

Automated Analysis for Pushing Performance Limits in Symmetric-Key Cryptography

Thomas Peyrin NTU Singapore

IWSEC 2024 - Kyoto 17th September 2024

Problem Statement

Cryptographic design is always a fight performance vs security

Performance is usually modeled according to some physical/technological model, and the community is now considering more and more exotic metrics (lightweight, low-latency, MPC-friendly, etc)

Security analysis was done by humans and now more and more assisted by automated tools.

Can automated tools be more integrated within the design process ?

Automated Cryptanalysis

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Timeline of Automated Cryptanalysis

Automated cryptanalysis using declarative frameworks (SAT/MILP/CP/etc.) is generally slower or at best same as ad-hoc tools, but so much more convenient

Mainly on **differential** and **linear cryptanalysis**, but now also on integral distinguishers, cube attacks, meet-in-the-middle attacks, etc.

Solving time is a crucial aspect and can be impacted by:

- the framework you use (SAT/MILP/CP/etc.)
- the strategy of modeling (many works on various modeling strategies)
- the solver (less contributions on that, different research field)
- the type of problem studied / scale

Automated Cryptanalysis for Differential Paths

Typically, for finding **differentials** or **differential trails**:

- Use variables to represent the various stages of the internal state bit differences during the round (and throughout the rounds)
- Use other variables to represent the **probability P** of the differential path (in -log2)
- Model a round of the cipher as a set of declarative constraints (Markov assumption !) to represent the difference propagation (either truncated or not). Use temporary variables if needed for certain components.
- Put all this into a system and use a **solver** on it.
- Can be combined with extra upper-level strategies (Matsui branch-and-bound, etc.)

One can:

- Find the best differential path / linear characteristic
- Enumerate the number of solutions
- Estimate the probability of a differential

Open Cryptanalysis Platform (Open-CP)

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

OPEN-CP: a new collaborative cryptanalysis platform

- In collaboration with many cryptanalysts
- Free and open source
- Easy to use / contribute
- Start simple (differential / linear)
- Goal: become the go-to platform for creating / testing / benchmarking cryptanalysis
- Need to establish governance to have proper development process into place, regular meetings, ...

https://github.com/Open-CP/OCP

Easy and Fast cipher definition

The Speck internal permutation

class Speck_permutation(Permutation):

def __init__(self, name, version, s_input, s_output, nbr_rounds=None, model_type=0):

p_bitsize = version

if nbr_rounds==None: nbr_rounds=22 if version==32 else 22 if version==48 else 26 if version==64 else 28 if version==96 else 32 if version==128 else None if model_type==0: nbr_layers, nbr_words, nbr_temp_words, word_bitsize = 4, 2, 0, p_bitsize>>1 super().__init__(name, s_input, s_output, nbr_rounds, [nbr_layers, nbr_words, nbr_temp_words, word_bitsize])

if version==32: rotr, rotl = 7, 2
else: rotr, rotl = 8, 3

create constraints

if model_type==0:

for i in range(1,nbr_rounds+1):

self.states["STATE"].RotationLayer("ROT1", i, 0, ['r', rotr], 0) # Rotation layer

self.states["STATE"].SingleOperatorLayer("ADD", i, 1, op.ModAdd, [0,1], [0]) # Modular addition layer

self.states["STATE"].RotationLayer("ROT2", i, 2, ['1', rotl], 1) # Rotation layer

self.states["STATE"].SingleOperatorLayer("XOR", i, 3, op.bitwiseXOR, [0,1], [1]) # XOR layer

