoc TBC Constructions

3 Tweakable Block Ciphers for AE

4 TBC for Side-Channels Protection
. Leakage Resilience and Protected Implementations

5 Conclusion

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Outline

1 Introduction

2 Tweakable Block Ciphers Designs
. Block Cipher-Based TBC
. Ad-hoc TBC Constructions

3 Tweakable Block Ciphers for AE

4 TBC for Side-Channels Protection
. Leakage Resilience and Protected Implementations

5 Conclusion

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Building a TBC from a BC

A first (bad) idea
Masking input/output with a tweak
(DESX-like) :

ẼK(T,P) = EK(P⊕ T)⊕ T

→ results in an undesirable property
ẼK(T,P)⊕ ẼK(T ⊕ δ,P⊕ δ) = δ

EP

KT T

C

A second (bad) idea
XORing a tweak into the key input :

ẼK(T,P) = EK⊕T(P)

→ results in an undesirable property
ẼK(T,P) = ẼK⊕δ(T ⊕ δ,P) EP

K

T

C

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

BC-based TBC : LRW1 and LRW2

Block-cipher based TBC : LRW1 and LRW2

First BC-based constructions [LRW-C02], up to birthday bound,
changing tweak hopefully cheaper than key : LRW1 and LRW2

LRW1

ẼK(T,P) = EK(T ⊕ EK(P))
CBC-MAC

LRW2

ẼK,h(T,P) = EK(P⊕ h(T))⊕ h(T)
h is ⊕-universal - part of the secret key

EK

P

EK

T

C

EK

P

C

h(T)

h(T)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

BC-based TBC : XE and XEX

Block-cipher based TBC : XE and XEX

XOR Encrypt (XE) - XOR Encrypt XOR (XEX) [Rog-AC04]

Idea :mask input/(output)with a key and
tweak-dependant value, s.t. it is efficient if
sequential tweaks T = T′||i||j are used :

ẼK(T,P) = EK(P⊕∆)⊕∆

with ∆ = 2i · 3j · L and L = EK(T′)

PRP/SPRP up to birthday bound only :
. collision on P⊕∆→ P⊕ P′ = C ⊕ C′

. recover the secret L, generate forgeries

EK

P

C

∆ = 2i · 3j · L

∆ = 2i · 3j · L

Used in :
. XTS disk encryption mode
. PMAC, OCB, about a third of all CAESAR candidates, ...

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Generic TBC constructions

More generic TBC constructions and advances
. more on XEX [CS-INS06] [Min-SAC06] [CS-IT08] [GJM+-EC16]

. birthday-bound TBC from a permutation :
TEM [STA+-14] [CLS-C15] [CS-AC15] (XEXwith a permutation)
MEM [GJM+-EC16] (TEMwith more efficient masking)
XPX [Men-C16] (improved RK security guarantees)

. beyond birthday-bound TBC constructions from BC
[Min-FSE09] [LST-C12] [LS-FSE13] [Men-FSE15] [WGZ+-AC16]
[JLM+-LC17] [LL-AC18]

. XTX to extend tweak size [MI-IMA15]

. adding tweak in Luby-Rackoff ciphers [GHL+-AC07]

. building a larger BC out of a TBC (for BBB security)
[CDMS-TCC10] [Min-FSE09] [MI-IMA11] [Min-DCC15] [NI-FSE20]

Very active field, many improvements every year ...

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Outline

1 Introduction

2 Tweakable Block Ciphers Designs
. Block Cipher-Based TBC
. Ad-hoc TBC Constructions

3 Tweakable Block Ciphers for AE

4 TBC for Side-Channels Protection
. Leakage Resilience and Protected Implementations

5 Conclusion

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Why ad-hoc TBC constructions?

Why using ad-hoc TBC constructions?

to get beyond birthday-bound security with
improved efficiency !

Theoretical / ad-hoc constructions are not opposed!
We can see a lot of inspiration from ad-hoc TBCs to BC or
permutation based ones and vice-versa. A lot of interplay !

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

How to build
an ad-hoc TBC?

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

The tweak schedule paradox : Tweak + Key = Tweakey

From [LRW-C02] :
. “we expect tweaks to be changed frequently, so a tweakable block cipher should

have the property that changing the tweak should be efficient. [...] And, for any
tweakable block cipher, changing the tweak should be less costly than changing
the key.”

