
Automated Analysis for 

Pushing Performance 

Limits in Symmetric-Key 

Cryptography

Thomas Peyrin

NTU Singapore

IWSEC 2024 - Kyoto

17th September 2024



Cryptographic design is always a fight performance vs security

Performance is usually modeled according to some 

physical/technological model, and the community is now considering 

more and more exotic metrics (lightweight, low-latency, MPC-friendly, etc)

Security analysis was done by humans and now more and more assisted 

by automated tools. 

Can automated tools be more integrated within the design process ?

Problem Statement



Automated

Cryptanalysis



Mainly on differential and linear cryptanalysis, but now also on integral distinguishers, cube attacks, 

meet-in-the-middle attacks, etc. 

Solving time is a crucial aspect and can be impacted by: 

• the framework you use (SAT/MILP/CP/etc.) 

• the strategy of modeling (many works on various modeling strategies)

• the solver (less contributions on that, different research field)

• the type of problem studied / scale

Timeline of Automated Cryptanalysis
202420232022202120202019201820172016201520142013201220112010

AD-HOC 
algorithms

Mouha et al. 
[SAT] 

for ARX 
ciphers

Gerault et al. 
[CP] 

for instantiating 
diff. path

Mouha et al.
Wu et al. 

[MILP]

Today almost all 

cryptanalysis are 

assisted by solvers 

(FSE 2024: two 

entire sessions just 

for pure automated 

cryptanalysis)

MILP

SAT

CP

Gohr
[ML] 

for small SPECK

ML

CASCADA CLAASPTAGADACRYPTOSMT

Fully 
automated 

cryptanalysis ?

Automated cryptanalysis using declarative frameworks (SAT/MILP/CP/etc.) is 
generally slower or at best same as ad-hoc tools, but so much more convenient



Typically, for finding differentials or differential trails: 

• Use variables to represent the various stages of the internal state bit differences during 

the round (and throughout the rounds)

• Use other variables to represent the probability P of the differential path (in -log2)

• Model a round of the cipher as a set of declarative constraints (Markov assumption !) 

to represent the difference propagation (either truncated or not). Use temporary variables 

if needed for certain components.

• Put all this into a system and use a solver on it.

• Can be combined with extra upper-level strategies (Matsui branch-and-bound, etc.)

One can: 

• Find the best differential path / linear characteristic

• Enumerate the number of solutions

• Estimate the probability of a differential

Automated Cryptanalysis for Differential Paths

Δin

Δout

P=2-23

P=2-24

P=2-23

PT = 2-21.67



Open Cryptanalysis Platform 

(Open-CP)



OPEN-CP: a new collaborative cryptanalysis platform

• In collaboration with many cryptanalysts 

• Free and open source

• Easy to use / contribute

• Start simple (differential / linear)

• Goal: become the go-to platform for creating / testing / benchmarking 

cryptanalysis

• Need to establish governance to have proper development process 

into place, regular meetings, …

https://github.com/Open-CP/OCP

https://github.com/Open-CP/OCP


Easy and Fast cipher definition



Modeling Example of OPEN-CP

Example: SIMON-32 permutation

variables

operators

(image from Wikipedia)



Automatic Generation of C / Python code



Automatic Generation of SAT / MILP models



Future of OPEN-CP

• More attacks ! (boomerang / impossible diff / division property / etc .)

• Key recovery phase 

• Graphical interface for user interaction (cipher design / attack config.)

• Automatic generation of cipher implementations, test vectors, attacks

• Parallelization

• Testing on reduced rounds

• Pre-existing library of ciphers and attacks

• Differential path drawing, LaTeX/TikZ code generation

• Allow modular combination of attacks/models

• Optimized Sbox / Diffusion matrix implementations database



We want YOU !

If interested to participate / getting updates: 

• contact me at thomas.peyrin@ntu.edu.sg 

• or join the googlegroup 

automated-cryptanalysis@googlegroups.com

• or clink on this link: 

https://groups.google.com/g/automated-cryptanalysis

• GitHub: 

https://github.com/Open-CP/OCP

mailto:thomas.peyrin@ntu.edu.sg
mailto:automated-cryptanalysis@googlegroups.com
https://groups.google.com/g/automated-cryptanalysis
https://github.com/Open-CP/OCP


Classical design process: cipher’s structure is pre-established by the 

human. The computer will brute force some components (Sbox, diffusion 

matrix) or parameters (rotation constant, etc.) to select the best candidate. 