The Skinny internal permutation
class Skinny_permutation(Permutation):

def __init__(self, name, version, s_input, s_output, nbr_rounds=None, model_type=0):

p_bitsize = version if nbr_rounds==None: nbr_rounds=32 if version==64 else 64 if version==128 else None if model_type==0: nbr_layers, nbr_words, nbr_temp_words, word_bitsize = 4, 16, 0, int(p_bitsize/16) super().__init__(name, s_input, s_output, nbr_rounds, [nbr_layers, nbr_words, nbr_temp_words, word_bitsize]) # create constraints if model_type==0: for i in range(1,nbr_rounds+1): if word_bitsize==4: self.states["STATE"].SboxLayer("SB", i, 0, op.Skinny_4bit_Sbox) if word_bitsize==4: self.states["STATE"].SboxLayer("SB", i, 0, op.Skinny_4bit_Sbox)

else: self.states["STATE"].SboxLayer("SB", i, 0, op.Skinny_8bit_Sbox) # Sbox layer

self.states["STATE"].AddConstantLayer("C", i, 1, "xor", [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) # Constant layer

self.states["STATE"].PermutationLayer("SR", i, 2, [0,1,2,3, 7,4,5,6, 10,11,8,9, 13,14,15,12]) # Shiftrows layer

self.states["STATE"].MatrixLayer("MC", i, 3, [[1,0,1,1], [1,0,0,0], [0,1,1,0], [1,0,1,0]], [[0,4,8,12], [1,5,9,13], [2,6,10,14], [3,7,11,15]]) #Mixcolumns layer

Modeling Example of OPEN-CP

Example: SIMON-32 permutation

(image from Wikipedia)

variables

operators

Automatic Generation of C / Python code

	def ROTL(n, d, bitsize): return ((n << d) (n \rightarrow (bitsize - d))) & (2**bitsize - def ROTR(n, d, bitsize): return ((n \rightarrow d) (n $<<$ (bitsize - d))) & (2**bitsize -
	def ROTR(n, d, bitsize): return ((n $>>$ d) (n << (bitsize - d))) & (2**bitsize -
	def SIMON32_PERM(IN, OUT):
11	
12	
	$\mathbf{v}_{0} = \mathbf{I} \mathbf{N} \begin{bmatrix} 0 \end{bmatrix}$
14	$v_0_1 = IN[1]$
	$v_0_2 = v_0_3 = 0$
16	
	for i in range(10):
	$v_1_0 = v_0_0$
	$v_1_1 = v_0_1$
	v_1_2 = ROTL(v_0_0, 1, 16)
	$v_1_3 = v_0_3$
	$v_2_0 = v_1_0$
24	v_2_1 = v_1_1
	v_2_2 = v_1_2
	$v_2_3 = ROTL(v_1_0, 8, 16)$
	v_3_0 = v_2_0
	$v_3_1 = v_2_1$
	v_3_2 = v_2_2 & v_2_3
	$v_{3} = v_{2}$
	v_4_0 = v_3_0
	$v_4_1 = v_3_1 ^v v_3_2$
	v_4_2 = v_3_2
34	$v_4_3 = v_3_3$
	$\mathbf{v_{5}}_{\boldsymbol{\theta}} = \mathbf{v_{4}}_{\boldsymbol{\theta}}$
	$v_{51} = v_{41}$
	$v_{5_2} = ROTL(v_{4_0}, 2, 16)$
	$v_{5}3 = v_{4}3$
	$\mathbf{v_{6}}_{0} = \mathbf{v_{5}}_{0}$
	v_6_1 = v_5_1 ^ v_5_2
	$v_{6_2} = v_{5_2}$
	v_6_3 = v_5_3
	$v_7_0 = v_6_1$
	$v_7_1 = v_6_0$
	v_7_2 = v_6_2
	$v_7_3 = v_6_3$
	$v_0 = v_7 0$
	$v_0_1 = v_7_1$
	$v_0^2 = v_7^2$
	$v_0_3 = v_7_3$
	$OUT[0] = v_7_0$
	$OUT[1] = v_7_1$
	IN = [0x0, 0x0]
	OUT = [0x0, 0x0]
	SIMON32_PERM(IN, OUT)
	<pre>print('IN', str([hex(i) for i in IN]))</pre>
	<pre>print('OUT', str([hex(i) for i in OUT]))</pre>

