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Problem Statement

Cryptographic design is always a fight performance vs security

Performance is usually modeled according to some
physical/technological model, and the community is now considering
more and more exotic metrics (lightweight, low-latency, MPC-friendly, etc)

Security analysis was done by humans and now more and more assisted
by automated tools.

Can automated tools be more integrated within the design process ?
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Automated
Cryptanalysis
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Timeline of Automated Cryptanalysis

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
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Automated cryptanalysis using declarative frameworks (SAT/MILP/CP/etc.) is
generally slower or at best same as ad-hoc tools, but so much more convenient

Mainly on differential and linear cryptanalysis, but now also on integral distinguishers, cube attacks,
meet-in-the-middle attacks, etc.

Solving time is a crucial aspect and can be impacted by:

» the framework you use (SAT/MILP/CP/etc.)

 the strategy of modeling (many works on various modeling strategies)
 the solver (less contributions on that, different research field)

* the type of problem studied / scale
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Automated Cryptanalysis for Designers

Classical design process: cipher’s structure is pre-established by the
human. The computer will brute force some components (Sbox, diffusion
matrix) or parameters (rotation constant, etc.) to select the best candidate.

However:

- There is no “search” per se, it is just localized small brute force
searches and taking the best candidates

- Evaluation of the cipher’s security and performance is done at the end
(no insight to search in a smart way)

Can we give more freedom to the computer to create good ciphers ?

Can automated cryptanalysis help us searching for good ciphers ?
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Fast AES-based MAC

LeMac - PetitMac

Fast AES-Based Universal Hash Functions and MACs (Featuring LeMac and PetitMac) - ToSC 2024-2
Joint work with A. Bariant, J. Baudrin, G. Leurent, C. Pernot and L. Perrin
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Wwhy Fast MAC ?

« AES has globally good performances, but it is really fast in practice
because of hardware acceleration widely available (AES-NI).

« The granularity of AES-NI is on the AES round, so it has been used to
build many fast primitives:

— Hash functions (ECHO, LANE, SHAVITE-3, VORTEX, etc.),
— AEAD schemes (AEGIS, TIAOXIN-346, DEOXYS, ROCCAC(-S), etc.),
— Permutations (AREION, SIMPIRA, HARAKA, PHOLKQOS, etc.).

* Now, not so difficult to reach throughput < 1 ¢/B on typical processors
Ex: 2 AES rounds in parallel each cycle, thus (10/2)/16 = 0.31 c/B

« But sixth-generation mobile comm. systems (6G) to deliver an amazing
throughput of 100 Gbps to 1 Tbps (0.24 to 0.024 ¢/B on a 3GHz CPU) !

We need to create primitives with even much larger throughput !

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE




State-of-the-art of Fast AES-based MAC

Many ultra-fast AES-based collision resistant permutations:
AEGIS, TIAOXIN-346, ROCCA-(S), Jean-Nikoli¢ [JN16] and Nikoli¢ [Nik17a] (fastest)
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ROCCA targets 256-bit key / 128-bit tag AEAD. Some security issues [HII+22].
ROCCA-S targets 256-bit key / 256-bit tag AEAD (under submission at IETF).

Sub-optimal throughput: optimal in ROCCA framework [TSI23] reaches 0.104 c/B
on Tiger Lake, while theoretical max is 0.0625 c/B.

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



Designing a collision-resistant permutation

Classical: large state entirely updated non-linearly. Issue: costly for a large state.
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Better ?: large state separated in two parts (inspired from TBC or PANAMA hash):
- one part updated with (expensive) non-linear components (AES round in our case)

- one part updated with linear components (not influenced by the first one, reducing
dependencies that complicate instructions scheduling and automated security analysis).
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Our overall permutation structure

