Tweakable Block Cipher Based Cryptography

Thomas Peyrin
NTU - Singapore

ICISC 2020
Virtual - November 02, 2020

Based on works in collaboration with :

B. Cogliati
T. Iwata
J. Jean
M. Khairallah
S. Kolbl
G. Leander

K. Minematsu

A. Moradi
I. Nikolic

Y. Sasaki

P. Sasdrich
Y. Seurin

S.M. Sim
H. Wang

® Introduction

@ Tweakable Block Ciphers Designs
> Block Cipher-Based TBC
> Ad-hoc TBC Constructions

@ Tweakable Block Ciphers for AE

® Conclusion

Intro ®00000

® Introduction

Intro c@oo000

A block cipher (BC) is a family of permu-

tations parametrized by a secret key K p C
7t

A tweakable block cipher (TBC) is a fa- .

mily of permutations parametrized by a

secret key K and a public tweak value T p 2 % c

We denote
> P the n-bit plaintext
> C the n-bit ciphertext
> K the k-bit key
> T the t-bit tweak

Intro c@oo000

A block cipher (BC) is a family of permu-

tations parametrized by a secret key K p C
L

A tweakable block cipher (TBC) is a fa- .

mily of permutations parametrized by a K

secret key K and a public tweak value T p 2 % c

A permutation on b = ¢ + r bits, where ¢
is the capacity and r is the rate S
(sponge framework [BDPV-07])

Intro c0®000

Some history : first tweakable block ciphers
Hasty Pudding Cipher from Schroeppel [Schroeppel-99]
> AES competition candidate

> introduces a 512-bit “spice” as a “secondary key, maybe
completely or partially concealed, or completely open” and notes
that “the spice can be changed very cheaply for each block
encrypted”. It is “expected to be changed often, perhaps for every
encrypted block (allows the primary key to have a long lifetime)”

> spice material is added to the cipher internal state every
round

> no claim against “chosen spice attack”

TBC History : Mercy

Some history : first tweakable block ciphers

Mercy cipher from Crowley

. . . . "~ ciphertext
includes a 128-bit randomizer or “spice” \ e
wy

(for disk sector encryption : sector
number would be used as a tweak)

“The spice goes through a spice-scheduling
procedure, analogous with key scheduling
[...] this forms six 128-bit round spices”

claims about TBC security for encryption & piten
Ol’lly (picture from

broken

Intro co0oc0®0

Some history : first formalisation and generic constructions

Liskov et al. [LRW-C02] introduce first formalisation of TBC :

> “we expect tweaks to be changed frequently, so a tweakable block
cipher should have the property that changing the tweak should
be efficient. [...] And, for any tweakable block cipher, changing
the tweak should be less costly than changing the key.” .

> “even if an adversary has control of the tweak input, we want the
tweakable block cipher to remain secure”

> introduces the two first BC-based generic TBC
constructions LR 1 and LRW2

> introduces new TBC-based modes, notably the hash

function TCH (broken for certain instantiations [BCS-EC05])
and the AE mode TAE

Intro coocooe

Some applications :

> many BC operating modes can be seen as TBC modes
(using XEX construction). Ex : PMAC, OCB [Rog-AC04]

> XTS disk encryption mode = XEX + Ciphertext Stealing

Is that all?
No, TBCs are very interesting primitives to provide efficient,

highly secure, simple (to understand and to prove) operating
modes, for most classical symmetric-key security notions.