e <stdint.h> #include <stdio.h> #define ROTL(n, d, bitsize) (((n << d) | (n >> (bitsize - d))) & ((1<<bitsize) - 1))</pre> #define ROTR(n, d, bitsize) (((n >> d) | (n << (bitsize - d))) & ((1<<bitsize) - 1))</pre> void SIMON32_PERM(uint32_t* IN, uint32_t* OUT){ uint32_t v_0_0, v_0_1, v_0_2, v_0_3, v_1_0, v_1_1, v_1_2, v_1_3, v_2_0, v_2_1, v_2_2, v_2_3, v_0_0 = IN[0]; $v_0_1 = IN[1];$ for (int i=0; i<10; i++) {</pre> $v_1_0 = v_0_0;$ $v_1_1 = v_0_1;$ $v_1_2 = ROTL(v_0_0, 1, 16);$ $v_1_3 = v_0_3;$ $v_2_0 = v_1_0;$ $v_2_1 = v_1_1;$ $v_2_2 = v_1_2;$ $v_2_3 = ROTL(v_1_0, 8, 16);$ $v_3_1 = v_2_1;$ v_3_2 = v_2_2 & v_2_3; v_3_3 = v_2_3; $v_4_1 = v_3_1^{\prime} v_3_2;$ $v_4_2 = v_3_2;$ $v_4_3 = v_3_3;$ $v_5_0 = v_4_0;$ $v_51 = v_41;$ $v_5_2 = ROTL(v_4_0, 2, 16);$ $v_5_3 = v_4_3;$ $v_6_1 = v_5_1^{-1} v_5_2;$ v_6_2 = v_5_2; $v_{6_3} = v_{5_3};$ $v_7_0 = v_6_1;$ $v_7_1 = v_6_0;$ $v_7^2 = v_6^2;$ $v_7_3 = v_6_3;$ $v_0 = v_7_0;$ $v_0 1 = v_7 1;$ $v_0_2 = v_7_2;$ $v_0_3 = v_7_3;$ $OUT[1] = v_7_1;$

