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Cryptographic design is always a fight performance vs security

Performance is usually modeled according to some 

physical/technological model, and the community is now considering 

more and more exotic metrics (lightweight, low-latency, MPC-friendly, etc)

Security analysis was done by humans and now more and more assisted 

by automated tools. 

Can automated tools be more integrated within the design process ?

Problem Statement



Automated

Cryptanalysis



Mainly on differential and linear cryptanalysis, but now also on integral distinguishers, cube attacks, 

meet-in-the-middle attacks, etc. 

Solving time is a crucial aspect and can be impacted by: 

• the framework you use (SAT/MILP/CP/etc.) 

• the strategy of modeling (many works on various modeling strategies)

• the solver (less contributions on that, different research field)

• the type of problem studied / scale

Timeline of Automated Cryptanalysis
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cryptanalysis ?

Automated cryptanalysis using declarative frameworks (SAT/MILP/CP/etc.) is 
generally slower or at best same as ad-hoc tools, but so much more convenient



Typically, for finding differentials or differential trails: 

• Use variables to represent the various stages of the internal state bit differences during 

the round (and throughout the rounds)

• Use other variables to represent the probability P of the differential path (in -log2)

• Model a round of the cipher as a set of declarative constraints (Markov assumption !) 

to represent the difference propagation (either truncated or not). Use temporary variables 

if needed for certain components.

• Put all this into a system and use a solver on it.

• Can be combined with extra upper-level strategies (Matsui branch-and-bound, etc.)

One can: 

• Find the best differential path / linear characteristic

• Enumerate the number of solutions

• Estimate the probability of a differential

Automated Cryptanalysis for Differential Paths

Δin

Δout

P=2-23

P=2-24

P=2-23

PT = 2-21.67



Open Cryptanalysis Platform 

(Open-CP)



OPEN-CP: a new collaborative cryptanalysis platform

• In collaboration with many cryptanalysts 

• Free and open source

• Easy to use / contribute

• Start simple (differential / linear)

• Goal: become the go-to platform for creating / testing / benchmarking 

cryptanalysis

• Need to establish governance to have proper development process 

into place, regular meetings, …

https://github.com/Open-CP/OCP

https://github.com/Open-CP/OCP


Easy and Fast cipher definition



Modeling Example of OPEN-CP

Example: SIMON-32 permutation

variables

operators

(image from Wikipedia)



Automatic Generation of C / Python code



Automatic Generation of SAT / MILP models



Future of OPEN-CP

• More attacks ! (boomerang / impossible diff / division property / etc .)

• Key recovery phase 

• Graphical interface for user interaction (cipher design / attack config.)

• Automatic generation of cipher implementations, test vectors, attacks

• Parallelization

• Testing on reduced rounds

• Pre-existing library of ciphers and attacks

• Differential path drawing, LaTeX/TikZ code generation

• Allow modular combination of attacks/models

• Optimized Sbox / Diffusion matrix implementations database



We want YOU !

If interested to participate / getting updates: 

• contact me at thomas.peyrin@ntu.edu.sg 

• or join the googlegroup 

automated-cryptanalysis@googlegroups.com

• or clink on this link: 

https://groups.google.com/g/automated-cryptanalysis

• GitHub: 

https://github.com/Open-CP/OCP

mailto:thomas.peyrin@ntu.edu.sg
mailto:automated-cryptanalysis@googlegroups.com
https://groups.google.com/g/automated-cryptanalysis
https://github.com/Open-CP/OCP


Classical design process: cipher’s structure is pre-established by the 

human. The computer will brute force some components (Sbox, diffusion 

matrix) or parameters (rotation constant, etc.) to select the best candidate. 

However:

- There is no “search” per se, it is just brute force search and taking the 

best candidate

- Evaluation of the cipher’s security and performance is done at the end 

(no insight to search in a smart way)

Can we give more freedom for the computer to create good ciphers ?

Can automated cryptanalysis help us searching for good ciphers ?

Automated Cryptanalysis for Designers



Fast AES-based MAC

LeMac - PetitMac

Fast AES-Based Universal Hash Functions and MACs (Featuring LeMac and PetitMac) – ToSC 2024-2 
Joint work with A. Bariant, J. Baudrin, G. Leurent, C. Pernot and L. Perrin 



Why Fast MAC ?

• AES has globally good performances, but it is really fast in practice 

because of hardware acceleration widely available (AES-NI).

• The granularity of AES-NI is on the AES round, so it has been used to 

build many fast primitives: 

– Hash functions (ECHO, LANE, SHAVITE-3, VORTEX, etc.), 

– AEAD schemes (AEGIS, TIAOXIN-346, DEOXYS, ROCCA(-S), etc.),

– Permutations (AREION, SIMPIRA, HARAKA, PHOLKOS, etc.). 