. “even if an adversary has control of the tweak input, we want the tweakable
block cipher to remain secure”

Ad-hoc TBC designer’s perspective paradox :
. tweak schedule to be more efficient than the key schedule
. security requirements on the tweak seem somehow

stronger than on the key : the attacker can fully control the
former (even though tweak-recovery attacks are irrelevant)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

The tweak schedule paradox : Tweak + Key = Tweakey

From [LRW-C02] :
. “we expect tweaks to be changed frequently, so a tweakable block cipher should

have the property that changing the tweak should be efficient. [...] And, for any
tweakable block cipher, changing the tweak should be less costly than changing
the key.”

. “even if an adversary has control of the tweak input, we want the tweakable
block cipher to remain secure”

From a designer’s perspective, key and tweak should be
considered as almost the same [JNP-AC14] :

Tweak + Key = Tweakey

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

The TWEAKEY framework

The TWEAKEY framework rationale [JNP-AC14] :
tweak and key should be treated the same way −→ tweakey

P = s0 f s1
. . . f sr

sr+1 = C

tk0 h

g

h

g

tk1 . . . h

g

tkr−1

g

tkr

TWEAKEY generalizes the class of key-alternating ciphers

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

How to not tweak AES

A bad idea :
XOR 128-bit tweak value T to the internal state every round

AES-128

P AES round . . . AES round C

K AES KS . . . AES KS

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T =

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

How to not tweak AES

A bad idea :
XOR 128-bit tweak value T to the internal state every round

AES-128

P AES round . . . AES round C

K AES KS

T

. . .

T

AES KS

T T

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T =

Related-tweak diff. paths with only 1 active Sbox per round

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

How to tweak AES : KIASU

KIASU [JNP-AC14]
Simply XORing 64-bit tweak T in the two first rows of AES internal state at
every round leads to no good related-tweak differential paths

AES-128

P AES round . . . AES round C

K AES KS . . . AES KS

T0

T1

T2

T3

T4

T5

T6

T7

0
0

0
0

0
0

0
0

T =

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

How to tweak AES : KIASU

KIASU [JNP-AC14]
Simply XORing 64-bit tweak T in the two first rows of AES internal state at
every round leads to no good related-tweak differential paths

KIASU-TBCAES-128

P AES round . . . AES round C

K AES KS

T

. . .

T

AES KS

T T

T0

T1

T2

T3

T4

T5

T6

T7

0
0

0
0

0
0

0
0

T =

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

How to tweak AES : KIASU

KIASU [JNP-AC14]
Simply XORing 64-bit tweak T in the two first rows of AES internal state at
every round leads to no good related-tweak differential paths

KIASU-TBCAES-128

P AES round . . . AES round C

K AES KS

T

. . .

T

AES KS

T T

Interesting research topic :
. can an attacker leverage the freedom degrees from T ?
.what about more complex attacks?
. so far 8 rounds can be attacked [DEM-ACNS16] [DL-CTRSA17]

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Reusing existing long-key block ciphers

Idea : reuse existing long-key block ciphers
. what if we use a long-key block cipher and devote part of
his key to be the tweak input?4! related-key attacks !

. Q : is AES-256with 128-bit key and 128-bit tweak a secure
TBC? Basically TAES proposal [BGIM-FSE20]

. A : not in TWEAKEY framework (RK attacks [BK-AC09]) !

. TAES assumes single-key scenario only, while AES-256
RK attacks require differences in both K and T

TAESAES-256

P AES round . . . AES round C

K / T AES KS . . . AES KS

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Reusing existing long-key block ciphers

Idea : reuse existing long-key block ciphers
. what if we use a long-key block cipher and devote part of
his key to be the tweak input?4! related-key attacks !

. Q : is AES-256with 128-bit key and 128-bit tweak a secure
TBC? Basically TAES proposal [BGIM-FSE20]

. A : not in TWEAKEY framework (RK attacks [BK-AC09]) !

. TAES assumes single-key scenario only, while AES-256
RK attacks require differences in both K and T

Interesting research topic :
Are there related-key differential paths for AES-256with only
one 128-bit word active, so as to attack TAES in the single key
model?

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Very short-tweak TBC

Elastic-Tweak construction for SPN ciphers [CDJ+19]

Very short-tweak TBC construction used in ESTATE and
LOTUS-AEAD/LOCUS-AEAD of NIST LWC competition

Very short-tweak TBC Constructions
A very short tweak t� n (like 4 or 8 bits) can be used :
. to simulate independent keys

required by some operating
modes : EKi(P) ∼ EK(Ti,P)

. for domain separation
(full/partial block)

. not in TBC operating modes
EP

n

K
k

T
4

C

Almost the same efficiency as the underlying BC, easy for
designer because small tweak

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

How to build TBCs with
large tweaks t� n?