Automatic Generation of SAT / MILP models

1134	v 3 3 0 1 - v 3 4 0 1 = 0
1135	$v_{3}_{3}_{0}_{2} - v_{3}_{4}_{0}_{2} = 0$
1136	v_3_3_0_3 - v_3_4_0_3 = 0
1137	v = 3 = 0
1137	v_3_3_0_5 - v_3_4_0_5 = 0
1138	
	$v_{3}_{3}_{0}_{6} - v_{3}_{4}_{0}_{6} = 0$
1140	$v_{3}_{3}_{0}_{7} - v_{3}_{4}_{0}_{7} = 0$
1141	$v_{3}_{3}_{0}_{0}_{0}_{0}_{0}_{0}$ + $v_{3}_{4}_{0}_{0}_{0}_{0}_{0}_{0}$ = 0
1142	$v_3_3_0_9 - v_3_4_0_9 = 0$
1143	$v_3_3_0_10 - v_3_4_0_10 = 0$
1144	$v_3_3_0_11 - v_3_4_0_11 = 0$
1145	$v_3_3_0_12 - v_3_4_0_12 = 0$
1146	$v_3_3_0_13 - v_3_4_0_13 = 0$
1147	$v_3_3_0_14 - v_3_4_0_14 = 0$
1148	$v_3_3_0_{15} - v_3_4_0_{15} = 0$
1149	v_3_3_0_0 + v_3_3_1_0 + v_3_4_1_0 - 2 XOR_3_3_1_d_0 >= 0
1150	v_3_3_0_0 + v_3_3_1_0 + v_3_4_1_0 <= 2
1151	XOR_3_3_1_d_0 - v_3_3_0_0 >= 0
1152	$XOR_3_3_1_d_0 - v_3_3_1_0 >= 0$
1153	XOR 3 3 1 d 0 - v 3 4 1 0 ≻= 0
1154	$v_{3,3,0,1} + v_{3,3,1,1} + v_{3,4,1,1} - 2 \text{ XOR}_{3,3,1,0,1} \rightarrow 0$
1155	v_3_3_0_1 + v_3_3_1_1 + v_3_4_1_1 <= 2
1156	XOR_3_3_1_d_1 - v_3_3_0_1 >= 0
1157	XOR 3 3 1 d 1 - v 3 3 1 1 >= 0
1158	$XOR_{331}d_1 - v_{341} >= 0$
1159	$v_{3,3,0,2} + v_{3,3,1,2} + v_{3,4,1,2} - 2 \text{ XOR}_{3,3,1,d,2} \ge 0$
1160	v_3_3_0_2 + v_3_3_1_2 + v_3_4_1_2 <= 2
1161	XOR 3 3 1 d 2 - v 3 3 0 2 >= 0
1162	$XOR_3_3_1_d_2 - v_3_3_1_2 \ge 0$
1163	XOR 3 3 1 d 2 - v 3 4 1 2 >= 0
1164	v 3 3 0 3 + v 3 3 1 3 + v 3 4 1 3 - 2 XOR 3 3 1 d 3 >= 0
1165	v 3 3 0 3 + v 3 3 1 3 + v 3 4 1 3 <= 2
1166	XOR_3_3_1_d_3 - v_3_3_0_3 >= 0
1167	XOR 3 3 1 d 3 - v 3 3 1 3 >= 0
1168	$XOR_3_3_1_d_3 - v_3_4_1_3 \ge 0$
1169	$v_{3,3,0,4} + v_{3,3,1,4} + v_{3,4,1,4} - 2 \text{ XOR}_{3,3,1,d,4} \ge 0$
1170	v 3 3 0 4 + v 3 3 1 4 + v 3 4 1 4 <= 2
1171	XOR 3 3 1 d 4 - v 3 3 0 4 >= 0
1172	$XOR_3_3_1_d_4 - v_3_3_1_4 \ge 0$
1173	$XOR_3_3_1_d_4 - v_3_4_1_4 >= 0$
1174	$v_3_3_0_5 + v_3_3_1_5 + v_3_4_1_5 - 2 \text{ XOR}_3_3_1_d_5 \ge 0$
1175	v_3_3_0_5 + v_3_3_1_5 + v_3_4_1_5 <= 2
1176	$v_{-} y_{-} y_{-$
1177	XOR 3 3 1 d 5 - v 3 3 1 5 >= 0
1178	$XOR_3_3_1_d_5 - v_3_4_1_5 \ge 0$
1179	$v_{3306+v_{3316+v_{341}} = v_{3416} = 0$
1179	$v_{3}_{3}_{0}_{0} + v_{3}_{1}_{2}_{1}_{0} + v_{3}_{4}_{1}_{1}_{0} - 2 \times 0 \times 3 \times 10^{-5}$
1180	$v_{5}_{5}_{0}_{0} + v_{5}_{5}_{1}_{0} + v_{5}_{4}_{1}_{0} <= 2$ XOR 3 3 1 d 6 - v 3 3 0 6 >= 0
	$XOR_3_3_1_0_6 - V_3_3_0_0 \ge 0$ XOR_3_3_1_d_6 - V_3_3_1_6 >= 0
1182	
1183 1184	$XOR_3_3_1_d_6 - v_3_4_1_6 \ge 0$
	$v_3_3_0_7 + v_3_3_1_7 + v_3_4_1_7 - 2 \text{ XOR}_3_3_1_d_7 \ge 0$
1185	$v_3_3_0_7 + v_3_3_1_7 + v_3_4_1_7 <= 2$
1186	$XOR_3_3_1_d_7 - v_3_3_0_7 \ge 0$
1187	$XOR_3_3_1_d_7 - v_3_3_1_7 \ge 0$

Future of OPEN-CP

- More attacks ! (boomerang / impossible diff / division property / etc .)
- Key recovery phase
- Graphical interface for user interaction (cipher design / attack config.)
- Automatic generation of cipher implementations, test vectors, attacks
- Parallelization
- Testing on reduced rounds
- Pre-existing library of ciphers and attacks
- Differential path drawing, LaTeX/TikZ code generation
- Allow modular combination of attacks/models
- Optimized Sbox / Diffusion matrix implementations database

We want YOU !

WE WANT YOU!

If interested to participate / getting updates:

- contact me at <u>thomas.peyrin@ntu.edu.sg</u>
- or join the googlegroup

automated-cryptanalysis@googlegroups.com

• or clink on this link:

https://groups.google.com/g/automated-cryptanalysis

• GitHub:

https://github.com/Open-CP/OCP

Automated Cryptanalysis for Designers

Classical design process: cipher's structure is pre-established by the human. The computer will brute force some components (Sbox, diffusion matrix) or parameters (rotation constant, etc.) to select the best candidate.