Standardization effort :
> XTS-AES is IEEE P1619 standard (2007), NIST SP 800-38E (2010)
> Deoxys and SKINNY Committee Draft stage at ISO (18033-7)

TBC Designs @

@ Tweakable Block Ciphers Designs
> Block Cipher-Based TBC
> Ad-hoc TBC Constructions

TBC Designs ©®0000

@ Tweakable Block Ciphers Designs
> Block Cipher-Based TBC

TBC Designs ©0®000

A first (bad) idea
Masking input/output with a tweak
(DESX-like) :

Ex(T,P) =Ex(P®T)&®T

— results in an undesirable property
Ex(T,P) ® Ex(T®5,P®6) =6

A second (bad) idea
XORing a tweak into the key input :
Ex(T,P) = Exar(P)

T,
Be— =
BHe— =
@

— results in an undesirable property

Ex(T,P) = Exes(T ® 6, P) pc

TBC Designs ©00@00

Block-cipher based TBC : LRW1 and LRW2

First BC-based constructions [LRW-C02], up to birthday bound,
changing tweak hopefully cheaper than key : LRW1 and LRW2

LRW1 LRW2
Ex(T,P) = Ex(T & Ex(P)) Ex (T, P) = Ex(P ® i(T)) @ h(T)
CBC-MAC h is @-universal - part of the secret key
P T P
A A
ANy & h(T)

3

-

D— h(T)
C

gp|

=
m(—;”Ll\

52|

yr4AY]
A)

TBC Designs ©000®0

Block-cipher based TBC : XE and XEX

XOR Encrypt (%) - XOR Encrypt XOR (XEX) [Rog-AC04]
Idea: mask input/(output) with a key and

tweak-dependant value, s.t. it is efficient if p

sequential tweaks T = T"||i||j are used : EVB A i3I
Ex(T,P) =Ex(P®A) @ A

with A =23/ - Land L = Ex(T") Ea

PRP/SPRP up to birthday bound only : EVB(— A=2.3.1

> collisionon P& A - PeP' =Caq C’ S

C

> recover the secret L, generate forgeries

Used in :
> XTS disk encryption mode
> PMAC, OCB, about a third of all CAESAR candidates, ...

TBC Designs ©0000®

More generic TBC constructions and advances
> more on XEX [CS-INS06] [Min-SAC06] [CS-IT08] [GJM+-EC16]
> birthday-bound TBC from a permutation :
TEM [STA+-14] [CLS-C15] [CS-AC15] (XEX with a permutation)
MEM [GJM+-EC16] (TEM with more efficient masking)
XPX [Men-Cl6] (improved RK security guarantees)

> beyond birthday-bound TBC constructions from BC
[Min-FSE09] [LST-C12] [LS-FSE13] [Men-FSE15] [WGZ+-AC16]
[JLM+-LC17] [LL-AC18]

> XTX to extend tweak size [MI-IMA15]
> adding tweak in Luby-Rackoff ciphers [GHI.+-AC07]

> building a larger BC out of a TBC (for BBB security)
[CDMS-TCC10] [Min-FSE09] [MI-IMA11] [Min-DCC15] [NI-FSE20]

Very active field, many improvements every year ...

TBC Designs ©0000000000000000

@ Tweakable Block Ciphers Designs

> Ad-hoc TBC Constructions

TBC Designs 08000000000000000

Why using ad-hoc TBC constructions?

to get beyond birthday-bound security with
improved efficiency!

Theoretical / ad-hoc constructions are not opposed!

We can see a lot of inspiration from ad-hoc TBCs to BC or
permutation based ones and vice-versa. A lot of interplay !

How to build
an ad-hoc TBC?

TBC Designs 000@0000000000000

From [LRW-C02] :

> “we expect tweaks to be changed frequently, so a tweakable block cipher should
have the property that changing the tweak should be efficient. [...] And, for any

tweakable block cipher, changing the tweak should be less costly than changing
the key.”

> “even if an adversary has control of the tweak input, we want the tweakable
block cipher to remain secure”

Ad-hoc TBC designer’s perspective paradox :
> tweak schedule to be more efficient than the key schedule

> security requirements on the tweak seem somehow
stronger than on the key : the attacker can fully control the
former (even though tweak-recovery attacks are irrelevant)

TBC Designs 000®0000000000000

From [LRW-C02] :

> “we expect tweaks to be changed frequently, so a tweakable block cipher should
have the property that changing the tweak should be efficient. [...] And, for any

tweakable block cipher, changing the tweak should be less costly than changing
the key.”