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

How to build TBCs with
large tweaks t� n?

Back to the good old problem
of key schedule design

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Tweakey scheduling design

Designing a tweakey scheduling is hard :
. many many ciphers got broken in the related-key model
. ... but we have a better understanding of how to build a
(twea)key schedule since the SHA-3 competition

. simplicity is an important criterion to make the analysis
feasible (lack of security analysis is not allowed)

. recently automated tools (SAT, MILP, CP) are really
helpful to analyse diff/linear properties of a cipher

Problem :
When t grows large, the SAT/MILP/CP problem instances
becomes too large and the solvers can’t handle them anymore.

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Tweakey scheduling design

Designing a tweakey scheduling is hard :
. many many ciphers got broken in the related-key model
. ... but we have a better understanding of how to build a
(twea)key schedule since the SHA-3 competition

. simplicity is an important criterion to make the analysis
feasible (lack of security analysis is not allowed)

. recently automated tools (SAT, MILP, CP) are really
helpful to analyse diff/linear properties of a cipher

Problem :
When t grows large, the SAT/MILP/CP problem instances
becomes too large and the solvers can’t handle them anymore.

Solution :
Create a tweakey schedule that makes it easy for the solvers !

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

The Superposition Tweakey (STK) construction

We can solve this problem using the Superposition Tweakey
(STK) construction [JNP-AC14] :
The search problem for the tweak part is now reduced from a
t-bit to a n-bit problem with a few extra cancellation conditions.

STK Tweakey Schedule

h′
h′

...

h′

α1

α2

αp

tk0

XOR C0

ART

f

h′
h′

...

h′

α1

α2

αp

XOR C1

ART

fP = s0

h′
h′

...

h′

. . .

. . .

. . .

XOR C2

ART

. . .

XOR Cr−1

ART

f

h′
h′

...

h′

α1

α2

αp

XOR Cr

ART

sr = C

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

The Superposition Tweakey (STK) construction

We can solve this problem using the Superposition Tweakey
(STK) construction [JNP-AC14] :
The search problem for the tweak part is now reduced from a
t-bit to a n-bit problem with a few extra cancellation conditions.

Now the goal is to find :
. cheap αi transformations that minimize #cancellations
. best h′ to maximize resistance against related-tweakey attacks

Interesting research topic :
. finding the αi to minimize cancellations when t grows large
.maybe use an error correcting code on the tweak/key cells to
generate all the successive subtweakeys?

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Deoxys-TBC

Deoxys-TBC applies this STK idea to the AES [JNP-AC14]

h′
h′
h′

LFSR2

LFSR3

tk0

XOR C0

AES round

h′
h′
h′

LFSR2

LFSR3

XOR C1

AES roundP = s0

h′
h′
h′

. . .

. . .

. . .

XOR C2

. . .

XOR Cr−1

AES round

h′
h′
h′

LFSR2

LFSR3

XOR Cr

sr = C

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Comparing Deoxys-TBC and AES

Deoxys-TBC applies this STK idea to the AES [JNP-AC14]

Number of active Sboxes in single-key (SK) and related-key (RTK)

Cipher Model
Rounds

1 2 3 4 5 6 7 8
Deoxys-TBC-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTK 0 0 1 5 9 12 ≥ 16 ≥ 19
AES-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTK 0 0 1 3 5 5 5 10

Comparison of security claims
Deoxys-TBC-256 provides a better resistance than AES-256
against plain related-key attacks, while being more efficient (no
Sbox in key-schedule, just byte permutation and a few LFSRs)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Comparing Deoxys-TBC and AES

Deoxys-TBC applies this STK idea to the AES [JNP-AC14]

Number of active Sboxes in single-key (SK) and related-key (RTK)

Cipher Model
Rounds

1 2 3 4 5 6 7 8
Deoxys-TBC-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTK 0 0 1 5 9 12 ≥ 16 ≥ 19
AES-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTK 0 0 1 3 5 5 5 10

Interesting research topic :
. is it be possible to find a permutation that guarantees even
more active Sboxes? Or maybe a different tweakey schedule?
. can an attacker exploit the freedom degrees for more
advanced attacks

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

SKINNY

SKINNY applies this STK idea to lightweight crypto [BJK+-C16]

h′
h′
h′

LFSR2

LFSR3

tk0

XOR C0

round

h′
h′
h′

LFSR2

LFSR3

XOR C1

roundP = s0

h′
h′
h′

. . .

