

イロト イボト イヨト イヨト 二日

Dac

Cryptanalysis of GRINDAHL IPA Cryptographic Forum 2007 - Tokyo, Japan

Thomas Peyrin

Orange Labs

AIST

University of Versailles

December 12, 2007

Thomas Peyrin Cryptanalysis of GRINDAHL

The GRINDAHL Family of Hash Functions

- Pirst Observations
- 3 General Strategy
- The Collision Attack

Thomas Peyrin Cryptanalysis of GRINDAHL

イロト 不同 トイヨト イヨト

3

- 2 First Observations
- 3 General Strategy
- 4 The Collision Attack

イロト 不得 トイヨト イヨト

3

What is a hash function ?

- *H* maps an arbitrary length input (the message *M*) to a fixed length output (typically n = 128, n = 160 or n = 256).
- H must be collision (2^{n/2} function calls), 2nd-preimage (2ⁿ function calls) and preimage resistant (2ⁿ function calls).

・ロット 御マ トルビア・

nac

Applications

Hash functions are useful tools for many applications:

- digital signatures (hash-and-sign, ...): improves performance and security for signatures.
- used to build MACs (HMAC is used in SSL/TLS, IPSec, ...).
- password protection.
- confirmation of knowledge/commitment.
- pseudo-random string generation/key derivation.

イロト イボト イヨト イヨト 二日

San

How to build a hash function (usually) ?

compression function + domain extension algorithm.

The Davies-Meyer construction

DQC

How to build a hash function (usually) ?

compression function + domain extension algorithm.

The Merkle-Damgård algorithm

The MDx-SHAx family of hash functions: the internal block cipher

Current collision attacks

hash function	output bits	collision attack	collision found
MD-4	128	3	\checkmark
MD-5	128	2 ²⁹	\checkmark
RIPEMD	128	2 ¹⁸	\checkmark
SHA-0	160	2 ³⁴	\checkmark
SHA-1	160	2 ⁶³	
SHA-2	256		

Thomas Peyrin Cryptanalysis of GRINDAHL

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

GRINDAHL (Knudsen, Rechberger, Thomsen - 2007)

- 256-bit output (a 512-bit version is also defined).
- no Merkle-Damgård, nor Davies-Meyer construction !
- use a big internal state S: 4 × 13 matrix of bytes.
- process 4 new bytes of message each round.
- a round uses Rijndael parts: MixColumns, SubBytes, ShiftRows (with rotations 1, 2, 4, 10 for better diffusion) and AddRoundKey is replaced by the addition of a constant.
- blank rounds without incoming message after having processed all the message.
- then truncation of S for a 256-bit output.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

GRINDAHL (Knudsen, Rechberger, Thomsen - 2007)

The whole process:

- initialize the internal state bytes with zeros.
- for each round do (while all the message hasn't been processed):
 - replace the first column of S with 4 new message bytes.
 - do AddConstant
 - do SubBytes
 - do ShiftRows
 - do MixColumns
- do 8 blank rounds without incoming message byte.
- truncate S: the output is the 8 first columns of the matrix.

イロト 不同 トイヨト イヨト 二日

High-level view of GRINDAHL

Thomas Peyrin

Cryptanalysis of GRINDAHL

Properties of GRINDAHL

- faster than SHA-256 and low memory requirements: can benefit from the fast/small AES implementations.
- collision resistance, 2nd preimage and preimage resistance in 2^{n/2} function calls (possibility of meet-in-the-middle attacks for (2nd)-preimage).

• main security arguments:

- a collision requires intermediate states with at least half of the bytes active.
- an internal collision requires at least 5 rounds.

It is very hard to find a low-weight and-or a small differential path for GRINDAHL.

-

Pirst Observations

- 3 General Strategy
- 4 The Collision Attack

Thomas Peyrin Cryptanalysis of GRINDAHL

イロト 不得 トイヨト イヨト

ъ

Truncated differentials

- the scheme is byte oriented.
- let's deal with truncated differences: only check if there is a difference in a byte, but don't care about the actual value of the difference.
- we can forget about SubBytes and the constant addition (transparent for truncated differentials).
- we only deal with ShiftRows, MixColumns and truncation.

The simplified scheme we consider:

The MixColumns function

- How do the truncated differentials react with the MixColumns function ?
- Property of MixColumns: #{input byte-differences} + #{output byte-differences} ≥ 5.
- **P**[valid transitions] = $2^{-8 \times (4 \text{p} \{ \text{output byte-differences} \})}$.

Thomas Peyrin Cryptanalysis of GRINDAHL

The control bytes (1)

- ShiftRows modified (1, 2, 4, 10) for better diffusion: every state byte depends on every message byte after 4 rounds.
- ... but what happens before those 4 rounds ?
- each message byte inserted affect some subset of the internal state S.
- this will allow us to control a little bit the difference spreading by forcing some MixColumns differential transitions independently.
- we call them control bytes.