However:

- There is no “search” per se, it is just brute force search and taking the 

best candidate

- Evaluation of the cipher’s security and performance is done at the end 

(no insight to search in a smart way)

Can we give more freedom for the computer to create good ciphers ?

Can automated cryptanalysis help us searching for good ciphers ?

Automated Cryptanalysis for Designers



Fast AES-based MAC

LeMac - PetitMac

Fast AES-Based Universal Hash Functions and MACs (Featuring LeMac and PetitMac) – ToSC 2024-2 
Joint work with A. Bariant, J. Baudrin, G. Leurent, C. Pernot and L. Perrin 



Why Fast MAC ?

• AES has globally good performances, but it is really fast in practice 

because of hardware acceleration widely available (AES-NI).

• The granularity of AES-NI is on the AES round, so it has been used to 

build many fast primitives: 

– Hash functions (ECHO, LANE, SHAVITE-3, VORTEX, etc.), 

– AEAD schemes (AEGIS, TIAOXIN-346, DEOXYS, ROCCA(-S), etc.),

– Permutations (AREION, SIMPIRA, HARAKA, PHOLKOS, etc.). 

• Now, not so difficult to reach throughput < 1 c/B on typical processors

     Ex: 2 AES rounds in parallel each cycle, thus (10/2)/16 = 0.31 c/B

• But sixth-generation mobile comm. systems (6G) to deliver an amazing 
throughput of 100 Gbps to 1 Tbps  (0.24 to 0.024 c/B on a 3GHz CPU) !

We need to create primitives with even much larger throughput !



AES-based UHF-based MACs

UHF-based MAC: 

• GMAC, Poly1305 uses Wegman-Carter-Shoup with only 2𝑛/2 / 0 security for 

nonce-respecting / misuse 

• EWCDM gives 2𝑛 / 2𝑛/2 for nonce-respecting / misuse 

AES-based UHFs: PC-MAC and EliMAC (rate of 4 AES rounds per block).

Our MACs (LeMac and PetitMac):  128-bit key, 128-bit tag

AES-based 2−128 UHF with rate 2 AES rounds/block in EWCDM.



State-of-the-art of Fast AES-based MAC

ROCCA     targets 256-bit key / 128-bit tag AEAD. Some security issues [HII+22]. 

ROCCA-S targets 256-bit key / 256-bit tag AEAD (under submission at IETF).

Sub-optimal throughput: optimal in ROCCA framework [TSI23] reaches 0.104 c/B 

on Tiger Lake, while theoretical max is 0.0625 c/B.

M1

Many ultra-fast AES-based collision resistant permutations: 

AEGIS, TIAOXIN-346, ROCCA-(S), Jean-Nikolić [JN16] and Nikolić [Nik17a] (fastest) 

P

M2

P

M3

P

Mn

P

IN
IT

N

K
F

IN
A

L MAC
Δ=0 Δ=0

Δ1 Δ2 Δ3 Δn Goal: guarantee 

no collision path 

exist with good 

probability



Designing a collision-resistant permutation

Classical: large state entirely updated non-linearly. Issue: costly for a large state.

Better ?: large state separated in two parts (inspired from TBC or PANAMA hash):

- one part updated with (expensive) non-linear components (AES round in our case)

- one part updated with linear components (not influenced by the first one, reducing 

dependencies that complicate instructions scheduling and automated security analysis).

M1

P

M2

P

M3

P

Mn

P

M1 M2 M3 Mn

L

NL

L

NL

L

NL

L

NL



Our overall permutation structure

• Framework more general 

than previous ones 

• Goal: no differential path 

with P > 2-128

• initialization / finalization

• A is AES round, T and L 

are linear matrices

• AddRoundKey is free with 

AES-NI: we can use a 

free XOR after each AES 

round

• Increasing r and s 

generally improves 

performance, but we limit 

to s + r <16



Automatic security and performance analysis

Security analysis: 

• a MILP model to evaluate diff. paths automatically without linear incompatibilities (cheap)

• another MILP model with linear incompatibilities (quite expensive)

Performance benchmark: an automatic implementation is produced for 

each candidate (quite cheap) to benchmark them.

• so performant that XOR becomes important (carefully consider AES-NI / XOR latency, 

throughput, ports). For x AES rounds, make x/2 XOR max (unlike Jean-Nikolic or Rocca).

• Dependency chains are also important: Rocca in decryption has long chains (reduced perf.)