. . .

. . .

XOR C2

. . .

XOR Cr−1

round

h′
h′
h′

LFSR2

LFSR3

XOR Cr

sr = C

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Ad-hoc TBCs zoo

Many other ad-hoc TBCs

Threefish [FLS+-08]
KIASU-TBC, Deoxys-TBC and Joltik-TBC [JNP-AC14]

Minalpher [STA+-14]
Scream and iScream [GLS+-14]
Skinny and Mantis [BJK+-C16]

QARMA [Ava-FSE17]
Clyde-128 [BBB+-19]
Lilliput [ABC+-19]
CRAFT [BLM+-FSE19]
T-Twine [SMS+-I19]
Pholkos [BLLS+-eP20]

...

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Outline

1 Introduction

2 Tweakable Block Ciphers Designs
. Block Cipher-Based TBC
. Ad-hoc TBC Constructions

3 Tweakable Block Ciphers for AE

4 TBC for Side-Channels Protection
. Leakage Resilience and Protected Implementations

5 Conclusion

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Beyond birthday-bound security

Classical BC-based AE modes
only provide birthday security

(picture from [KR-FSE11])

Reason : internal collisions on a n-bit value gets you a q2/2n
term in your security proofs. May lead to birthday complexity
attacks. Complex proof.
Ex : OCB3 [KR-FSE11]

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Beyond birthday-bound security

TBC-based AE modes can easily provide
beyond birthday-bound (BBB) security

(picture from [KR-FSE11])

Use tweak input with nonce and counter to always ensure a
new TBC instance is called. Easier to understand, better
bounds, simpler proofs. priv. bound is 0.
Ex : ΘCB3 [KR-FSE11]

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Romulus-N : a lightweight AE mode

Romulus-N [IKMP-19] :
lightweight BBB nonce-respecting AEAD

trades parallelism for small area

0n
n n

ρ Ẽ8,1
K

A[1] A[2]

n t

ρ Ẽ8,3
K

A[3] A[4]

ρ Ẽ8,a−2
K

A[a− 2] A[a− 1]

ρ ẼwA,a
K

pad(A[a]) N

S

S n n

t

ρ Ẽ4,1
K

M [1] N

C[1]

n

n

ρ Ẽ4,2
K

M [2] N

C[2]

ρ ẼwM ,m
K

pad(M [m]) N

lsb|M [m]|

C[m]

ρ

0n

T

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

(Lightweight) AE modes

Designing an AE mode :
what internal primitive to use?

BC?
Permutation?

TBC?

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

(Lightweight) AE modes

Designing an AE mode :
what internal primitive to use?

BC?
Permutation?

TBC?

First we need to get an estimation

of what is the rate of a BC/TBC/Permutation

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Cost of scaling increasing internal primitives size

We define rate according to output size only
Is it justified?

On scaling costs
Q : assume a n-bit permutation costs x bitwise
operations, howmany dowe need to build a 2n-bit
permutation?

A : at least ×2 and probably a bit more :
. Keccak : about ×2.2 ∼ 2.32
. PHOTON : about ×2
. SPONGENT : about ×4

ΠS S′

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Cost of scaling increasing internal primitives size

We define rate according to output size only
Is it justified?

On scaling costs
Q : assume a n-bit TBC with t-bit tweakey costs
x bitwise operations, how many do we need to
build a 2n-bit TBC with t-bit tweakey?

A : at least ×2 and probably a bit more :
. SKINNY : about ×2.22
. GIFT : about ×2.84
. SIMON and SPECK : about ×3.16 and ×2.37

EP

K

T

C

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Cost of scaling increasing internal primitives size

We define rate according to output size only
Is it justified?

On scaling costs
Q : assume a n-bit TBCwith t-bit tweakey costs
x bitwise operations, how many do we need
to build a n-bit TBC with 2t-bit tweakey?

A : much less than ×2 :
. SKINNY : about ×1.1 ∼ 1.2
. Deoxys : about ×1.3
. AES (key) : about ×1.4
. SIMON and SPECK (key) : about ×1.06

EP

K

T

C

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Cost of scaling increasing internal primitives size

Conclusion :
. increasing block/permutation size costs a lot !
. increasing tweakey size doesn’t cost much
. rate should be defined according to the output size

Try to use an internal primitive with the smallest
output size as possible for a given security level !

