Previous Collision Attacks on SHA-0 New Results on SHA-0

AIST

イロト イボト イヨト イヨト 二日

DQC

VERSITE DE VERS

SAINT-OUENTIN-EN-YVELIN

Collisions on SHA-0 in one hour IPA Cryptographic Workshop 2007 - Tokyo, Japan

Thomas Peyrin

joint work with Stéphane Manuel (INRIA)

AIST

Orange Labs

University of Versailles

December 13, 2007

Previous Collision Attacks on SHA-0

Thomas Peyrin Collisions on SHA-0 in one hour

イロト イボト イヨト イヨト 一日

2 Previous Collision Attacks on SHA-0

Thomas Peyrin Collisions on SHA-0 in one hour

イロト イボト イヨト イヨト 二日

What is a hash function ?

- *H* maps an arbitrary length input (the message *M*) to a fixed length output (typically n = 128, n = 160 or n = 256).
- H must be collision (2^{n/2} function calls), 2nd-preimage (2ⁿ function calls) and preimage resistant (2ⁿ function calls).

ヘロト 人間 トイヨト イヨト

Applications

Hash functions are useful tools for many applications:

- digital signatures (hash-and-sign, ...): improves performance and security for signatures.
- used to build MACs (HMAC is used in SSL/TLS, IPSec, ...).
- password protection.
- confirmation of knowledge/commitment.
- pseudo-random string generation/key derivation.

・ロト ・ 同ト ・ ヨト ・ ヨト

How to build a hash function (usually) ?

compression function + domain extension algorithm.

The Merkle-Damgård algorithm

How to build a hash function (usually) ?

compression function + domain extension algorithm.

The Davies-Meyer construction

The SHA-0 hash function

SHA-0: built in 1993, 160-bit output.

Thomas Peyrin Collisions on SHA-0 in one hour

The SHA-0 hash function

Message expansion:

$$W_i = \begin{cases} M_i, & \text{for } 0 \le i \le 15\\ W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}, & \text{for } 16 \le i \le 79 \end{cases}$$

Boolean functions:

step i	$f_i(B, C, D)$
1 ≤ <i>i</i> ≤ 20	$f_{I\!F} = (B \wedge C) \oplus (\overline{B} \wedge D)$
21 ≤ <i>i</i> ≤ 40	$f_{XOR} = B \oplus C \oplus D$
41 ≤ <i>i</i> ≤ 60	$f_{MAJ} = (B \wedge C) \oplus (B \wedge D) \oplus (C \wedge D)$
61 ≤ <i>i</i> ≤ 80	$f_{XOR} = B \oplus C \oplus D$

(ロ) (同) (三) (三) (三) (0) (0)

Outline

Previous Collision Attacks on SHA-0

Thomas Peyrin Collisions on SHA-0 in one hour

イロト 不得 トイヨト 不良ト 一日

Chabaud and Joux (1998) - Biham et al.(2004)

- **local collision**: insert a perturbation and correct it! Then find perturbation and corrections vectors such that the overall difference mask satisfies the message expansion.
- **neutral bits**: speedup technique during collision search.
- multi-block technique: you can use several blocks to find a collision.

Wang et al. (2005)

- non-linear part: modify (by hand!) the first steps of the differential path (where the attackers has control) so that everything behave not necessarily linearly. This allows to use less constraint perturbation vectors, thus better ones may be found.
- message modification: another speedup technique during collision search.

Naito et al. (2006)

• **submarine modification**: another speedup technique during collision search.

• complexity:

- 2³⁶ function calls theoretically ...
- ... but requires 100 hours on average with a good PC.
- our estimation: 2^{40,3} function calls practically.

Complexity should be given in terms of function calls with an efficient implementation on the same computer (i.e. OpenSSL).

(日) (同) (日) (日) (日)

Outline

2 Previous Collision Attacks on SHA-0

Thomas Peyrin Collisions on SHA-0 in one hour

イロト イボト イヨト イヨト 二日

Possible improvements

- multi-block technique is an improvement (better vectors of perturbation), non-linear part is another improvement (speedup the collision search): why not use both ?
- multi-block technique + non-linear part is the core of the current attacks against SHA-1, why not SHA-0 ?
- because Wang *et al.*'s attack is not reusable (everything found by hand) !

Possible improvements

Hopefully we now have good techniques to avoid the problems.

- 1st problem:
 - if we use a better (less constraint) perturbation vector, how to find new non-linear parts for it ?
 - use the **automated non-linear part generator** from De Cannière and Rechberger (2006).

• 2nd problem:

- we now have no more message modification known, how to speedup the collision search ?
- use the **boomerang attacks** from Joux and Peyrin (2007) that can easily speedup the collision search.

イロト 不同 トイヨト イヨト 二日

A new perturbation vector

- we can remove one old constraint on the perturbation vector:
 - no local collision starting after step 74.
- then we look for the best vectors in terms of minimizing the number of remaining conditions between steps 16 and 80 (where the attacker has no more control).
- the adaptability of the perturbation vector with speedup techniques can also be taken in account, the starting step for counting conditions can also be increased depending on the speedup technique used.
- several good possible vectors found.