• Now, not so difficult to reach throughput < 1 c/B on typical processors

     Ex: 2 AES rounds in parallel each cycle, thus (10/2)/16 = 0.31 c/B

• But sixth-generation mobile comm. systems (6G) to deliver an amazing 
throughput of 100 Gbps to 1 Tbps  (0.24 to 0.024 c/B on a 3GHz CPU) !

We need to create primitives with even much larger throughput !



AES-based UHF-based MACs

UHF-based MAC: 

• GMAC, Poly1305 uses Wegman-Carter-Shoup with only 2𝑛/2 / 0 security for 

nonce-respecting / misuse 

• EWCDM gives 2𝑛 / 2𝑛/2 for nonce-respecting / misuse 

AES-based UHFs: PC-MAC and EliMAC (rate of 4 AES rounds per block).

Our MACs (LeMac and PetitMac):  128-bit key, 128-bit tag

AES-based 2−128 UHF with rate 2 AES rounds/block in EWCDM.



State-of-the-art of Fast AES-based MAC

ROCCA     targets 256-bit key / 128-bit tag AEAD. Some security issues [HII+22]. 

ROCCA-S targets 256-bit key / 256-bit tag AEAD (under submission at IETF).

Sub-optimal throughput: optimal in ROCCA framework [TSI23] reaches 0.104 c/B 

on Tiger Lake, while theoretical max is 0.0625 c/B.

M1

Many ultra-fast AES-based collision resistant permutations: 

AEGIS, TIAOXIN-346, ROCCA-(S), Jean-Nikolić [JN16] and Nikolić [Nik17a] (fastest) 
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Designing a collision-resistant permutation

Classical: large state entirely updated non-linearly. Issue: costly for a large state.

Better ?: large state separated in two parts (inspired from TBC or PANAMA hash):

- one part updated with (expensive) non-linear components (AES round in our case)

- one part updated with linear components (not influenced by the first one, reducing 

dependencies that complicate instructions scheduling and automated security analysis).
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Our overall permutation structure

• Framework more general 

than previous ones 

• Goal: no differential path 

with P > 2-128

• initialization / finalization

• A is AES round, T and L 

are linear matrices

• AddRoundKey is free with 

AES-NI: we can use a 

free XOR after each AES 

round

• Increasing r and s 

generally improves 

performance, but we limit 

to s + r <16



Automatic security and performance analysis

Security analysis: 

• a MILP model to evaluate diff. paths automatically without linear incompatibilities (cheap)

• another MILP model with linear incompatibilities (quite expensive)

Performance benchmark: an automatic implementation is produced for 

each candidate (quite cheap) to benchmark them.

• so performant that XOR becomes important (carefully consider AES-NI / XOR latency, 

throughput, ports). For x AES rounds, make x/2 XOR max (unlike Jean-Nikolic or Rocca).

• Dependency chains are also important: Rocca in decryption has long chains (reduced perf.)

• Many other complex things to consider, so the best way is to actually benchmark directly 

Scheduling of AESENC and XOR instructions on modern processors



Handling a large search space

Extremely large search space, so we reduce it by:

• leveraging symmetries  

• select subparts that are interesting (limit #XORs, higher diffusion power of the matrices)

Our search strategy (NEW):

generate a 

random candidate

cheap MILP      

> 2 active SBox

auto. perf. 

benchmark

expensive MILP

max active SBox

cheap MILP                   

> 20 active SBox

Final 

candidates



LeMac (128-bit key / 128-bit tag)

• The state is composed of 13 128-bit words (9 in non-linear part, 4 in linear) 

• 8 AES rounds for 4 message blocks (rate 2), only 4 extra XORs (perfect ratio)

• Security: at least 26 active Sboxes (diff. path probability < 2-6*26 = 2-156)

2 rounds of the UHF of LeMac



PetitMac (128-bit key / 128-bit tag)

• The state is composed of 6 128-bit words (1 in non-linear part, 5 in linear) 

• 2 AES rounds for 1 message block (rate 2), 3 extra XORs

• Security: at least 26 active Sboxes (diff. path probability < 2-(26*6) = 2-156)

1 round of the UHF of PetitMac



Performance results

Code: https://github.com/AugustinBariant/Implementations_LeMac_PetitMac

< 0.1 c/B throughput for 

LeMac ! (Using only 128-bit 

instructions, not AVX-512).

The fastest MAC (by far) on 

medium/high-end processors.

PetitMAC aims for a better 

tradeoff on constrained 

devices: AES round-based 

MAC with rate 2, with 

acceptable memory footprint.

18.3 c/B on ARM Cortex-M4.

https://github.com/AugustinBariant/Implementations_LeMac_PetitMac


• What about (Authenticated)-Encryption ?

• What about 256-bit keys (mandated by 6G) and 256-bit tags ?

• Probably difficult to do faster:
– we are at the performance theoretical limit for rate 2

– we proposed candidates with rate < 2, but practical performance is not improved 

• Consider using LeMac/PetitMac as building blocks for amazing speed !