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Use case 1 : minimal area

Use case 1 : minimal area
In this scenario, we don’t care if the ciphering process is really
slow, we just want to minimize area
(typically bit-serial or word-serial implementation)

. We will cipher m-bit at a time (m is small)

. We want at least n-bit security, with a n-bit key

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Use case 2 : low energy consumption and lightweight

Use case 2 : low energy consumption and lightweight
In this scenario, we want a small area and good throughput
performances (typically round-based implementation)
Efficiency = state size/rate (the lowest the better, basically
estimates the inverse of throughput-to-area ratio)

. We will cipher about n-bit at a time

. We want at least n-bit security, with a n-bit key

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Use case 3 : fast MAC/encryption

Use case 3 : fast MAC/encryption
In this scenario, we want good throughput performances
(high rate)

. We can cipher more than n-bit at a time, if needed

. We want at least n-bit security, with a n-bit key

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Case of block ciphers

Case of BC :
. Most BC modes provide only birthday

security (BBB BC-based modes are not
lightweight nor fast)

. At least 2n-bit block cipher with n bit
key needed for n-bit security. At very
minimal you will need 3n (probably
impossible?)

. BC can handle n-bit with a n-bit block,
rate is 1

EP

K

C

The smallest known, COFB [CIMN-CHES17], actually requires
3n + k = 4n state for n-bit security :
. Use case 1 : minimum state is 4n (is < 4n possible?)
. Use case 2 : best efficiency is state/rate = 4n
. Use case 3 : best rate is 1

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Case of sponges

Case of sponges (DUPLEX) :
. at least a capacity of 2n

(minimum state size) for n-bit security
. to handle r-bit at a time, (2n + r)-bit

state is needed for encryption (r-bit for
MAC, using full-state DUPLEX)

. rate is r/(2n + r) for encryption, 1 for
authentication (full-state DUPLEX)

ΠS S′

DUPLEX [BDPA-SAC11] would lead to :
. Use case 1 : minimum state is −→ 2n (for rate −→ 0)
. Use case 2 : best enc. efficiency is state/rate = 8n (at r = 2n)

best auth. efficiency is state/rate = 2n (full-state)
. Use case 3 : best enc. rate is −→ 1 (for rate, state −→∞)

best auth. rate is 1

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Case of sponges

Case of sponges (Beetle) :
. at least a state of 2n

(minimum state size) for n-bit security
. to handle r-bit at a time, (n + r)-bit state

is needed for encryption and
authentication

. rate is 1/2 for encryption and
authentication

ΠS S′

Beetle [CDNY-CHES18] would lead to :
. Use case 1 : minimum state is 2n
. Use case 2 : best enc./auth. efficiency is state/rate = 4n (at r = n)
. Use case 3 : best enc./auth. rate is −→ 1 (for rate, state −→∞)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Case of sponges

Case of sponges (Beetle) :
. at least a state of 2n

(minimum state size) for n-bit security
. to handle r-bit at a time, (n + r)-bit state

is needed for encryption and
authentication

. rate is 1/2 for encryption and
authentication

ΠS S′

Beetle [CDNY-CHES18] would lead to :
. Use case 1 : minimum state is 2n
. Use case 2 : best enc./auth. efficiency is state/rate = 4n (at r = n)
. Use case 3 : best enc./auth. rate is −→ 1 (for rate, state −→∞)

full-state DUPLEX for authentication + Beetle for encryption
would have been a great LWC candidate: best of both sponge worlds !

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Case of tweakable block ciphers

The case of TBC :
. at least a block size of n and a tweakey

state of n (to hold the key) for n-bit
security

. can handle n-bit at a time for
encryption, (n + t)-bit for authentication

. rate remains 1 for encryption, 1+ t/n for
authentication

EP

K

T

C

Romulus-N3 [IKMP-19] requires 3n state for n-bit security.
. Use case 1 : minimum state is 3n
. Use case 2 : best enc. efficiency is state/rate = 3n

best auth. efficiency is state/rate = n (for t −→∞)
. Use case 3 : best enc. rate is 1

best auth. rate is∞ (for t −→∞)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Min State Size (S) Max Rate (R) Best efficiency (S/R)

enc. auth. enc. auth.

BC 4n (−→ 3n) 1 1 4n 4n

Sponge 2n 1/2 (−→ 1) 1 4n 2n

TBC 3n (−→ 2n) 1 1 + t/n 3n n < · ≤ 1.75n

Use cases
. Use case 1 : min. state with sponges (TBC can also do 2n)
. Use case 2 : best efficiency with TBC (reached at lightest point)
. Use case 3 : best ratewith TBC (for auth.)