Goal: no differential path
with Probability > 2-128

AddRoundKey is free with
AES-NI: we can use a free
XOR after each AES round

Increasing r and s generally
improves performance, but
we limitto s + r <16

(1

—
¥ X9 Xo s Xo M3 M3, 1123 =0 P4 =0
L
Ve Ve Vig Vi
At.m A 1 Au,.. 2 A 1 T
o |m =) =z, Ve
B Pany
v
Jany
Y Pan
v -
Vi
X5 s Vi Mo
L *'qul) *"‘um—l fll 11‘—1
e 1 ovig vi)
Ao Am Ass-z| | A% T
ln o =z, 72, vy
N
fan)
r Pa
Vo

Ais AES round, T and L are linear matrices
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Automatic security and performance analysis

Automatic security analysis:
» a MILP model to evaluate diff. paths automatically without linear incompatibilities (cheap)
« another MILP model with linear incompatibilities (quite expensive)

Automatic performance benchmark: an automatic implementation is
produced for each candidate (quite cheap) to benchmark them.

» so performant that XOR becomes important (carefully consider AES-NI / XOR latency,
throughput, ports). For x AES rounds, make x/2 XOR max (unlike Jean-Nikolic or Rocca).

» Dependency chains are also important: Rocca in decryption has long chains (reduced perf.)
« Many other complex things to consider, so the best way is to actually benchmark directly

Architecture Instr Latency Throughput | Py P » P3 Px P55 DB
Intel Haswell XESRENC ; 01%3 Fa—— .
Intel Skylake XR | & 03 < -
Intel Ice Lake XESR ENC ; 003; i i X
Intel Tiger Lake igSRENC é 003: i i x
AMD Zen 1/2/3/4 i‘E)SREN c 31 0&? i i P

Scheduling of AESENC and XOR instructions on modern processors
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Handling a large search space

Extremely large search space, so we reduce it by:
* leveraging symmetries

« select subparts that are interesting (limit #XORs, higher diffusion matrices)

Our search strategy (NEW):

generate a cheap MILP cheap MILP auto. perf. expensive MILP
random candidate > 2 active SBox > 20 active SBox benchmark max active SBox

Rl -

Final
candidates
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L eMac (128-bit key / 128-bit tag)

« The state is composed of 13 128-bit words (9 in non-linear part, 4 in linear)
« 8 AES rounds for 4 message blocks (rate 2), only 4 extra XORs (perfect ratio)
« Security: at least 26 active Shoxes (diff. path probability < 26726 = 2-156)

2 rounds of the UHF of LeMac
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PetitMac (128-bit key / 128-bit tag)

« The state is composed of 6 128-bit words (1 in non-linear part, 5 in linear)

« 2 AES rounds for 1 message block (rate 2), 3 extra XORs
« Security: at least 26 active Sbhoxes (diff. path probability < 2-(26) = 2-156)

1 round of the UHF of PetitMac
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Performance results

< 0.1 ¢/B throughput for
LeMac ! (Using only 128-bit
instructions, not AVX-512).

The fastest MAC (by far) on

medium/high-end processors.

PetitMAC aims for a better
tradeoff on constrained
devices: AES round-based
MAC with rate 2, with
acceptable memory footprint.

18.3 ¢/B on ARM Cortex-M4.

Speed (¢/B)

CPU Cipher 1kB 16kB  256kB
Intel Haswell (Xeon E5-2630 v3) GCM (AD only) 1.138  0.700  0.605
Rocca (AD only) 0.602  0.225 0.201
Rocca-S (AD only) 0.660  0.290  0.269
AEGIS128 (AD only) 0.809 0.578 0.564
ABEGIS128L (AD only) 0.542  0.299 0.285
Tiaoxin-346 v2 (AD only) 0.489 0.207  0.190
Jean-Nikoli¢ 0.455  0.149 0.159
LeMac 0.498 0.148 0.131
PetitMac 1.116  0.890 0.876
Intel Skylake (Xeon Gold 6130) GCM (AD only) 0.817 0.396  0.370
Rocca (AD only) 0.573  0.190 0.167
Rocca-S (AD only) 0.568 0.213  0.192
ABEGIS128 (AD only) 0.682  0.470 0.460
ABEGIS128L (AD only) 0.505  0.267 0.253
Tiaoxin-346 v2 (AD only) 0.473  0.206 0.189
Jean-Nikoli¢ 0.389  0.142 0.130
LeMac 0.422  0.144  0.126
PetitMac 0.792  0.635 0.626
Intel Ice Lake (Xeon Gold 5320) GCM (AD only) 0.699 0.311  0.286
Rocca (AD only) 0.528 0.171 0.149
Rocca-S (AD only) 0.478 0.172  0.151
AEGIS128 (AD only) 0.619  0.401 0.389
ABEGIS128L (AD only) 0.416  0.208 0.195
Tiaoxin-346 v2 (AD only) 0.328  0.131 0.121
Jean-Nikolié¢ 0.307  0.126 0.113
LeMac 0.289  0.082
PetitMac 0.521 0.384 0.376
PetitMac