However:

- There is no "search" per se, it is just brute force search and taking the best candidate
- Evaluation of the cipher's security and performance is done at the end (no insight to search in a smart way)

Can we give more freedom for the computer to create good ciphers ?

Can automated cryptanalysis help us searching for good ciphers ?

Fast AES-based MAC

LeMac - PetitMac

Fast AES-Based Universal Hash Functions and MACs (Featuring LeMac and PetitMac) – **ToSC 2024-2 Joint work with A. Bariant, J. Baudrin, G. Leurent, C. Pernot and L. Perrin**

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Why Fast MAC ?

- AES has globally good performances, but it is **really fast in practice** because of **hardware acceleration** widely available (AES-NI).
- The granularity of AES-NI is on the AES round, so it has been used to build many fast primitives:
 - Hash functions (ECHO, LANE, SHAVITE-3, VORTEX, etc.),
 - AEAD schemes (AEGIS, TIAOXIN-346, DEOXYS, ROCCA(-S), etc.),
 - Permutations (AREION, SIMPIRA, HARAKA, PHOLKOS, etc.).
- Now, not so difficult to reach throughput < 1 c/B on typical processors
 Ex: 2 AES rounds in parallel each cycle, thus (10/2)/16 = 0.31 c/B
- But sixth-generation mobile comm. systems (6G) to deliver an amazing throughput of 100 Gbps to 1 Tbps (0.24 to 0.024 c/B on a 3GHz CPU) !

We need to create primitives with even much larger throughput !

AES-based UHF-based MACs

UHF-based MAC:

- GMAC, Poly1305 uses Wegman-Carter-Shoup with only 2^{n/2} / 0 security for nonce-respecting / misuse
 WCS[H, E]_{k1,k2}(M, N) = H_{k1}(M) ⊕ E_{k2}(N)
- **EWCDM** gives $2^n / 2^{n/2}$ for nonce-respecting / misuse $EWCDM[H, E]_{k_1, k_2, k_3}(M, N) = E_{k_3}(H_{k_1}(M) \oplus E_{k_2}(N) \oplus N)$

AES-based UHFs: PC-MAC and EliMAC (rate of 4 AES rounds per block).

Our MACs (LeMac and PetitMac): 128-bit key, 128-bit tag AES-based 2⁻¹²⁸ UHF with rate 2 AES rounds/block in EWCDM.

State-of-the-art of Fast AES-based MAC

Many ultra-fast AES-based collision resistant permutations:

AEGIS, TIAOXIN-346, ROCCA-(S), Jean-Nikolić [JN16] and Nikolić [Nik17a] (fastest)

ROCCA targets 256-bit key / 128-bit tag AEAD. Some security issues [HII+22]. ROCCA-S targets 256-bit key / 256-bit tag AEAD (under submission at IETF).

Sub-optimal throughput: optimal in ROCCA framework [TSI23] reaches 0.104 c/B on Tiger Lake, while theoretical max is 0.0625 c/B.

Designing a collision-resistant permutation

Classical: large state entirely updated non-linearly. Issue: costly for a large state.

Better ?: large state separated in two parts (inspired from TBC or PANAMA hash):

- one part updated with (expensive) non-linear components (AES round in our case)
- one part updated with linear components (not influenced by the first one, reducing dependencies that complicate instructions scheduling and automated security analysis).

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Our overall permutation structure

- Framework more general than previous ones
- Goal: no differential path with P > 2⁻¹²⁸
- initialization / finalization
- A is AES round, T and L are linear matrices
- AddRoundKey is free with AES-NI: we can use a free XOR after each AES round
- Increasing r and s generally improves performance, but we limit to s + r <16

Automatic security and performance analysis

Security analysis:

- a MILP model to evaluate diff. paths automatically without linear incompatibilities (cheap)
- another MILP model with linear incompatibilities (quite expensive)

Performance benchmark: an automatic implementation is produced for each candidate (quite cheap) to benchmark them.