• Many other complex things to consider, so the best way is to actually benchmark directly 

Scheduling of AESENC and XOR instructions on modern processors



Handling a large search space

Extremely large search space, so we reduce it by:

• leveraging symmetries  

• select subparts that are interesting (limit #XORs, higher diffusion power of the matrices)

Our search strategy (NEW):

generate a 

random candidate

cheap MILP      

> 2 active SBox

auto. perf. 

benchmark

expensive MILP

max active SBox

cheap MILP                   

> 20 active SBox

Final 

candidates



LeMac (128-bit key / 128-bit tag)

• The state is composed of 13 128-bit words (9 in non-linear part, 4 in linear) 

• 8 AES rounds for 4 message blocks (rate 2), only 4 extra XORs (perfect ratio)

• Security: at least 26 active Sboxes (diff. path probability < 2-6*26 = 2-156)

2 rounds of the UHF of LeMac



PetitMac (128-bit key / 128-bit tag)

• The state is composed of 6 128-bit words (1 in non-linear part, 5 in linear) 

• 2 AES rounds for 1 message block (rate 2), 3 extra XORs

• Security: at least 26 active Sboxes (diff. path probability < 2-(26*6) = 2-156)

1 round of the UHF of PetitMac



Performance results

Code: https://github.com/AugustinBariant/Implementations_LeMac_PetitMac

< 0.1 c/B throughput for 

LeMac ! (Using only 128-bit 

instructions, not AVX-512).

The fastest MAC (by far) on 

medium/high-end processors.

PetitMAC aims for a better 

tradeoff on constrained 

devices: AES round-based 

MAC with rate 2, with 

acceptable memory footprint.

18.3 c/B on ARM Cortex-M4.

https://github.com/AugustinBariant/Implementations_LeMac_PetitMac


• What about (Authenticated)-Encryption ?

• What about 256-bit keys (mandated by 6G) and 256-bit tags ?

• Probably difficult to do faster:
– we are at the performance theoretical limit for rate 2

– we proposed candidates with rate < 2, but practical performance is not improved 

• Consider using LeMac/PetitMac as building blocks for amazing speed !

     (NIST “Accordion cipher” ?)

Future of LeMac / PetitMac



Low-Latency

Cryptography

Under preparation
Joint work with K. Hu., M. Khairallah and Q. Q. Tan  



Why Low-latency

AES good for general usage, but lot of attention on lightweight cryptography 

in the past 15 years. NIST has standardized ASCON, what’s next ?

In some applications, the latency (time it takes to produce the ciphertext 

byte/block of a corresponding plaintext byte/block) is very important: 

• RAM memory encryption/authentication (typically with a hardware memory 

encryption engine), especially with the rise of cloud computing,

• sensor data encryption/authentication (critical systems, automotive)

• system security (pointer authentication)

Here we consider the internal primitive, not the operating mode.

We talk about hardware (ASIC principally, or 

FPGA), with fully unrolled implementations 

(entire cipher in a single cycle, but lower freq.). 

1 round

plaintext

10 rounds

plaintext

Fully unrolled

(1 cycle)

Round-based

(10 cycles)



20222021202020192018201720162015201420132012

PRINCE

Low-latency cryptography timeline

MANTIS QARMA

2023 2024

PRINCE v2 TWINKLE

ARADI

QARMA v2

K-CIPHER

SPEEDY

ORTHROS

GLEEOK

SCARF

BIPBIP

KOALA

MATTER

(SUPER)SONIC

• PRINCE was the first cipher to claim latency as main performance goal

• Low-latency trend is accelerating

• We now have BC, TBC, PRF candidates 

• Design strategy is to use special Sboxes, linear layers, combinations of them, 

special structures, to reduce latency locally while maintaining security

• Special operating modes have also been proposed

BLOCK CIPHER

TWEAKABLE BLOCK CIPHER

PRF

LLLWBC



Why Low-latency is difficult ?

In contrary to area/throughput, it is difficult to predict the latency accurately 

in practice.

It is also difficult to know in advance the critical path of the implementation 

and the impact that a change on one internal component might do to the latency.

S S S S S S S S S S S S S S S S

L L L L

S S S S S S S S S S S S S S S S

L L L L

2.56 2.78 2.50 2.34 2.16 2.12 2.40 2.44 2.54 2.55 2.45 2.55 2.56 2.33 2.46 2.34Path latency:



Breaking the iterative round paradigm

Low latency ciphers are used with unrolled implementation, so          

no need to follow a classical round structure anymore (NEW) !