Code: https://github.com/AugustinBariant/Implementations LeMac
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https://github.com/AugustinBariant/Implementations_LeMac_PetitMac

Future of LeMac / PetitMac

 What about (Authenticated)-Encryption ?
« What about 256-bit keys (mandated by 6G) and 256-bit tags ?

* Probably difficult to do faster:
— we are at the performance theoretical limit for rate 2

— we proposed candidates with rate < 2, but practical performance is not improved

« Consider using LeMac/PetitMac as building blocks for amazing speed !
(NIST “Accordion cipher” ?)
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Low-Latency
Cryptography

Under submission
Joint work with K. Hu., M. Khairallah and Q. Q. Tan
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Why Low-latency

AES good for general usage, but lot of attention on lightweight cryptography
in the past 15 years. NIST has standardized ASCON, what’s next ?

In some applications, the latency (time it takes to produce the ciphertext
byte/block of a corresponding plaintext byte/block) is very important:

«  RAM memory encryption/authentication (typically with a hardware memory
encryption engine), especially with the rise of cloud computing,

« sensor data encryption/authentication (critical systems, automotive)

« system security (pointer authentication)

plaintext

| l plaiitext
We talk about hardware (ASIC principally, or y 10 rounds
FPGA), with fully unrolled implementations 1 round |
(entire cipher in a single cycle, but lower freq.). | Fully unrolled

(1 cycle)
Round-based
(10 cycles)

Here we consider the internal primitive, not the operating mode.
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Low-latency cryptography timeline

BLOCK CIPHER
TWEAKABLE BLOCK CIPHER
PRF

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

PRINCE MANTIS QARMA PRINCEv2  SPEEDY SCARF  QARMAV2  TWINKLE
K-CIPHER ~ORTHROS  LLLWBC BIPBIP ARADI

(SUPER)SONIC GLEEOK

KOALA

MATTER

 PRINCE was the first cipher to claim latency as main performance goal
« Low-latency trend is accelerating
« We now have BC, TBC, PRF candidates

« Design strategy is to use special Sboxes, linear layers, combinations of them,
special structures, to reduce latency locally while maintaining security

« Special operating modes have also been proposed
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Why Low-latency is difficult ?

A A A A A A A A A A

Path latency: 256 278 250 234 216 212 240 244 254 255 245 255 256 233 246 234

In contrary to area/throughput, it is difficult to predict the latency accurately
in practice.

It is also difficult to know in advance the critical path of the implementation
and the impact that a change on one internal component might do to the latency.
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Breaking the iterative round paradigm

Low latency ciphers are used with unrolled implementation, so
no need to follow a classical round structure anymore (NEW) !

Problem: the security analysis becomes difficult for humans
Solution (NEW): let automated cryptanalysis guide the design !

Two benefits:

« One can create the
cipher round per
round

« We can adapt each
round (and each
component within a
round) separately to

LS L6 L7 L8
mmmizethemax LYV VP PPV VLV V-

path latency

1
l‘ “puno"”

1
Z “puno"”

256 278 250 234 216 212 240 244 254 255 245 255 256 233 246 234
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The uKNIT Cipher

The uKNIT extremely low-latency block cipher structure:

» Classical 64-bit SPN, with sixteen 4-bit low-latency Sboxes, each can be
different (bit-permuted variants of the MANTIS Sbox)

« Special low-latency linear layers

« Each round can be different !