- so performant that XOR becomes important (carefully consider AES-NI / XOR latency, throughput, ports). For x AES rounds, make x/2 XOR max (unlike Jean-Nikolic or Rocca).
- Dependency chains are also important: Rocca in decryption has long chains (reduced perf.)
- Many other complex things to consider, so the best way is to actually benchmark directly

Architecture	Instr	Latency	Throughput	P_0	P_1	P_2	P_3	P_4	P_5	P_6
Intel Haswell	XOR	1	0.33	x	х				х	
Intel Haswell	AESENC	7	1						х	
Intel Skylake	XOR	1	0.33	x	х				х	
inter Skylake	AESENC	4	1	x						
Intel Ice Lake	XOR	1	0.33	x	х				х	
Intel Ice Lake	AESENC	3	0.5	x	х					
Intel Tiger Lake	XOR	1	0.33	х	х				х	
inter figer Lake	AESENC	3	0.5	x	х					
AMD Zen 1/2/3/4	XOR	1	0.25	х	х	х	х			
AND Left $1/2/3/4$	AESENC	4	0.5	x	х					

Scheduling of AESENC and XOR instructions on modern processors

Handling a large search space

Extremely large search space, so we reduce it by:

- leveraging symmetries
- select subparts that are interesting (limit #XORs, higher diffusion power of the matrices)

Our search strategy (NEW):

LeMac (128-bit key / 128-bit tag)

- The state is composed of 13 128-bit words (9 in non-linear part, 4 in linear)
- 8 AES rounds for 4 message blocks (rate 2), only 4 extra XORs (perfect ratio)
- Security: at least 26 active Sboxes (diff. path probability < 2^{-6*26} = 2⁻¹⁵⁶)

2 rounds of the UHF of LeMac

PetitMac (128-bit key / 128-bit tag)

- The state is composed of **6 128-bit words** (1 in non-linear part, 5 in linear)
- 2 AES rounds for 1 message block (rate 2), 3 extra XORs
- Security: at least 26 active Sboxes (diff. path probability $< 2^{-(26^{+}6)} = 2^{-156}$)

1 round of the UHF of PetitMac

Performance results

			Speed (c/		′B)	
	CPU	Cipher	1kB	$16 \mathrm{kB}$	$256 \mathrm{kB}$	
	Intel Haswell (Xeon E5-2630 v3)	GCM (AD only)	1.138	0.700	0.605	
< 0.1 c/B throughput for		Rocca (AD only)	0.602	0.225	0.201	
• •		Rocca-S (AD only)	0.660	0.290	0.269	
LeMac ! (Using only 128-bit		AEGIS128 (AD only)	0.809	0.578	0.564	
instructions, not AVX-512).		AEGIS128L (AD only)	0.542	0.299	0.285	
		Tiaoxin-346 v2 (AD only)	0.489	0.207	0.190	
		Jean-Nikolić LeMac •	$\begin{array}{c} 0.455 \\ 0.498 \end{array}$	$\begin{array}{c} 0.149 \\ 0.148 \end{array}$	$0.159 \\ 0.131$	
The fastest MAC (by far) on		PetitMac	0.498 1.116	0.148 0.890	0.131 0.876	
	Latel Chadalas (Years Cald (120)	OOM(AD = 1)	0.017			
medium/high-end processors.	Intel Skylake (Xeon Gold 6130)	GCM (AD only) Rocca (AD only)	$0.817 \\ 0.573$	$\begin{array}{c} 0.396 \\ 0.190 \end{array}$	$\begin{array}{c} 0.370 \\ 0.167 \end{array}$	
C .		Rocca-S (AD only)	0.573 0.568	0.130 0.213	0.107 0.192	
		AEGIS128 (AD only)	0.682	0.470	0.460	
PetitMAC aims for a better		AEGIS128L (AD only)	0.505	0.267	0.253	
		Tiaoxin-346 v2 (AD only)	0.473	0.206	0.189	
tradeoff on constrained		Jean-Nikolić	0.389	0.142	0.130	
dovisoo: AES round based		LeMac	0.422	0.144	0.126	
devices: AES round-based		PetitMac	0.792	0.635	0.626	
MAC with rate 2, with	Intel Ice Lake (Xeon Gold 5320)	GCM (AD only)	0.699	0.311	0.286	
,		Rocca (AD only)	0.528	0.171	0.149	
acceptable memory footprint.		Rocca-S (AD only)	0.478	0.172	0.151	
		AEGIS128 (AD only)	0.619	0.401	0.389	
18.3 c/B on ARM Cortex-M4.		AEGIS128L (AD only)	0.416	0.208	0.195	
		Tiaoxin-346 v2 (AD only) Jean-Nikolić	$\begin{array}{c} 0.328 \\ 0.307 \end{array}$	$\begin{array}{c} 0.131 \\ 0.126 \end{array}$	$0.121 \\ 0.113$	
		LeMac	0.307 0.289	0.120 0.082	0.068	
		PetitMac	0.200 0.521	0.384	0.376	

