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Lightweight crypto ?

We expect RFID tags to be deployed widely (supply chain
management, e-passports, contactless applications, etc.)

• we need to ensure authentication and/or confidentiality

• a basic RFID tag may have a total gate count of anywhere from
1000-10000 gates, with only 200-2000 gates budgeted for security

• hardware throughput and software performances are not the
most important criterias, but they must be acceptable

• in general aim for smallest possible area, good FOM
(throughput/area2), acceptable speed (hardware and software)

• block ciphers and hash functions are used as basic blocks for
RFID device authentication and privacy-preserving protocols.
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Lightweight hash functions ?

Standardized or SHA-3 hash functions are too big:
• MD5 (8001 GE), SHA-1 (6122 GE), SHA-2 (10868 GE)

• BLAKE (9890 GE), GRøSTL (14622 GE), JH (?), KECCAK (20790
GE), SKEIN (12890 GE)

Recently, new lightweight hash functions have been proposed
(much lower than 10000 GE):
• MAME [Yoshida et al. 2007]

• DM-PRESENT and H-PRESENT [Bogdanov et al. 2008]

• ARMADILLO [Badel et al. 2010]

• QUARK [Aumasson et al. 2010]

• PHOTON [Guo et al. 2011]

• SPONGENT [Bogdanov et al. 2011]
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Lightweight block ciphers ?

More mature than hash functions, but are lightweight block ciphers
too provocative ?

• ARMADILLO: key-recovery attacks [A+-2011]

• HIGHT: related-key attacks [K+-2010]

• Hummingbird-1: practical related-IV attacks [S-2011]

• KTANTAN: practical related-key attacks [Å-2011]

• PRINTcipher: large weak-keys classes [ÅJ-2011]

PRESENT is still unbroken.
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Current picture of lightweight primitives - graphically
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Current picture of lightweight block ciphers - graphically
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Current picture of lightweight hash functions - graphically
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Lightweight ' low memory
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Lightweight ' low memory
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Lightweight ' low memory

The storage of one bit depends the technology, but for UMC 180nm it
costs about:
• 4.67 GE for one input flip-flop
• 6 GE for two inputs flip-flop

Of course, all the security parameters will be small in order to avoid
any waste of memory because of unwanted extra security:
• block ciphers: 64-bit block, 64 to 128-bit key

• hash functions: depends on security property. Can go from
64-bit hash output for preimage up to 256-bit output for collision
resistance

“Security made to measure” (M. Robshaw)
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Minimizing the memory for block ciphers

Minimizing the memory for block ciphers:

• Key schedule:
• avoid complex key expansion or non-invertible key schedules !
• use simple invertible key register update (AES, PRESENT,

KATAN)
• or subkeys simply selected from master key bits (IDEA,

PICCOLO, KTANTAN)
• or no key schedule: subkeys = master key (LED)
• for the two last, one can hardwire the key and further save

memory in some scenarios

• Internal permutation:
• use general construction that allows maximal serialisation
• avoid classical Feistel, better to use Feistel with many branches

(for a light internal function F, one can use the PICCOLO trick)
• for SPN, use small MixColumns (or use PHOTON/LED trick)



Introduction Minimizing memory Minimizing crypto PHOTON LED Conclusion

Example: LED key schedule
For 64-bit key, the key is xored to the internal state every four
rounds. In related-key setting, one gets at least half of the boxes
active:

P 4 rounds

K
4 rounds

K
4 rounds

K K
4 rounds

K K

C

For up to 128-bit key, the key is divided into two equal chunks K1
and K2 that are alternatively xored to the internal state every four
rounds. In related-key setting, one gets at least half of the boxes
active:

P 4 rounds

K1

4 rounds

K2

4 rounds

K1 K2

4 rounds

K2 K1

C
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Orginial sponge functions [Bertoni et al. 2007]
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A sponge function has been proven to be indifferentiable from a random
oracle up to 2c/2 calls to the internal permutation P. However, the best
known generic attacks have the following complexity:

• Collision: min{2n/2, 2c/2}
• Second-preimage: min{2n, 2c/2}
• Preimage: min{2min{n,c+r},max{2min{n−r,c}, 2c/2}}
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Sponges vs Davies-Meyer

We would like to build the smallest possible hash function with no
better collision attack than generic (2n/2 operations). Thus we try to
minimize the internal state size:

• in a classical Davies-Meyer
compression function using a m-bit
block cipher with k-bit key, one needs to
store 2m + k bits. We minimize the
internal state size with m ' n and k as
small as possible.

M

PCV CV′

• in sponge functions, one needs to store c + r bits. We minimize
the internal state size by using c ' n and a bitrate r as small as
possible.