Problem: the security analysis becomes difficult for humans

Solution (NEW): let automated cryptanalysis guide the design !

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

L1 L2 L3 L4

S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32

L5 L6 L7 L8

2.56 2.78 2.50 2.34 2.16 2.12 2.40 2.44 2.54 2.55 2.45 2.55 2.56 2.33 2.46 2.34

“
ro

u
n

d
”
 1

“
ro

u
n

d
”
 2

Two benefits:

• One can create the 

cipher round per 

round

• We can adapt each 

round (and each 

component within a 

round) separately to 

minimize the max 

path latency



Using the cipher’s performance as a design target:

1st level: do not estimate the implementations performance during 
design phase, simply make assumptions on what makes a scheme 
performant and select building bricks accordingly.

2nd level: while searching for which bricks to use or how to combine 
them, use a model to estimate the performance of the candidate 
design.  

3rd level (NEW): while searching for which bricks to use or how to 
combine them, generate automatically an actual implementation 
of the design and estimate its performance. We used OpenLane (an 
Open-source VLSI flow) for estimating hardware performance.  

Beyond auto cryptanalysis: auto implementations

https://github.com/The-OpenROAD-Project/OpenLane


The uKNIT Cipher

The uKNIT extremely low-latency block cipher structure: 
• Classical 64-bit SPN, with sixteen 4-bit low-latency Sboxes, each can be 

different (bit-permuted variants of the MANTIS Sbox)

• Special low-latency linear layers

• Each round can be different !

• Key Schedule: New generalization of the STK construction



Building the cipher: Evolutionary Algorithm

Problem: the search space is now VERY large (sboxes, linear layers)

Solution: we use an evolutionary algorithm to search in that large space, 
optimizing for good latency/security tradeoff.

We start from good candidates on  

3 rounds. Then, we proceed round 

per round until reaching 12 rounds.

Our design is fully automated 

(almost NEW [Nikolić 2017])

Importance of the objective function: 

• If too latency oriented, not good

• If too security oriented, not good



Security of uKNIT

uKNIT has a good resistance 

against differential and linear 

cryptanalysis. 

We also studied many other 

state-of-the-art cryptanalysis.  

Stronger diff/linear resistance 

than PRINCE.

 

Differential probabilities for all windows of r-round

Linear correlations for all windows of r-round



Performance

uKNIT breaks new records for low-latency:

~ 10% reduced latency vs PRINCEv2

~ 20% reduced area vs PRINCEv2

~ 20% increased security (-log2 of differential probability) vs PRINCEv2 

Hardware implementation benchmarks on TSMC 65nm



• uKNIT: lowest latency with good security. Very competitive compared 
to the state-of-the-art

• More search can probably find a slightly better candidate, but probably 
not much   

• Can be used as building block for larger primitives

• Our design strategy can be reused for other use-cases or primitives

Future



Conclusion



• We will see more automated cryptanalysis during design phase 

• Automation allows design strategies that wouldn’t be possible 

before

• Performance gain is still possible in symmetric-key crypto design 

• We tend to concentrate on complexity reduction to judge quality of 

automated cryptanalysis (i.e. 220.5 is better than 221), but the simplicity 

and ease-of-use of automated cryptanalysis is undervalued

Conclusion



Thank You !

ご清聴

ありがとうございました。


	Slide 1: Automated Analysis for Pushing Performance Limits in Symmetric-Key Cryptography
	Slide 2: Problem Statement
	Slide 3: Automated  Cryptanalysis
	Slide 4: Timeline of Automated Cryptanalysis
	Slide 5: Automated Cryptanalysis for Differential Paths
	Slide 6: Open Cryptanalysis Platform (Open-CP)
	Slide 7: OPEN-CP: a new collaborative cryptanalysis platform
	Slide 8: Easy and Fast cipher definition
	Slide 9: Modeling Example of OPEN-CP
	Slide 10: Automatic Generation of C / Python code
	Slide 11: Automatic Generation of SAT / MILP models
	Slide 12: Future of OPEN-CP
	Slide 13: We want YOU !
	Slide 14: Automated Cryptanalysis for Designers
	Slide 15: Fast AES-based MAC  LeMac - PetitMac
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Low-Latency  Cryptography
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Conclusion
	Slide 39
	Slide 40