Comments
. efficiency of sponge is worse than TBC in theory because one needs a

permutation larger than n (effect reduced with a non-hermetic sponge)
. TBC : it seems we can increase the auth rate indefinitely by using a

bigger tweak (true in practice ... but only up to a certain level)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

128-bit security

Scheme
State Size Rate Efficiency

(S) (R) (S/R)

enc. auth. enc. auth.

Romulus-N1 3.5n 1 2 3.5n 1.75n

Romulus-N3 3n 1 7/4 3n 1.71n

ΘCB3 4.5n 1 1 4.5n 4.5n

COFB 4n 1 1 4n 4n

DUPLEX (r � n) −→ 2n −→ 0 1 −→∞ −→ 2n

DUPLEX (r = n) 3n 1/3 1 9n 3n

DUPLEX (r = 2n) 4n 1/2 1 8n 4n

DUPLEX (r � 2n) −→∞ −→ 1 1 −→∞ −→∞

BEETLE 2.1n 1/2 1/2 4.2n 4.2n

ASCON-128 3.5n 1/5 1/5 17.5n 17.5n

Ascon-128a 3.5n 2/5 2/5 8.75n 8.75n

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

TBC for AE!

Flexibility of the TBC
AE mode design process :
fix the output size of the TBC according to your security need,
then play with the tweak size to get the proper rate and state
size according to your constraints.

Don’t use a large output size internal primitive
if you only want a security of n bits !

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Infinitweak

Idea :
Since auth. rate increases with the size of tweak, why not trying
constructions with huge tweaks for crazy auth. efficiency?

h′
h′

...

h′

LFSR2

LFSRz

tk0

XOR C0

round

h′
h′

...

h′

LFSR2

LFSRz

XOR C1

roundP = s0

h′
h′

...

h′

. . .

. . .

. . .

XOR C2

. . .

XOR Cr−1

round

h′
h′

...

h′

LFSR2

LFSRz

XOR Cr

sr = C

. rate will eventually reach a limit, but where?

. Deoxys-128/1024 or Skinny-128/1024 variants would
theoretically provide 50% ∼ 100% speed-up (ongoing work)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Infinitweak

Idea :
Since auth. rate increases with the size of tweak, why not trying
constructions with huge tweaks for crazy auth. efficiency?

h′
h′

...

h′

LFSR2

LFSRz

tk0

XOR C0

round

h′
h′

...

h′

LFSR2

LFSRz

XOR C1

roundP = s0

h′
h′

...

h′

. . .

. . .

. . .

XOR C2

. . .

XOR Cr−1

round

h′
h′

...

h′

LFSR2

LFSRz

XOR Cr

sr = C

Interesting research topic :
. How can we design such a very large tweak TBC?
.What tweakey construction to minimize cancellations?

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Outline

1 Introduction

2 Tweakable Block Ciphers Designs
. Block Cipher-Based TBC
. Ad-hoc TBC Constructions

3 Tweakable Block Ciphers for AE

4 TBC for Side-Channels Protection
. Leakage Resilience and Protected Implementations

5 Conclusion

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Side-channels resistance

Side-channels resistance
Side-channels have become a crucial threat to take into account
during design phase :
. leakage-resilient AE modes
. protected implementations : masking, threshold
implementations, etc.

What advantage can TBCs offer here?

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

AET-LR : leakage resilient AE from TBC

One can get some leakage resilience by simply feed-forwarding
blocks into the tweak input in Romulus-N + key/tag protect

0n
n n

ρ Ẽ8,1
K

A[1] A[2]

n t

ρ Ẽ8,3
K

A[3] A[4]

ρ Ẽ8,a−2
K

A[a− 2] A[a− 1]

ρ ẼwA,a
K

pad(A[a]) N

S

S n n

t

ρ Ẽ4,1
K

M [1] N

C[1]

n

n

ρ Ẽ4,2
K

M [2] N

C[2]

ρ ẼwM ,m
K

pad(M [m]) N

lsb|M [m]|

C[m]

ρ

0n

T

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

AET-LR : leakage resilient AE from TBC

One can get some leakage resilience by simply feed-forwarding
blocks into the tweak input in Romulus-N + key/tag protect

N Ẽ0,0
K

0t

K ′

0n
n n

ρ Ẽ8,1
K′

A[1] A[2]

n

ρ Ẽ8,3
K′

A[3] A[4]

ρ Ẽ8,a−2
K′

A[a− 2] A[a− 1]