Sponge function will require about twice less memory bits for
lightweight scenarios.
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Basic lightweight design tricks

• constants: use no constants, or at least some that are easy to
generate with a LFSR (avoid pure counter)

• non-linearity:
• use NLFSR (KATAN)
• use NAND gates (KECCAK)
• use small Sboxes (PRESENT, LED, PICCOLO...). 4-bit Sboxes

seem a good compromise between size (PRESENT Sbox is about
20GE) and cryptographic quality, since a 8-bit Sbox is quite big
(AES Sbox is about 230 GE)

• diffusion:
• use bit position permutation branching (PRESENT): almost no

diffusion (the diffusion is provided by the Sboxes), but fast and
lightweight ... be carefull with hull effect

• serially computable MDS (LED): very good diffusion, lightweight,
but slow
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MDS Matrix

What is an MDS Matrix (“Maximum Distance Separable”) ?
• it is used as diffusion layer in many block ciphers and in

particular AES

• it has excellent diffusion properties. In short, for a d-cell vector,
we are ensured that at least d + 1 input / output cells will be
active ...

• ... which is very good for linear / differential cryptanalysis
resistance

The AES diffusion matrix can be implemented
fast in software (using tables), but the situation
is not so great in hardware. Indeed, even if the
coefficients of the matrix minimize the
hardware footprint, d− 1 cells of temporary
memory are needed for the computation.

A =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


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Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

A =



0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1



• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware
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Efficient Serially Computable MDS Matrices
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v0
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.

vd−4

vd−3

vd−2

vd−1


=

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware
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• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware
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• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware
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• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware
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Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.
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• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware
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Efficient Serially Computable MDS Matrices
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• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware
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Tweaking AES for hardware: AES-HW

The smallest AES implementation requires 2400 GE with 263 GE dedicated
to the MixColumns layer (the matrix A is MDS).

A =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 A−1 =


14 11 13 9
9 14 11 13

13 9 14 11
11 13 9 14



A tweaked AES-HW implementation requires 2210 GE with 74 GE
dedicated to the MixColumnsSerial layer (the matrix (B)4 is MDS):

(B)4 =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4


4

=


1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

 B−1 =


2 1 4 1
1 0 0 0
0 1 0 0
0 0 1 0


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Domain extension algorithm

r bits

c bits

m0

P

m1

P

m2

P

m3

P

r′

c′

bits

bits

z0

P

z1

P

z2

absorbing squeezing

The (c + r)-bit internal state is viewed as a d× d matrix of s-bit cells.

PHOTON-n/r/r′ n c r r′ d s
PHOTON-80/20/16 P100 80 80 20 16 5 4
PHOTON-128/16/16 P144 128 128 16 16 6 4
PHOTON-160/36/36 P196 160 160 36 36 7 4
PHOTON-224/32/32 P256 224 224 32 32 8 4
PHOTON-256/32/32 P288 256 256 32 32 6 8
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Internal permutations

AddConstants

d cells

d cells

s bits

SubCells
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S
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S
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S
S
S
S
S
S
S
S

ShiftRows MixColumnsSerial

The internal permutations apply 12 rounds of an AES-like fixed-key
permutation:

• AddConstants: xor round-dependant constants to the first column

• SubCells: apply the PRESENT (when s = 4) or AES Sbox (when s = 8)
to each cell

• ShiftRows: rotate the i-th line by i positions to the left

• MixColumnsSerial: apply the special MDS matrix to each columns
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AES-like fixed-key permutation security

• AES-like permutations are simple to understand, well studied,
provide very good security

• one can easily derive clear and powerful proofs on the minimal
number of active Sboxes for 4 rounds of the permutation:
(d + 1)2 active Sboxes for 4 rounds of PHOTON

• we avoid any key schedule issue since the permutations are
fixed-key

P100 P144 P196 P256 P288

differential path probability 2−72 2−98 2−128 2−162 2−294

differential probability 2−50 2−72 2−98 2−128 2−246

linear approximation probability 2−72 2−98 2−128 2−162 2−294

linear hull probability 2−50 2−72 2−98 2−128 2−246

Table: Upper bounds for 4 rounds of the five PHOTON internal permutations.
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Rebound attack and improvements

round 1
AC
SC

ShR
MC

round 2
AC
SC

ShR
MC

round 3
AC
SC

ShR
MC

round 4
AC
SC

ShR
MC

round 5
AC
SC

ShR
MC

round 6
AC
SC

ShR
MC

round 7
AC
SC

ShR
MC

round 8
AC
SC

ShR
MC

The currently best known technique achieves 8 rounds for an AES-like
permutation, with quite low complexity.

P100 P144 P196 P256 P288

computations 28 28 28 28 216

memory 24 24 24 24 28

generic 210 212 214 216 224

Improvements are unlikely since no key is used in the permutation, so the
amount of freedom degrees given to the attacker is limited to the
minimum.
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Other cryptanalysis techniques

• cube testers: the best we could find within practical time complexity is at most
3 rounds for all PHOTON variants.

• zero-sum partitions: distinguishers for at most 8 rounds (for complexity
< 2c/2).

• algebraic attacks: the entire system for the internal permutations of PHOTON
consists of d2 ·Nr · {21, 40} quadratic equations in d2 ·Nr · {8, 16} variables.