Code: https://github.com/AugustinBariant/Implementations_LeMac_PetitMac

Future of LeMac / PetitMac

- What about (Authenticated)-Encryption ?
- What about 256-bit keys (mandated by 6G) and 256-bit tags ?
- Probably difficult to do faster:
 - we are at the performance theoretical limit for rate 2
 - we proposed candidates with rate < 2, but practical performance is not improved
- Consider using LeMac/PetitMac as building blocks for amazing speed ! (NIST "Accordion cipher" ?)

Low-Latency Cryptography

Under preparation Joint work with K. Hu., M. Khairallah and Q. Q. Tan

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Why Low-latency

AES good for general usage, but lot of attention on lightweight cryptography in the past 15 years. NIST has standardized ASCON, what's next?

In some applications, the **latency** (time it takes to produce the ciphertext byte/block of a corresponding plaintext byte/block) is very important:

- RAM memory encryption/authentication (typically with a hardware memory encryption engine), especially with the rise of cloud computing,
- sensor data encryption/authentication (critical systems, automotive)
- system security (pointer authentication)

We talk about hardware (ASIC principally, or FPGA), with **fully unrolled implementations** (entire cipher in a single cycle, but lower freq.).

Here we consider the **internal primitive**, not the operating mode.

Low-latency cryptography timeline

- **PRINCE** was the first cipher to claim **latency** as main performance goal
- Low-latency trend is accelerating
- We now have BC, TBC, PRF candidates
- Design strategy is to use special Sboxes, linear layers, combinations of them, special structures, to reduce latency locally while maintaining security
- Special operating modes have also been proposed

Why Low-latency is difficult ?

In contrary to area/throughput, it is difficult to predict the latency accurately in practice.

It is also **difficult to know in advance the critical path** of the implementation and the impact that a change on one internal component might do to the latency.

Breaking the iterative round paradigm

Low latency ciphers are used with unrolled implementation, so no need to follow a classical round structure anymore (NEW) !

Problem: the security analysis becomes difficult for humans
Solution (NEW): let automated cryptanalysis guide the design !

Two benefits:

- One can create the cipher round per round
- We can adapt each round (and each component within a round) separately to minimize the max path latency

Beyond auto cryptanalysis: auto implementations

Using the cipher's performance as a design target:

1st level: do not estimate the implementations performance during design phase, simply make assumptions on what makes a scheme performant and select building bricks accordingly.

2nd level: while searching for which bricks to use or how to combine them, use a **model** to estimate the performance of the candidate design.

3rd level (NEW): while searching for which bricks to use or how to combine them, **generate automatically an actual implementation** of the design and estimate its performance. We used <u>OpenLane</u> (an Open-source VLSI flow) for estimating hardware performance.

The uKNIT Cipher

The **uKNIT extremely low-latency block cipher** structure:

- Classical 64-bit SPN, with sixteen 4-bit low-latency Sboxes, each can be different (bit-permuted variants of the MANTIS Sbox)
- Special low-latency linear layers
- Each round can be different !
- Key Schedule: New generalization of the STK construction

Building the cipher: Evolutionary Algorithm

Problem: the **search space is now VERY large** (sboxes, linear layers) **Solution:** we use an **evolutionary algorithm** to search in that large space, optimizing for good latency/security tradeoff.