     (NIST “Accordion cipher” ?)

Future of LeMac / PetitMac



Low-Latency

Cryptography

Under preparation
Joint work with K. Hu., M. Khairallah and Q. Q. Tan  



Why Low-latency

AES good for general usage, but lot of attention on lightweight cryptography 

in the past 15 years. NIST has standardized ASCON, what’s next ?

In some applications, the latency (time it takes to produce the ciphertext 

byte/block of a corresponding plaintext byte/block) is very important: 

• RAM memory encryption/authentication (typically with a hardware memory 

encryption engine), especially with the rise of cloud computing,

• sensor data encryption/authentication (critical systems, automotive)

• system security (pointer authentication)

Here we consider the internal primitive, not the operating mode.

We talk about hardware (ASIC principally, or 

FPGA), with fully unrolled implementations 

(entire cipher in a single cycle, but lower freq.). 

1 round

plaintext

10 rounds

plaintext

Fully unrolled

(1 cycle)

Round-based

(10 cycles)
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Low-latency cryptography timeline
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• PRINCE was the first cipher to claim latency as main performance goal

• Low-latency trend is accelerating

• We now have BC, TBC, PRF candidates 

• Design strategy is to use special Sboxes, linear layers, combinations of them, 

special structures, to reduce latency locally while maintaining security

• Special operating modes have also been proposed

BLOCK CIPHER

TWEAKABLE BLOCK CIPHER

PRF

LLLWBC



Why Low-latency is difficult ?

In contrary to area/throughput, it is difficult to predict the latency accurately 

in practice.

It is also difficult to know in advance the critical path of the implementation 

and the impact that a change on one internal component might do to the latency.
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Breaking the iterative round paradigm

Low latency ciphers are used with unrolled implementation, so          

no need to follow a classical round structure anymore (NEW) !

Problem: the security analysis becomes difficult for humans

Solution (NEW): let automated cryptanalysis guide the design !
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Two benefits:

• One can create the 

cipher round per 

round

• We can adapt each 

round (and each 

component within a 

round) separately to 

minimize the max 

path latency



Using the cipher’s performance as a design target:

1st level: do not estimate the implementations performance during 
design phase, simply make assumptions on what makes a scheme 
performant and select building bricks accordingly.

2nd level: while searching for which bricks to use or how to combine 
them, use a model to estimate the performance of the candidate 
design.  

3rd level (NEW): while searching for which bricks to use or how to 
combine them, generate automatically an actual implementation 
of the design and estimate its performance. We used OpenLane (an 
Open-source VLSI flow) for estimating hardware performance.  

Beyond auto cryptanalysis: auto implementations

https://github.com/The-OpenROAD-Project/OpenLane


The uKNIT Cipher

The uKNIT extremely low-latency block cipher structure: 
• Classical 64-bit SPN, with sixteen 4-bit low-latency Sboxes, each can be 

different (bit-permuted variants of the MANTIS Sbox)

• Special low-latency linear layers

• Each round can be different !

• Key Schedule: New generalization of the STK construction



Building the cipher: Evolutionary Algorithm

Problem: the search space is now VERY large (sboxes, linear layers)

Solution: we use an evolutionary algorithm to search in that large space, 
optimizing for good latency/security tradeoff.

We start from good candidates on  

3 rounds. Then, we proceed round 

per round until reaching 12 rounds.

Our design is fully automated 

(almost NEW [Nikolić 2017])

Importance of the objective function: 

• If too latency oriented, not good

• If too security oriented, not good



Security of uKNIT

uKNIT has a good resistance 

against differential and linear 

cryptanalysis. 

We also studied many other 

state-of-the-art cryptanalysis.  

Stronger diff/linear resistance 

than PRINCE.

 

Differential probabilities for all windows of r-round

Linear correlations for all windows of r-round



Performance

uKNIT breaks new records for low-latency:

~ 10% reduced latency vs PRINCEv2

~ 20% reduced area vs PRINCEv2

~ 20% increased security (-log2 of differential probability) vs PRINCEv2 

Hardware implementation benchmarks on TSMC 65nm



• uKNIT: lowest latency with good security. Very competitive compared 
to the state-of-the-art

• More search can probably find a slightly better candidate, but probably 
not much   

• Can be used as building block for larger primitives

• Our design strategy can be reused for other use-cases or primitives

Future



Conclusion



• We will see more automated cryptanalysis during design phase 

• Automation allows design strategies that wouldn’t be possible 

before

• Performance gain is still possible in symmetric-key crypto design 

• We tend to concentrate on complexity reduction to judge quality of 

automated cryptanalysis (i.e. 220.5 is better than 221), but the simplicity 

and ease-of-use of automated cryptanalysis is undervalued

Conclusion



Thank You !

ご清聴

ありがとうございました。
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