• slide attacks on permutation level: all rounds of the internal permutation are
made different thanks to the round-dependent constants addition.

• slide attacks on operating mode level: the sponge padding rule from PHOTON
forces the last message block to be different from zero.

• rotational cryptanalysis: any rotation property in a cell will be directly
removed by the application of the Sbox layer.

• integral attacks: can reach 7 rounds with complexity 2s(2d−1).
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Hardware implementation results of PHOTON

internal
memory

GE

64 128 192 256

2500

2000

1500

1000

500

Th. optimum
PHOTON-256/32/32

PHOTON-224/32/32

S-QUARK

PHOTON-160/36/36

D-QUARK

PHOTON-128/16/16

U-QUARK

H-PRESENT-128

PHOTON-80/20/16

DM-PRESENT-80

DM-PRESENT-128
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A single round of LED

AddConstants

4 cells

4 cells

4 bits

SubCells

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

ShiftRows MixColumnsSerial

The 64-bit round function is an SP-network (we apply 32 to 48 rounds):

• AddConstants: xor round-dependent constants to the two first
columns

• SubCells: apply the PRESENT 4-bit Sbox to each cell

• ShiftRows: rotate the i-th line by i positions to the left

• MixColumnsSerial: apply the special MDS matrix to each columns
independently
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Differential/linear attacks

• AES-like permutations are simple to understand, well studied,
provide very good security

• In single-key model: one can easily derive proofs on the
minimal number of active Sboxes for 4 rounds of the
permutation:
(d + 1)2 = 25 active Sboxes for 4 rounds of LED

• In related-key model: we have at least half of the 4-round steps
active, using the same reasoning we obtain:
(d + 1)2 = 25 active Sboxes for 8 rounds of LED

LED-64 SK LED-64 RK LED-128 SK LED-128 RK

minimal no. of active Sboxes 200 100 300 150

differential path probability 2−400 2−200 2−600 2−300

linear approx. probability 2−400 2−200 2−600 2−300
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Rebound attack and improvements

1 round 4 rounds 4 rounds 4 rounds 2 rounds

In the chosen-related-key model, one can distinguish 15 rounds (over 32)
of LED-64 with complexity 216

1 round 8 rounds 4 rounds 4 rounds 8 rounds 2 rounds

In the chosen-related-key model, one can distinguish 27 rounds (over 48)
of LED-128 with complexity 216

Improvements are unlikely since no key is used during four rounds of the
permutation, so the amount of freedom degrees given to the attacker is
limited to the minimum.
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Other cryptanalysis techniques

• cube testers: the best we could find within practical time complexity is
at most 3 rounds

• zero-sum partitions: distinguishers for at most 12 rounds with 264

complexity in the known-key model

• algebraic attacks: the entire system for a 64-bit fixed-key LED
permutation consists of 10752 quadratic equations in 4096 variables

• slide attacks: all rounds are made different thanks to the
round-dependent constants addition

• rotational cryptanalysis: any rotation property in a cell will be directly
removed by the application of the Sbox layer

• integral attacks: currently can’t even break 2 steps
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Hardware implementation results of LED

internal
memory
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64 128 192 256

2500
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Th. optimum
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DESXL

LED-128

PRESENT-128/PICCOLO-128
KLEIN-96

LED-96
KATAN-64 LED-80/PRESENT-80/PICCOLO-80

KLEIN-80

LED-64

KLEIN-64

DESL

PRINTcipher-96KTANTAN64
LED-64

KTANTAN32

PRINTcipher-48
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Software implementation results

Table: Software implementation results of LED.

table-based implementation

LED-64 57 cycles/byte

LED-128 86 cycles/byte

One can use “Super-Sbox” implementations (ongoing work).
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Conclusion
PHOTON and LED:

• are very simple, clean and based on the AES design strategy

• are one of the smallest hash functions/block ciphers (both use serially
computable MDS)

• have acceptable software performances

• provide provable security against classical linear/differential
cryptanalysis both in the single-key and related-key models for LED

• have a large security margin:
• PHOTON: very small amount of freedom degrees given to the attacker per

iteration
• LED: security analysis done in the very optimistic known/chosen-keys

model, Margin especially large in the single-key model.

PHOTON latest results on https://sites.google.com/site/photonhashfunction/
LED latest results on https://sites.google.com/site/ledblockcipher/

https://sites.google.com/site/photonhashfunction/
https://sites.google.com/site/ledblockcipher/


Introduction Minimizing memory Minimizing crypto PHOTON LED Conclusion

Future Works

• cryptanalysis !

• other aims than minimal area are possible: high throughput,
energy consumption, a little bit everything, ...

• better key schedule: can we find key schedules that provably
closes the gap between single-key and related-key models ?

• better MDS matrices: can we find matrices that offer good
diffusion (maybe not MDS), with hardware-friendly serial
decomposition (maybe not fully serial), and with less clock
cycles ... find the best tradeoff.
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Thank you for your attention !
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