> “even if an adversary has control of the tweak input, we want the tweakable
block cipher to remain secure”

From a designer’s perspective, key and tweak should be
considered as almost the same [JNP-AC14] :

Tweak + Key = Tweakey

TBC Designs 0000®000000000000

The TWEAKEY framework rationale [JNP-AC14] :
tweak and key should be treated the same way — tweakey

_ M sy M o _
P =so) .slw N .s\u sri1=C

TWEAKEY generalizes the class of key-alternating ciphers

TBC Designs 00000®00000000000

A bad idea:
XOR 128-bit tweak value T to the internal state every round

AES-128

To|Ts|Ts|T12)
Ty |Ts | To |Tn3)
T | Te [T10|T14
T3|T7 (Tn|T15,

TBC Designs 00000®00000000000

A bad idea :
XOR 128-bit tweak value T to the internal state every round

AES-128| "/ N TN .
K i —| AES KS AES KS
i

To|Ts|Ts|T12
Ty |Ts | To |T13
T2 | Te [T10|T14
T3|T7 [Tu|T1s

Related-tweak diff. paths with only 1 active Sbox per round

TBC Designs 000000®0000000000

KIASU [JNP-AC14]

Simply XORing 64-bit tweak T in the two first rows of AES internal state at
every round leads to no good related-tweak differential paths

AES-128

TBC Designs 000000®0000000000

KIASU [JNP-AC14]

Simply XORing 64-bit tweak T in the two first rows of AES internal state at
every round leads to no good related-tweak differential paths

AES-128 &L SUSTEC
K — —|AES Ks AES KS
T —

TBC Designs 000000®0000000000

KIASU [JNP-AC14]

Simply XORing 64-bit tweak T in the two first rows of AES internal state at
every round leads to no good related-tweak differential paths

AES-128] W) Y LA RIASU-TBC
K — —[AES KS AES KS
T —

Interesting research topic :

> can an attacker leverage the freedom degrees from T ?
> what about more complex attacks?
> so far 8 rounds can be attacked [DEM-ACNS16] [DL-CTRSA17]

TBC Designs 0000000®000000000

Idea : reuse existing long-key block ciphers

> what if we use a long-key block cipher and devote part of
his key to be the tweak input? A related-key attacks!

> Q:is AES-256 with 128-bit key and 128-bit tweak a secure
TBC? Basically TAES proposal [BGIM-FSE20]

> A:notin TWEAKEY framework (RK attacks [BK-AC09])!

> TAES assumes single-key scenario only, while AES-256
RK attacks require differences in both K and T

AES-256 TAES

——l L B F A | I——
0 I LAES KS] T H (AES KS ==

| |

|

|

|

|

I
I
I
|
! I
: [[
p ———&-[rEs rouna-B—— - —&~[rEs rouwnal-P——c

TBC Designs 0000000®000000000

Idea : reuse existing long-key block ciphers
> what if we use a long-key block cipher and devote part of
his key to be the tweak input? A related-key attacks!

> Q:is AES-256 with 128-bit key and 128-bit tweak a secure
TBC? Basically TAES proposal [BGIM-FSE20]

> A:notin TWEAKEY framework (RK attacks [BK-AC09])!

> TAES assumes single-key scenario only, while AES-256
RK attacks require differences in both K and T

Interesting research topic :

Are there related-key differential paths for AES-256 with only
one 128-bit word active, so as to attack TAES in the single key
model ?