・ロト ・ 同ト ・ ヨト ・ ヨト

The control bytes (2)

- Insert the message bytes.

Thomas Peyrin Cryptanalysis of GRINDAHL

The control bytes (2)

- Do **ShiftRows** (1st round).

Thomas Peyrin Cryptanalysis of GRINDAHL

The control bytes (2)

- Do **MixColumns** (1st round).

Thomas Peyrin Cryptanalysis of GRINDAHL

The control bytes (2)

- Do ShiftRows (2nd round).

Thomas Peyrin Cryptanalysis of GRINDAHL

The control bytes (2)

- Do **MixColumns** (2nd round).

Thomas Peyrin Cryptanalysis of GRINDAHL

◆□▶ ◆□▶ ◆注▶ ◆注▶ ─ 注一

The control bytes (2)

- Do **ShiftRows** (3rd round).

Thomas Peyrin Cryptanalysis of GRINDAHL

(日) (四) (王) (王) (王)

The control bytes (2)

- Do **MixColumns** (3rd round).

Thomas Peyrin Cryptanalysis of GRINDAHL

イロト イロト イヨト イヨト

3

The control bytes (2)

- Truncation of the first column (new message bytes).

Thomas Peyrin Cryptanalysis of GRINDAHL

イロト イポト イヨト イヨト 三日

The control bytes (2)

- Do **ShiftRows** (4th round).

Thomas Peyrin Cryptanalysis of GRINDAHL

▲ロト ▲圖 と ▲ 国 と ▲ 国 と 二 国

The control bytes (2)

- Do **MixColumns** (4th round).

Thomas Peyrin Cryptanalysis of GRINDAHL

イロト 不同下 イヨト イヨト

Э

2 First Observations

Thomas Peyrin Cryptanalysis of GRINDAHL

イロト 不得 トイヨト イヨト

ъ

Internal collisions are better

- 2 possiblilities for a collision: internal or not.
- the blank rounds would make things really hard since we have no more control (no more message byte inserted).
- an **internal collision** seems easier, even if we can not use the final truncation anymore (we'll have a bigger internal state to make collide).
- 2 possibles ways to erase a truncated difference: with a MixColumns transition (for a cost *P*⁻¹) or thanks to the truncation during a message insertion (no cost since already planed in the differential path).

ヘロト ヘ戸ト ヘヨト ヘヨト

San

An unintuitive strategy

 Building a differential path is really hard because of the two security properties.

• idea - take the all-difference state as a check point:

- from a no-difference state to an all-difference state: hopefully very easy ! No need for a differential path here.
- from an all-difference state to a no-difference state: harder ! Build the differential path backward and search for a collision onward.
- the costly part is obviously the second stage !

That is an unintuitive strategy for a hash function cryptanalyst: we deliberately let all the differences spread in the whole state before beginning the collision search !

How to build a differential path

Building a differential path is really hard !

Thomas Peyrin

Cryptanalysis of GRINDAHL

Differential path and control bytes

- several differential paths are possibles.
- some give better probability of success than others ... but we will use the control bytes to force some MixColumns independently.
- dilution effect: it may be better to use less probable paths but longer ones (more message/control bytes gained than probability decrease).
- this whole differential path trade-off search can be automated.

Thomas Peyrin

Cryptanalysis of GRINDAHL

- 2 First Observations
- 3 General Strategy
- 4 The Collision Attack

Thomas Peyrin Cryptanalysis of GRINDAHL

イロト 不得 トイヨト イヨト

ъ

Our truncated differential path (1)

Thomas Peyrin

Cryptanalysis of GRINDAHL

Our truncated differential path (1)

Thomas Peyrin

Cryptanalysis of GRINDAHL

The collision attack

The attack is in three steps:

- 1st step: reach an all-difference state (for example by adding a lot of differences very quickly) and generate $K = 2^{112}$ other all-difference states from it.
 - P[all-difference state to all-difference state] $\simeq 2^{-0,27}$.
- 2nd step: for each all-difference state, check if one can find a message pair following the differential path.
 - P[without control bytes]=2⁻⁴⁴⁰.
 - P[with control bytes]=2⁻¹¹².
- 3rd step: once a valid message pair found, add a random message block without difference in order to force the first column trucation in the last step.

イロト 不同 トイヨト イヨト 二日

Choosing the message bytes

Thomas Peyrin

Cryptanalysis of GRINDAHL

2nd-preimage path

イロト 不得 トイヨト イヨト 一臣

Results

One can find a collision for the full GRINDAHL with a complexity of 2¹¹² functions calls approximatively (2¹²⁸ in the ideal case).

- please read the paper for the details !
- may also work for the 512-bit version but the differential path search tree is too big.
- is the internal state of GRINDAHL too small ? it is possible to patch the scheme to provide good security arguments regarding this kind of attack.

イロト 不得 トイヨト 不良ト 一日

Sar

Thank you!

Thomas Peyrin Cryptanalysis of GRINDAHL