・ロト ・ 同ト ・ ヨト ・ ヨト

A new perturbation vector

	Steps 1 to 20																			
vec.	1	1	1	1	0	1	0	1	1	0	1	1	1	0	0	0	1	0	0	0
# cond.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	0	2	1

	Steps 21 to 40																			
vec.	vec. 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0																			
♯ cond.	1	0	2	0	2	0	1	0	0	0	0	0	0	0	1	0	1	1	0	1

	Steps 41 to 60																			
vec.	vec. 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1																			
♯ cond.	1	1	1	0	1	1	1	0	1	0	1	1	1	1	0	1	2	1	2	2

	Steps 61 to 80																			
vec.	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0
♯ cond.	1	1	0	0	0	0	1	0	1	0	1	0	1	0	0	1	0	1	0	0

Thomas Peyrin Collisions on SHA-0 in one hour

The boomerang improvement

Boomerang attacks:

- a collision search speedup framework: the attacker build auxiliary differentials (on a small number of steps) that can be used as neutral bits or message modifications.
- we chose the neutral bits setting, much more easier to set and use.
- two types of auxiliary differentials used: a light but short one, and a heavy but long one.
- on average, we can set 5 auxiliary differentials (7 for the first block), and we thus expect an improvement of a factor 2⁵ on the raw attack (without speedup)

・ロト ・ 雪 ト ・ ヨ ト ・

-

First auxiliary differential

i	A _i	Wi
4.		
-1.		
00:		
01:		
02:		
03:		
04:		
05:	b	
06:	b	a
07:	a	āā
08:	0	
09:	1	
10:		
11:		ā
12:		
13:		
14:		
15:		

Thomas Peyrin Collisions on SHA-0 in one hour

Second auxiliary differential

i	A _i	Wi
-1:	d	
00:	d	a
01:	e-a	āā
02:	e1	b
03:	b-0	ā
04:	0	ā
05:	0	ā
06:		<u>b</u>
07:		b
08:		
09:	f	
10:	f	c
11:	c	<u>c</u>
12:	0	
13:	0	
14:		c
15:		c

Thomas Peyrin Collisions on SHA-0 in one hour

Conclusion

A collision example

	1 st k	block	2 nd 1	olock
	M ₁	M'1	M ₂	M2
W ₀	0x4643450b	0x46434549	0x9a74cf70	0x9a74cf32
<i>W</i> ₁	0x41d35081	0x41d350c1	0x04f9957d	0x04f9953d
W2	0xfe16dd9b	0xfe16dddb	0xee26223d	0xee26227d
W ₃	0x3ba36244	0x3ba36204	0x9a06e4b5	0x9a06e4f5
W4	0xe6424055	0x66424017	0xb8408af6	0x38408ab4
W ₅	0x16ca44a0	0x96ca44a0	0xb8608612	0x38608612
W ₆	0x20f62444	0xa0f62404	0x8b7e0fea	0x0b7e0faa
W7	0x10f7465a	0x10f7465a	0xe17e363c	0xe17e363c
W ₈	0x5a711887	0x5a7118c5	0xa2f1b8e5	0xa2f1b8a7
W ₉	0x51479678	0xd147963a	0xca079936	0x4a079974
W ₁₀	0x726a0718	0x726a0718	0x02f2a7cb	0x02f2a7cb
W ₁₁	0x703f5bfb	0x703f5bb9	0xf724e838	0xf724e87a
W ₁₂	0xb7d61841	0xb7d61801	0x37ffc03a	0x37ffc07a
W ₁₃	0xa5280003	0xa5280041	0x53aa8c43	0x53aa8c01
W ₁₄	0x6b08d26e	0x6b08d26c	0x90811819	0x9081181b
W ₁₅	0x2e4df0d8	0xae4df0d8	0x312d423e	0xb12d423e

A ₂	B ₂	C ₂	D ₂	E ₂
0x6f84b892	0x1f9f2aae	0x0dbab75c	0x0afe56f5	0xa7974c90

Thomas Peyrin Collisions on SHA-0 in one hour

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

Complexity comparison

Team	Theoretical	Practical	Time on a PC
Chabaud and Joux (1998)	2 ⁶¹		
Biham <i>et al.</i> (2004)	2 ⁵¹	2 ⁵¹	20 years
Wang <i>et al.</i> (2005)	2 ³⁹		
Naito <i>et al.</i> (2006)	2 ³⁶	2 ^{40,3}	100 hours
Our results	2 ³³	2 ^{33,6}	1 hour

Thomas Peyrin Collisions on SHA-0 in one hour

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨー

590

Conclusion

There is room for improvements:

- improve the collision search speedup: find an optimized adhoc message modification process instead of the easy-to-use boomerang attacks (just as Wang *et al.* did).
- with the assumption of having roughly the same message modification possibilities than for the Wang *et al.*'s perturbation vector, one would have a theoretical complexity of 2³¹ function calls approximatively (a few minutes on a standard PC) ...
- ... but this is just a possible complexity, there is NO proof that everything would indeed behave like for the Wang *et al.*'s case.

・ロト ・ 雪 ト ・ ヨ ト ・

Thank you!

Thomas Peyrin Collisions on SHA-0 in one hour

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