TBC Designs 00000000e00000000

Elastic-Tweak construction for SPN ciphers | CDJ+19]|

Very short-tweak TBC construction used in ESTATE and
LOTUS-AEAD/LOCUS-AEAD of NIST LWC competition

Very short-tweak TBC Constructions
A very short tweak t < n (like 4 or 8 bits) can be used :

> to simulate independent keys

required by some operating T—+—
modes : E,(P) ~ Ex(T;,P) K —*

> for domain separation "
(full/partial block) p c

> not in TBC operating modes

Almost the same efficiency as the underlying BC, easy for
designer because small tweak

000000000 e0000000

How to build TBCs with
large tweaks t > n?

How to build TBCs with
large tweaks t > n?

Back to the good old problem
of key schedule design

TBC Designs 00000000000e00000

Designing a tweakey scheduling is hard :
> many many ciphers got broken in the related-key model

> ... but we have a better understanding of how to build a
(twea)key schedule since the SHA-3 competition

> simplicity is an important criterion to make the analysis
feasible (lack of security analysis is not allowed)

> recently automated tools (SAT, MILP, CP) are really
helpful to analyse diff/linear properties of a cipher

Problem :

When t grows large, the SAT/MILP/CP problem instances
becomes too large and the solvers can’t handle them anymore.

TBC Designs 00000000000e00000

Designing a tweakey scheduling is hard :
> many many ciphers got broken in the related-key model

> ... but we have a better understanding of how to build a
(twea)key schedule since the SHA-3 competition

> simplicity is an important criterion to make the analysis
feasible (lack of security analysis is not allowed)

> recently automated tools (SAT, MILP, CP) are really
helpful to analyse diff/linear properties of a cipher

Problem :

When t grows large, the SAT/MILP/CP problem instances
becomes too large and the solvers can’t handle them anymore.

Solution :
Create a tweakey schedule that makes it easy for the solvers!

TBC Designs [e]elelelolele]olololole] Tolelele]

We can solve this problem using the Superposition Tweakey
(STK) construction [JNP-AC14] :

The search problem for the tweak part is now reduced from a
t-bit to a n-bit problem with a few extra cancellation conditions.

STK Tweakey Schedule

-t‘* Co -t‘i C j-«— @4 -{R Con LEEl— c
Fo A/F:T . . & . sr=C

TBC Designs 00000000000080000

We can solve this problem using the Superposition Tweakey
(STK) construction [JNP-AC14] :

The search problem for the tweak part is now reduced from a
t-bit to a n-bit problem with a few extra cancellation conditions.

Now the goal is to find :
> cheap «; transformations that minimize #cancellations
> best ' to maximize resistance against related-tweakey attacks

Interesting research topic :

> finding the «; to minimize cancellations when t grows large
> maybe use an error correcting code on the tweak/key cells to
generate all the successive subtweakeys?

TBC Designs [e]elelololele]olololole]e] Jelele]

Deoxys—TBC applies this STK idea to the AES [JNP-AC14]

TBC Designs 00000000000000e00

Deoxys—TBC applies this STK idea to the AES [INP-AC14]

Number of active Sboxes in single-key (SK) and related-key (RTK)

Cipher Model Hopridp

1 2 3 4 5 6 7 8
Deoxys—-TBC-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTK 0 0 1 5 9 12 >16 >19
AES-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTIK 0 0 1 3 5 5 5 10

Comparison of security claims

Deoxys—-TBC-256 provides a better resistance than AES-256
against plain related-key attacks, while being more efficient (no
Sbox in key-schedule, just byte permutation and a few LFSRs)

TBC Designs 00000000000000e00

Deoxys—TBC applies this STK idea to the AES [JNP-AC14]

Number of active Sboxes in single-key (SK) and related-key (RTK)

Rounds
Cipher Model
1 2 3 4 5 6 7 8
Deoxys-TBC-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTIK 0 0 1 5 9 12 >16 >19
AES-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RIK 0 0 1 3 5 5 5 10

Interesting research topic :

> is it be possible to find a permutation that guarantees even
more active Sboxes ? Or maybe a different tweakey schedule ?
> can an attacker exploit the freedom degrees for more
advanced attacks

TBC Designs 000000000000000e0

SKINNY applies this STK idea to lightweight crypto [B/K+-Ci6]

TBC Designs 0000000000000000e

Many other ad-hoc TBCs

Threefish [FLS+-08]
KIASU-TBC, Deoxys—TBC and Joltik—TBC [INP-AC14]
Minalpher [STA+-14]
Screamand iScream [GLS+-14]
Skinny and Mantis [BJK+-C16]
QARMA [Ava-FSE17]
Clyde-128 [BBB+-19]
Lilliput [ABC+-19]
CRAFT [BLM+-FSE19]
T-Twine [SMS+-119]
Pholkos [BLLS+-eP20]

TBC for AE €000000000000

@ Tweakable Block Ciphers for AE

Beyond birthday-bound security

Classical BC-based AE modes
only provide

Aenit(V)

A« Tnit Aclnc,(d) Aelnea(d)

Aclnci(d) Aclhed) Aclnes(A)

(picture from)

Reason : internal collisions on a n-bit value gets you a g%/2"
term in your security proofs. May lead to birthday complexity
attacks. Complex proof.

Ex : OCB3

Beyond birthday-bound security

TBC-based AE modes can easily provide
() security

(picture from)

Use tweak input with nonce and counter to

. Easier to understand, better
bounds, simpler proofs. priv. bound is 0.
Ex: ©CB3

I'BC for AE 000000000000

Romulus-N [IKMP-19] :
lightweight BBB nonce-respecting AEAD

trades parallelism for small area

1t

TBC for AE 000000000000

Designing an AE mode :

what internal primitive to use?

BC?
Permutation?
TBC?

TBC for AE 000000000000

I
Designing an AE mode :

what internal primitive to use?

Permutation?

TBC?

TBC for AE 000000000000

We define rate according to output size only

Is it justified ?

On scaling costs

Q : assume a n-bit permutation costs x bitwise
operations, how many do we need to build a 27-bit
permutation ? S— II ¢

A': atleast X2 and probably a bit more :

> Keccak :about x2.2 ~ 2.32
> PHOTON : about x2

> SPONGENT : about x4 ——

TBC for AE 000000000000

We define rate according to output size only

Is it justified ?

On scaling costs

Q : assume a n-bit TBC with f-bit tweakey costs T
x bitwise operations, how many do we need to
build a 2n-bit TBC with ¢-bit tweakey ?

A: atleast X2 and probably a bit more : Pr— £ s

> SKINNY :about x2.22

> GIFT :about x2.84

> SIMON and SPECK : about x3.16 and x2.37 - ____

TBC for AE 000000000000

We define rate according to output size only

Is it justified ?

On scaling costs

Q : assume a n-bit TBC with t-bit tweakey costs
x bitwise operations, how many do we need
to build a n-bit TBC with 2t-bit tweakey ?

T

A : much less than x2 : K
> SKINNY :about x1.1 ~ 1.2 A%
> Deoxys :about x1.3 P—y E

v

AES (key) : about x1.4
> SIMON and SPECK (key) : about x1.06

— C

TBC for AE 00000@0000000

Conclusion :
> increasing block/permutation size costs a lot!
> increasing tweakey size doesn’t cost much

> rate should be defined according to the output size

Try to use an internal primitive with the smallest
output size as possible for a given security level!

TBC for AE 000000@000000

Use case 1: minimal area

In this scenario, we don’t care if the ciphering process is really
slow, we just want to minimize area
(typically bit-serial or word-serial implementation)

> We will cipher m-bit at a time (m is small)
> We want at least n-bit security, with a n-bit key

TBC for AE 000000000000

Use case 2 : low energy consumption and lightweight

In this scenario, we want a small area and good throughput
performances (typically round-based implementation)
Efficiency = state size/rate (the lowest the better, basically
estimates the inverse of throughput-to-area ratio)

> We will cipher about n-bit at a time
> We want at least n-bit security, with a n-bit key

TBC for AE 00000000@0000

Use case 3 : fast MAC/encryption

In this scenario, we want good throughput performances
(high rate)

> We can cipher more than n-bit at a time, if needed
> We want at least n-bit security, with a n-bit key

Min State Size (S) Max Rate (R) Best efficiency (S/R)
enc. auth. enc. auth.
BC 4n (— 3n) 1 1 4n 4n
Sponge 2n 12) 1 4n 2n
TBC 3n (— 2n) ik 1+t/n 3n n<-<175n
Use cases

Use case 1 : min. state with sponges (TBC can also do 2n)
Use case 2 : best efficiency with TBC (reached at lightest point)
Use case 3 : best rate with TBC (for auth.)

Comments
> efficiency of sponge is worse than TBC in theory because one needs a
permutation larger than n (effect reduced with a non-hermetic sponge)

> TBC: it seems we can increase the auth rate indefinitely by using a
bigger tweak (true in practice ... but only up to a certain level)

128-bit security

I'BC for AE OC

e State Size Rate Efficiency
©) (R) (S/R)

enc. auth. enc. auth.
Romulus-N1 3.5n 1 2 3.5n 1.75n
Romulus-N3 3n 1 7/4 3n 1.71n
©CB3 4.5n 1 1 4.5n 4.5n
COFB 4n i 1 4n 4n
DUPLEX (r < n) —2n —0 1 —ro00 —2n
DUPLEX (r = n) 3n 1/3 1 9n 3n
DUPLEX (r = 2n) 4n 1/2 1 8n 4n
DUPLEX (r > 2n) — 0 — 1l 1 — 00 — 0
BEETLE 2.1n 1/2 1/2 4.2n 4.2n
ASCON-128 3.5n 1/5 1/5 17.5n 17.5n
Ascon-128a 3.5n) 2/5 8.75n 8.75n

TBC for AE 0000000000000

Flexibility of the TBC

AE mode design process :

fix the output size of the TBC according to your security need,
then play with the tweak size to get the proper rate and state
size according to your constraints.

Don’t use a large output size internal primitive
if you only want a security of 7 bits!

TBC for AE 000000000000@

Idea:

Since auth. rate increases with the size of tweak, why not trying
constructions with huge tweaks for crazy auth. efficiency ?

> rate will eventually reach a limit, but where?
> Deoxys-128/1024 or Skinny-128/1024 variants would
theoretically provide 50% ~ 100% speed-up (ongoing work)

TBC for AE 000000000000@

Idea:

Since auth. rate increases with the size of tweak, why not trying
constructions with huge tweaks for crazy auth. efficiency ?

Interesting research topic :

> How can we design such a very large tweak TBC?
> What tweakey construction to minimize cancellations ?

Conclusion €000

® Conclusion

Conclusion 0®00

TBCs are promising primitives

> many more applications :

(e]

o

o

side-channels resistance (modes and implementations)
Forkcipher for small messages | ALP+-AC19]

easy misuse-resistance/RUP, for example with

Romulus-M [TKMP-19 |

Multi-users security (ongoing work with B. Cogliati) : put
separately counter, nonce and key in the tweak input of the
TBC!

Hashing/XOF for example with Naito’s MDPH [N-LC19]
construction used for Romulus-H. Ongoing work : blazing
fast Deoxys-TBC-based hash function with speed similar to
KangarooTwelve [BDP+-ACNS18]

backdoor ciphers (MALICIOUS framework [PW-C20]) can
use TBC with XOF-based tweak schedule

> many open problems, many interesting research topics for
TBCs, both in cryptanalysis and design

Looking for a PhD/postdoc position to work on
anything related to cryptography ?

Contact me!

Thank you!

	Introduction
	Tweakable Block Ciphers Designs
	Block Cipher-Based TBC
	Ad-hoc TBC Constructions

	Tweakable Block Ciphers for AE
	Conclusion