ρ ẼwA,a
K′

pad(A[a]) N

S

S n n
ρ Ẽ4,1

K′

M [1] N

C[1]

n

n

ρ Ẽ4,2
K′

M [2] N

C[2]

ρ Ẽ4,m
K′

pad(M [m]) N

C[m]

ẼwM ,m
K

N

T

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

AET-LR : leakage resilient AE from TBC

AET-LR [GKP-LWC20] (used in Romulus-LR) ensures
CIML2 (best for integrity) + CCAml1

N Ẽ0,0
K

0t

K ′

0n
n n

ρ Ẽ8,1
K′

A[1] A[2]

n

ρ Ẽ8,3
K′

A[3] A[4]

ρ Ẽ8,a−2
K′

A[a− 2] A[a− 1]

ρ ẼwA,a
K′

pad(A[a]) N

S

S n n
ρ Ẽ4,1

K′

M [1] N

C[1]

n

n

ρ Ẽ4,2
K′

M [2] N

C[2]

ρ Ẽ4,m
K′

pad(M [m]) N

C[m]

ẼwM ,m
K

N

T

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

TEDT : stronger leakage resilient AE from TBC

TEDT [BGP+-CHES20] (used in Romulus-LR-TEDT) ensures
CIML2 (best for integrity) + CCAmL2 (best for privacy)

N Ẽ0,0
K

0t

K ′

0n
n n

ρ Ẽ8,1
K′

A[1] A[2]

n

ρ Ẽ8,3
K′

A[3] A[4]

ρ Ẽ8,a−2
K′

A[a− 2] A[a− 1]

ρ ẼwA,a
K′

pad(A[a]) N

S

S n n
ρ Ẽ4,1

K′

M [1] N

C[1]

n

n

ρ Ẽ4,2
K′

M [2] N

C[2]

ρ Ẽ4,m
K′

pad(M [m]) N

C[m]

ẼwM ,m
K

N

T

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Threshold implementations

For threshold implementations (TI) :
. Threshold Implementations (TI) area increases with the
number of shares

. for a masking order d and algebraic degree t of the target
function, the number of shares is dt + 1

. thus t + 1 for first-order TI, count :
◦ 3 shares per internal state bit,
◦ 2 shares per key bit (if linear key schedule),
◦ no protection for tweak material

[NS-CHES20] and [NSS-EC20] remarked that TBCs present a
fundamental advantage :
only a reduced part of the state needs to be protected

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Threshold implementations comparison (for n-bit security)

BC-based schemes : at least 2n state (be-
cause up-to-birthday secure) and n bit key
to be protected.
Total state : 3 · (2n) + 2 · (n) = 8n.

EP
n

K
k

C

TBC-based schemes : possible with n bit
state and n-bit key to be protected (and n-
bit unprotected tweak).
Total state : 3 · (n) + 2 · (n) + n = 6n. ẼP

n
K

k
T

t

C

permutation-based schemes : need to pro-
tect the entire state (2n + r bit for duplex,
2n + log s bit for Beetle). Total state :
Duplex : 3 · (2n + r) = 6n + 3r
Beetle : 3 · (2n + log n) = 6n + 3 log n.

ΠS
b

S′r

c

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Threshold implementations comparison (for n-bit security)

BC-based schemes : at least 2n state (be-
cause up-to-birthday secure) and n bit key
to be protected.
Total state : 3 · (2n)+ 2· (n) = 7n.

EP
n

K
k

C

TBC-based schemes : possible with n bit
state and n-bit key to be protected (and n-
bit unprotected tweak).
Total state : 3 · (n)+ 2· (n) + n = 5n. ẼP

n
K

k
T

t

C

permutation-based schemes : need to pro-
tect the entire state (2n + r bit for duplex,
2n + log s bit for Beetle). Total state :
Duplex : 3 · (2n + r) = 6n + 3r
Beetle : 3 · (2n + log n) = 6n + 3 log n.

ΠS
b

S′r

c

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Outline

1 Introduction

2 Tweakable Block Ciphers Designs
. Block Cipher-Based TBC
. Ad-hoc TBC Constructions

3 Tweakable Block Ciphers for AE

4 TBC for Side-Channels Protection
. Leakage Resilience and Protected Implementations

5 Conclusion

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Future Works

TBCs are promising primitives
. many more applications :

◦ Forkcipher for small messages [ALP+-AC19]
◦ easy misuse-resistance/RUP, for example with
Romulus-M [IKMP-19]

◦ Multi-users security (ongoing work with B. Cogliati) : put
separately counter, nonce and key in the tweak input of the
TBC!

◦ Hashing/XOF for example with Naito’s MDPH [N-LC19]
construction used for Romulus-H. Ongoing work : blazing
fast Deoxys-TBC-based hash function with speed similar to
KangarooTwelve [BDP+-ACNS18]

◦ backdoor ciphers (MALICIOUS framework [PW-C20]) can
use TBC with XOF-based tweak schedule

◦ etc.
. many open problems, many interesting research topics for
TBCs, both in cryptanalysis and design

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

We’re hiring !

Looking for a PhD/postdoc position to work on
anything related to cryptography?

Contact me!

Thank you!

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Romulus-N : a lightweight BBB nonce-respecting AEAD

Romulus-N [IKMP-19] :
lightweight BBB nonce-respecting AEAD

0n
n n

ρ Ẽ8,1
K

A[1] A[2]

n t

ρ Ẽ8,3
K

A[3] A[4]

ρ Ẽ8,a−2
K

A[a− 2] A[a− 1]

ρ ẼwA,a
K

pad(A[a]) N

S

S n n

t

ρ Ẽ4,1
K

M [1] N

C[1]

n

n

ρ Ẽ4,2
K

M [2] N

C[2]

ρ ẼwM ,m
K

pad(M [m]) N

lsb|M [m]|

C[m]

ρ

0n

T

. provably secure in standard model

. full 128-bit security

. low overhead for small messages : 1 AD + 1 M = 2 TBC calls

. priv. bound is 0, auth is qd/2τ , doesn’t depend on #enc queries

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Romulus-M : a lightweight BBB nonce-misuse AEAD

Romulus-M [IKMP-19] :
lightweight BBB nonce-misuse resistant AEAD

0n
n n

ρ Ẽ40,1
K

A[1] A[2]

n t

ρ Ẽ44,a
K

pad(A[a]) M [1]

ρ Ẽ44,a+2
K

M [2] M [3]

n t

ρ Ẽw,a+m
K

pad(M [m]) N

ρ

0n

T

T Ẽ36,0
K

N

ρ Ẽ36,1
K

M [1] N

C[1]

n n

n

n

t

ρ Ẽ36,2
K

M [2] N

C[2]

ρ Ẽ36,m′−1
K

M [m′ − 1] N

C[m′ − 1]

ρ

pad(M [m′])

lsb|M [m′]|

C[m′]

. provably secure in standard model

. full 128-bit security in nonce-respecting, birthday with graceful
degradation so ~full security in nonce-misuse

. easy nonce-misuse resistance mode

. RUP secure [ABL+-AC14] (INT-RUP and PA1)

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Romulus-H : 256-bit hashing with a 128-bit TBC

Easy to hash using a 128-bit TBC with Naito’s MDPH [N-LC19] :
. build a 256-bit compression function h with the
well-known Hirose DBL construction (rate 1) [H-FSE06]

. place h into the Merkle-Damgård with Permutation
(MDP) mode [HPY-AC07]

MDPH is indifferentiable from a (variable-input-length)
random oracle up to about (n− log n) queries

0n

0n

Ẽ

Ẽ

M [1]

1 1

2nn

n

Ẽ

Ẽ

M [2]

1 1

Ẽ

Ẽ

M [m]

1 1

|| H

2

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Romulus-H : 256-bit hashing with a 128-bit TBC

Extra features of Romulus-H [IKMP-LWC20] :
. XOF : simply use H(M||0), H(M||1), H(M||2), etc.
. Romulus-H can naturally adapt to very constrained area
environments by reducing its message block size

0n

0n

Ẽ

Ẽ

M [1]

1 1

2nn

n

Ẽ

Ẽ

M [2]

1 1

Ẽ

Ẽ

M [m]

1 1

|| H

2

Intro TBC Designs TBC for AE Side Channels Conclusion Extra Slides

Interesting research topic : hashing with TBC

Interesting research topic :
. can we build a blazing fast hash function using larger tweak
inputs? First back-of-the-envelope estimations show that a
Deoxys-TBC based hash would already lead to software speeds
similar to KangarooTwelve [BDP+-ACNS18]
. can we leverage TBC capabilities to build efficient and simple
parallel hashes?

	Introduction
	Tweakable Block Ciphers Designs
	Block Cipher-Based TBC
	Ad-hoc TBC Constructions

	Tweakable Block Ciphers for AE
	TBC for Side-Channels Protection
	Leakage Resilience and Protected Implementations

	Conclusion
	Extra Slides
	Nonce-misuse Resistance
	Hashing