« Key Schedule: New generalization of the STK construction

ko k1o k11 k12

.‘2:1 .‘2:2 F/\:“g 1’1414
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Building the cipher: Evolutionary Algorithm

Problem: the search space is now VERY large (sboxes, linear layers)

Solution: we use an evolutionary algorithm to search in that large space,
optimizing for good latency/security tradeofft.

Importance of the objective function:
« If too latency oriented, not good max[— logy (proba), —2 - log, (bias;)]”
« If too security oriented, not good

lat

We start from good candidates on
3 rounds. Then, we proceed round
per round until reaching 12 rounds. C j

Our design is fully automated
(almost NEW [Nikoli¢ 2017])
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Security of uKNIT

UKNIT has a good resistance against differential and linear
cryptanalysis.

We also studied many other state-of-the-art cryptanalysis.

Stronger diff/linear resistance than PRINCE.

Differential probabilities for all windows of r-round Linear correlations for all windows of r-round
Nn 12345678 910L11PRINCE KGIZSelEﬁTEQIUJ.J.PHlNCE
1|2 22222222222 1111111111111
2|8 8 6 6 8 8 68 8 6 8 2|4 4334434434
3(141212121414121412 1 3|7 666766766
4 |25 23 24 26 30 26 26 24 24 32 413 101113141212 11 12 16
5 | 40 40 39 40 40 39 37 37 39 5 (19 181919191817 17 19
6 | 49 48 46 46 50 47 49 44 6 |24 232223 25 23 21 22
7 | 60 58 52 61 60 59 56 7 |29 26 26 30 29 27 27
8 | 71 70 68 71 72 66 8 |35 34 3434 34 32
9 | 81 82 80 82 74 9 |39 38 37 39 34
10| 94 8792 80 10|45 44 43 38
11101 99 89 11 (49 50 41
12113 99 12|55 49
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Performance

UKNIT breaks new records for low-latency:

~ 10% reduced latency vs PRINCEvV2

~ 20% reduced area vs PRINCEvV2

~>10% increased security (-log, of differential probability) vs PRINCEv2

Name Block Size | Latency (ns) | Area (um?)
3.5 3,078.9:
Gleeok128 [3] 128 3.45 73,078.92
FILPRE 128 1.61 133, 313.99
: oz thros [1] 128 2.66 10, 932.36
128 1.59 77,437.08
- o1 103 39,278.52
BipBip [12] 2 1.45 60, 630.12
. - 192 375 16, 826.61
1BC SPEEDY 7 rnds 192 1.79 88, 331.04
198 181 12, 787.08
C - H

Qarmavi 9 rnds [4] 128 2.74 94,944.23
Public 61 1.46 24, 104.88
Perm. KoalaP 64 1.16 52, 965.36
1 2.90 12, 006.72
PRINCEv2 [36] 64 1.65 97, 564.12

258 385
GKNIT-BC fjl 2.08 10, 685 3‘8
BC (with side loading) 64 161 14,587.92
’ side foading 64 1.49 21,779.27
61 253 15, 850.80
uKNIT-BC 64 1.64 922, 963.67
64 1.48 30,436.20

Hardware implementation benchmarks on TSMC 65nm
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Future

« UuKNIT: lowest latency with good security. Very competitive compared
to the state-of-the-art

* More search can probably find a slightly better candidate, but probably
not much

« Can be used as building block for larger primitives

 Ourdesign strategy can be reused for other use-cases or primitives
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Conclusion
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Conclusion

 We will see more automated cryptanalysis during design phase

« Automation allows design strategies that wouldn’t be possible
before

« Performance gain is still possible in symmetric-key crypto design
* We tend to concentrate on complexity reduction to judge quality of

automated cryptanalysis (i.e. 229 is better than 221), but the simplicity
and ease-of-use of automated cryptanalysis is undervalued
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Thank You !
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