Importance of the **objective function**:

- If too latency oriented, not good
- If too security oriented, not good

 $\frac{\max[-\log_2(prob_d), -2 \cdot \log_2(bias_l)]^2}{lat}$

We start from good candidates on 3 rounds. Then, we proceed **round per round** until reaching 12 rounds.

Our design is fully automated (almost **NEW** [Nikolić 2017])

Security of uKNIT

uKNIT has a good resistance against differential and linear cryptanalysis.

We also studied many other state-of-the-art cryptanalysis.

Stronger diff/linear resistance than PRINCE.

Differential probabilities for all windows of r-round

Rnd Win	0	1	2	3	4	5	6	7	8	9	10	11	PRINCE
1	2	2	2	2	2	2	2	2	2	2	2	2	-
2	8	8	8	8	8	6	8	8	8	8	8	_	_
3	14	14	14	13	12	14	14	14	14	14	-	_	_
4	32	29	25	19	23	22	32	32	32	—	—	_	32
5	43	40	33	31	41	45	41	40	-	—	-	_	39
6	55	48	45	50	54	53	49	—	—	—	-	—	44
7	61	59	58	62	65	63	—	—	—	—	_	_	56
8	67	71	73	71	74	-	—	—	-	—	-	_	66
9	85	88	83	83	—	_	—	—	—	—	—	_	74
10	101	96	93	_	-	_	—	—	-	—	_	_	80
11	110	104	—	-	-	_	—	—	-	—	—	_	89
12	121	-	—	—	-	-	—	—	—	-	—	_	99

Linear correlations for all windows of r-round

Rnd Win	0	1	2	3	4	5	6	7	8	9	10	11	PRINCE
1	1	1	1	1	1	1	1	1	1	1	1	1	-
2	4	4	4	4	3	4	4	4	4	4	4	—	—
3	7	7	7	6	6	7	7	7	7	7	—	—	—
4	16	14	12	10	11	16	16	16	16	-	—	—	16
5	20	20	16	16	20	22	19	19	-	—	_	—	19
6	24	23	20	22	27	25	23	—	—	—	—	—	22
7	27	26	25	30	31	29	—	—	-	—	_	—	27
8	32	34	34	34	34	—	—	—	—	—	—	—	32
9	40	42	39	39	—	—	—	—	—	—	—	—	34
10	48	45	45	-	_	—		—	_	—	_	—	38
11	51	49	—	-	—	—	—	—	—	_	_	—	41
12	55	-	-	-	-	-	-	-	-	—	_	-	49

Performance

uKNIT breaks new records for low-latency:

- ~ 10% reduced latency vs PRINCEv2
- ~ 20% reduced area vs PRINCEv2
- ~ 20% increased security ($-\log_2$ of differential probability) vs PRINCEv2

Cipher	Block Size	Latency (ns)	$ Area (\mu m^2) $	Power (mW)
PRINCEv2	64 64	$2.90 \\ 1.65$	$\left \begin{array}{c}12,006.72\\27,564.12\end{array}\right $	$15.50 \\ 26.87$
SPEEDY 7	192 192	$3.75 \\ 1.79$	$\left \begin{array}{c}46,826.64\\88,331.04\end{array}\right $	
Qarmav1 9	128 128	$4.84 \\ 2.74$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$52.02 \\ 87.95$
uKNIT	64 64	$2.50 \\ 1.51$	9,793.08 23,280.48	$12.09 \\ 40.38$

Hardware implementation benchmarks on TSMC 65nm

Future

- **uKNIT**: **lowest latency with good security**. Very competitive compared to the state-of-the-art
- More search can probably find a slightly better candidate, but probably not much
- Can be used as building block for larger primitives
- Our **design strategy** can be reused for other use-cases or primitives

Conclusion

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Conclusion

- We will see more automated cryptanalysis during design phase
- Automation allows design strategies that wouldn't be possible before
- Performance gain is still possible in symmetric-key crypto design
- We tend to concentrate on complexity reduction to judge quality of automated cryptanalysis (i.e. 2^{20.5} is better than 2²¹), but the simplicity and ease-of-use of automated cryptanalysis is undervalued

Thank You !

ご清聴 ありがとうございました。

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE