
Tweakable Block Cipher Based
Lightweight Cryptography

Thomas Peyrin

NTU - Singapore

Lightweight Crypto Day 2019
Tel Aviv - March 31, 2019



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Outline

1 Lightweight Cryptography : a
Multi-Dimensional Problem

2 BC/TBC/SPONGE for AE?

3 Remus and Romulus

4 Instantiating Remus and Romulus
. SKINNY
. TGIF

5 Conclusion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Outline

1 Lightweight Cryptography : a
Multi-Dimensional Problem

2 BC/TBC/SPONGE for AE?

3 Remus and Romulus

4 Instantiating Remus and Romulus
. SKINNY
. TGIF

5 Conclusion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Lightweight cryptography?

RFID tags to be deployed widely (supply chain management,
e-passports, contactless applications, etc.)
. we need to ensure authentication and/or confidentiality

. block ciphers are used as basic blocks for RFID device
authentication and privacy-preserving protocols

. it was estimated in 2005 that a basic RFID tag may have a total
gate count of anywhere from 1000-10000 gates, with only
200-2000 gates budgeted for security

Standard block ciphers were not designed
with lightweight cryptography in mind



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Lightweight cryptography?

RFID tags to be deployed widely (supply chain management,
e-passports, contactless applications, etc.)
. we need to ensure authentication and/or confidentiality

. block ciphers are used as basic blocks for RFID device
authentication and privacy-preserving protocols

. it was estimated in 2005 that a basic RFID tag may have a total
gate count of anywhere from 1000-10000 gates, with only
200-2000 gates budgeted for security

Standard block ciphers were not designed
with lightweight cryptography in mind
Latest AES-128 implementations only need
1600 GE [JMPS17]
Is AES-128 a lightweight cipher?



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Is AES-128 a lightweight cipher?

YES! Latest AES-128 implementations only need about 1600
GE

NO! This small implementation requires 1500/2000 cycles !
Slow and not energy efficient.

cipher impl. type area (GE) cycles area*cycles
AES-128 1-bit serial ~1600 ~1750 ~2800000
AES-128 32-bit serial ~5400 54 ~292000
AES-128 round based ~7200 11 ~80000
SKINNY-128 1-bit serial ~1300 ~7000 ~9450000
SKINNY-128 round based ~2400 40 ~96000
SKINNY-128 fully unrolled ~32000 1 ~32000

What really matters is the flexibility of the cipher to easily
offer tradeoffs



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Difficult comparison

Comparing crypto algorithms
for hardware is difficult



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Difficult comparison : many different platforms

Application-Specific Integrated Circuit (ASIC)
+ high-performance
+ low power consumption
− very expensive non-recurring cost
− one can’t change anything once produced
− time consuming to develop

Bottom-line : for high volume production

Field-Programmable Gate Arrays (FPGA)
+ can be reprogrammed
+ simple to develop
− more waste compared to ASIC (higher recurring cost)

Bottom-line : for low volume production

Microcontrollers and ARM
for embedded systems, mobile devices, etc.



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Many different platforms : ASIC

ASIC : different technology nodes

anysilicon.com

Technology nodes usage evolu-
tion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Many different platforms : ASIC

ASIC : different cell libraries (depending on the manufacturer)

Library
Logic NAND

NOT
XOR AND ANDN NAND3 XOR3

MAOI1 MOAI1
process NOR XNOR OR ORN NOR3 XNOR3

UMC 180nm 1.00 0.67 3.00 1.33 1.67 1.33 4.67 2.67 2.00
sxlib 130nm 1.00 0.75 2.25 1.25 1.25 1.25 - - -
TSMC 65nm 1.00 0.50 3.00 1.50 1.50 1.50 5.50 2.50 2.50

NanGate 45nm 1.00 0.67 2.00 1.33 - 1.33 - - -
NanGate 15nm 1.00 0.75 2.25 1.50 - 1.50 - - -

Table – Comparisons of several standard cell libraries for typical
combinatorial cells. The values are given in GE.
Gate Equivalence : area of a NAND gate

. Comparing implementations with different technologies
does not make sense

. Comparing only one technology gives only a narrow view.



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Many different platforms : FPGA, Microcontrollers and ARM

FPGA
. Manufacturers : Xilinx, Altera
. Lookup table : 4-input LUT, 6-input LUT, etc.

Microcontrollers and ARM
. Word-size : 4-bit, 8-bit, 16-bit, 32-bit
. Memory : ROM and RAM
. Instructions set



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Difficult comparison : many different implementations

Implementation tradeoffs (from smaller to bigger) :
. bit-serial implementation (one bit at a time)
. nibble or byte-serial implementation (one Sbox at a time)
. round-based implementation (one round at a time)
. fully unrolled implementation (entire cipher)

Also implementation tricks (scan flip-flops vs D flip-flops)

For lightweight applications, serial and round-based
implementations are the most important



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Difficult comparison : many different goals

. Area (GE in ASIC, slices in FPGA, RAM/ROM on µcontrollers) :
especially for very constrained devices, but a criterion to
minimize anyway

. Throughput : not necessarily a critical aspect, but has to be not
too bad

. Energy : for battery-powered devices

. Power : for passive RFID tags

. Latency : for disk encryption, automotive industry, etc.

. FOM/FOAM : a figure for taking into account the
time/area/power/(security margin) tradeoffs

. Performance for small messages is particularly important,
for ex. Electronic Product Code (EPC)

For lightweight applications, area/energy/power are generally
the most important



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Difficult comparison : other considerations to make things even worse

What about side-channels?
Small devices will likely be easily accessible, so more subject to SCA.

What about the API
Implement or not the API? Custom API?

What about software implementations on the server side?
It is likely that many lightweight devices will be communicating with
a single server. The cipher has to be efficient on high-end software as
well. Bitsliced implementations can help.

Chip production flow
There are many different stages in an hardware implementation :
Synthesis, Place and Route, ... we usually stop as the synthesis. In
theory, we should be measuring the silicon area of the final circuit
(the only way to know for sure is to produce the chip).



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

In this talk, we will only consider ASICs
for simplicity of comparison

Rough numbers to remember :
. a NAND/NOR gate : 1 GE
. an XOR gate : about 3 GE
. a 2-to-1 multiplexer on 1 bit : about 2.75 GE
. a memory bit : about 6 GE



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Outline

1 Lightweight Cryptography : a
Multi-Dimensional Problem

2 BC/TBC/SPONGE for AE?

3 Remus and Romulus

4 Instantiating Remus and Romulus
. SKINNY
. TGIF

5 Conclusion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Primitive design : problem solved?

Latest primitives are now almost achieving minimal possible
area, for both round-based and serial implementations.

GIFT-64-128 (1345 GE) GIFT-128-128 (1997 GE)

Key Register - 649 GE

State Register - 326 GE

S. Layer - 263 GE

Xor gates- 64 GE

Control System - 43 GE

Key Register - 649 GE

State Register - 651 GE

S. Layer - 527 GE

Xor gates- 127 GE

Control System - 43 GE

48.2%

24.2%

19.6%

4.8%
3.2%

32.5%

32.6%

26.4%

6.4%
2.1%

Figure – Component-wise area requirements for round-based
implementations of GIFT-64-128 and GIFT-128-128



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Primitive design : problem solved?

Latest primitives are now almost achieving minimal possible
area, for both round-based and serial implementations.

Throughput on high-end servers can also be very good using
bitslice implementations



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Lightweight AE modes

How to design a lightweight AE mode?

What internal primitive to use?



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

(Tweakable) Block Ciphers

A block cipher is a family of permuta-
tions parametrized by a secret key K. EP

K

C

A tweakable block cipher is a family of
permutations parametrized by a secret
key K and a tweak value T [LRW02]. EP

K

T

C

We denote
. P the n-bit plaintext
. C the n-bit ciphertext
. K the k-bit key
. T the t-bit tweak



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

(Tweakable) Block Ciphers

A block cipher is a family of permuta-
tions parametrized by a secret key K. EP

K

C

A tweakable block cipher is a family of
permutations parametrized by a secret
key K and a tweak value T [LRW02]. EP

K

T

C

A permutation on b = c + r bits,
where c is the capacity and r is the rate
(sponge framework [BDPV07])

ΠS S′



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Use case 1 : minimal area

Use case 1 : minimal area
In this scenario, we don’t care if the ciphering process is really
slow, we just want to minimize area
(typically bit-serial or word-serial implementation).

. We will cipher m-bit at a time (m is small )

. We want at least n-bit security

. We will use a n-bit key



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Use case 2 : low energy consumption and lightweight

Use case 2 : low energy consumption and lightweight
In this scenario, we want a small area and good throughput
performances (typically round-based implementation)

. We will cipher n-bit at a time

. We want at least n-bit security

. We will use a n-bit key



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Case of block-cipher

Issue with BC :
Most BC modes will provide only birth-
day security (BBB BC-based modes are
not lightweight nor fast) thus for n-bit se-
curity you need to use at least 2n-bit block
cipher with n bit key, at very minimal you
will need 3n (probably impossible?).

EP

K

C

The smallest known, COFB [CIMN17], actually requires :
. 1.5n + k state for n/2-bit security, thus 3n + k = 4n in our

scenario.
. the internal BC will handle 2n-bit words with a 2n-bit

primitive, so rate if 1.
. minimum state is 4n and efficiency is state/rate = 4n



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Case of sponges

Issue with sponges :
You need at least a capacity of 2n, which
is the minimum state size for n-bit secu-
rity. If one needs to handle n-bit at a time,
then 3n state is needed. Throughput not
so great because youuse a 2n or 3n-bit per-
mutation each time (this effect is usually
reduced byusing a non-hermetic sponge)

ΠS S′

SpongeAE [BDPA11] requires :
. 3n-bit state for n-bit security with n-bit message
. the permutation works on 3n-bit so rate is 1/3.
. minimum state is 2n and efficiency is state/rate = 9n



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

What about tweakable block-ciphers?

The case of TBC :

We will show Romulus and Remus TBC-
based modes which can achieve :
. minimal state 2n
. efficiency as low as 3n EP

K

T

C



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

128-bit security

Scheme
Number of State Size Rate S/R Inverse

Primitive Calls (S) (R) Free

Romulus-N1
⌈ |A|−n

2n
⌉

+
⌈ |M|

n
⌉

+ 1 3.5n 1 3.5n Yes

Romulus-N2
⌈ |A|−n
1.75n

⌉
+
⌈ |M|

n
⌉

+ 1 3.2n 1 3.2n Yes

Romulus-N3
⌈ |A|−n
1.75n

⌉
+
⌈ |M|

n
⌉

+ 1 3n 1 3n Yes

Remus-N2
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 2 3n 1 3n Yes

COFB
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 4n 1 4n Yes

ΘCB3
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 4.5n 1 4.5n No

SpongeAE
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 3n (2n) 1/3 9n Yes

BEETLE
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 2 2.1n 1/2 4.2n Yes

ASCON-128
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 3.5n 1/5 17.5n Yes

Ascon-128a
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 3.5n 2/5 8.75n Yes



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

64-bit security

Scheme
Number of State Size Rate S/R Inverse

Primitive Calls (S) (R) Free

Remus-N1
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 2n 1 2n Yes

Remus-N3
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

2.06n 1 2.06n Yes

COFB
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 2.5n 1 2n Yes

ΘCB3
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 3.5n 1 3.5n No

SpongeAE
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 1 2n (n) 1/2 4n Yes

BEETLE
⌈ |A|

n
⌉

+
⌈ |M|

n
⌉

+ 2 1.08n 1/2.25 2.43n Yes



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Outline

1 Lightweight Cryptography : a
Multi-Dimensional Problem

2 BC/TBC/SPONGE for AE?

3 Remus and Romulus

4 Instantiating Remus and Romulus
. SKINNY
. TGIF

5 Conclusion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Romulus and Remus

Romulus and Remus :
two lightweight TBC-based AE schemes

(joint work with T. Iwata, M. Khairallah and K. Minematsu)



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

G =




Gs 0 0 . . . 0
0 Gs 0 . . . 0
... . . . ...
0 . . . 0 Gs 0
0 . . . 0 0 Gs



, Gs =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1




ρ

M

C

S S ′



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

G =




Gs 0 0 . . . 0
0 Gs 0 . . . 0
... . . . ...
0 . . . 0 Gs 0
0 . . . 0 0 Gs



, Gs =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1




G

M

C

S S ′



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

G =




Gs 0 0 . . . 0
0 Gs 0 . . . 0
... . . . ...
0 . . . 0 Gs 0
0 . . . 0 0 Gs



, Gs =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1




M

S S ′



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Romulus-N : nonce-respecting

0n
n n

ρ Ẽ8,1
K

A[1] A[2]

n t

ρ Ẽ8,3
K

A[3] A[4]

ρ Ẽ8,a−1
K

A[a− 1] pad(A[a])

Case a is even

Sρ ẼwA,a
K

0n N

wA ∈ [24, 26]

0n
n n

ρ Ẽ8,1
K

A[1] A[2]

n t

ρ Ẽ8,3
K

A[3] A[4]

ρ Ẽ8,a−2
K

A[a− 2] A[a− 1]

Case a is odd

ρ ẼwA,a
K

pad(A[a]) N

wA ∈ [24, 26]

S

S n n

t

ρ Ẽ4,1
K

M [1] N

C[1]

n

n

ρ Ẽ4,2
K

M [2] N

C[2]

ρ ẼwM ,m
K

pad(M [m]) N

lsb|M [m]|

C[m]

wM ∈ [20, 21]

ρ

0n

T



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Romulus-M : nonce-misuse

0n
n n

ρ Ẽ40,1
K

A[1] A[2]

n t

ρ Ẽ40,a−1
K

A[a− 1] pad(A[a])

Case (a,m) = (even,odd)

ρ Ẽ44,a+1
K

M [1] M [2]

n t

ρ Ẽw,a+m
K

pad(M [m]) N

w ∈ [56, . . . , 59]

ρ

0n

T

0n
n n

ρ Ẽ40,1
K

A[1] A[2]

n t

ρ Ẽ44,a
K

pad(A[a]) M [1]

Case (a,m) = (odd,even)

ρ Ẽ44,a+2
K

M [2] M [3]

n t

ρ Ẽw,a+m
K

pad(M [m]) N

w ∈ [52, . . . , 55]

ρ

0n

T

T Ẽ36,0
K

N

ρ Ẽ36,1
K

M [1] N

C[1]

n n

n

n

t

ρ Ẽ36,2
K

M [2] N

C[2]

ρ Ẽ36,m′−1
K

M [m′ − 1] N

C[m′ − 1]

ρ

pad(M [m′])

lsb|M [m′]|

C[m′]



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Remus-Nwith ICE1

N

KDF1

E

K

n n
ρ

0n

L

n

n

n

n

0n ρ

A[1]

E

2L⊕ 4

(N, 4, 1)

ρ

A[2]

E

22L⊕ 4

(N, 4, 2)

ρ

pad(A[a])

E

2aL⊕ wA

(N,wA, a)

wA ∈ [12, 13]

S

n

n

n

S ρ

M [1]

C[1]

E

2a+1L⊕ 2

(N, 2, a+ 1)

ρ

M [2]

C[2]

E

2a+2L⊕ 2

(N, 2, a+ 2)

ρ

pad(M [m])

lsb|M [m]|

C[m]

E

2a+mL⊕ wM

(N,wM , a+m)

wM ∈ [10, 11]

ρ

0n

T



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Remus-Nwith ICE2

N

KDF2

E

K

n n
ρ

0n

L

n

n

E

K ⊕ 1

ρ

0n

V

n

n

0n ρ

A[1]

E

2V 2L⊕ 68 2V

(N, 68, 1)

ρ

A[2]

E

22V 22L⊕ 68 22V

(N, 68, 2)

ρ

pad(A[a])

E

2aV 2aL⊕ wA 2aV

(N,wA, a)

wA ∈ [76, 77]

S

n

n

n

S ρ

M [1]

C[1]

E

2a+1V 2a+1L⊕ 66 2a+1V

(N, 66, a+ 1)

ρ

M [2]

C[2]

E

2a+2V 2a+2L⊕ 66 2a+2V

(N, 66, a+ 2)

ρ

pad(M [m])

lsb|M [m]|

C[m]

E

2a+mV 2a+mL⊕ wM 2a+mV

(N,wM , a+m)

wM ∈ [74, 75]

ρ

0n

T



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Remus-Nwith ICE3

N

0

KDF3

K

n
L

n

n

n

0n ρ

A[1]

E

2L⊕ 132

(N, 132, 1)

ρ

A[2]

E

22L⊕ 132

(N, 132, 2)

ρ

pad(A[a])

E

2aL⊕ wA

(N,wA, a)

wA ∈ [140, 141]

S

n

n

n

S ρ

M [1]

C[1]

E

2a+1L⊕ 130

(N, 130, a+ 1)

ρ

M [2]

C[2]

E

2a+2L⊕ 130

(N, 130, a+ 2)

ρ

pad(M [m])

lsb|M [m]|

C[m]

E

2a+mL⊕ wM

(N,wM , a+m)

wM ∈ [138, 139]

ρ

0n

T



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Remus and Romulus features :
. provably secure

(standard model for Romulus, ideal cipher for Remus)
. full 128-bit security

(except Remus-N1/Remus-M1 and Remus-N3)
. rate 1 (rate 1 + t/n for authentication part in Romulus)
. minimize state registers, XORs and multiplexers
. easy nonce-misuse resistance mode

(birthday with graceful degradation so ~full security in practice)
. no or low overhead for small messages

Ex : 1 AD and 1 M n-bit blocks need 2 TBC calls with Romulus

. side-channel protection
TBC protection : see threshold implementation of SKINNY
Mode protection : TEDS (ePrint 2019/193) leakage resilient
strategies can be easily applied to Remus

. simple and flexible
you can trade nonce size/counter size/security/throughput for
area (in contrary to sponges that don’t offer area tradeoff)



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Outline

1 Lightweight Cryptography : a
Multi-Dimensional Problem

2 BC/TBC/SPONGE for AE?

3 Remus and Romulus

4 Instantiating Remus and Romulus
. SKINNY
. TGIF

5 Conclusion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Outline

1 Lightweight Cryptography : a
Multi-Dimensional Problem

2 BC/TBC/SPONGE for AE?

3 Remus and Romulus

4 Instantiating Remus and Romulus
. SKINNY
. TGIF

5 Conclusion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

SKINNY

- SKINNY -

C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi,
T. Peyrin, Y. Sasaki, P. Sasdrich and S.M. Sim

CRYPTO 2016

Our goal : to propose an academy alternative to SIMON, with
better security properties and tweak capability

https://sites.google.com/site/skinnycipher/

https://sites.google.com/site/skinnycipher/


lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

The TWEAKEY framework

The TWEAKEY framework rationale [ASIACRYPT’14] :
tweak and key should be treated the same way −→ tweakey

P = s0 f s1
. . . f sr

sr+1 = C

tk0 h

g

h

g

tk1 . . . h

g

tkr−1

g

tkr

TWEAKEY generalizes the class of key-alternating ciphers



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

The SKINNY round function

h′
h′
h′

LFSR2

LFSR3

tk0

XOR C0

round

h′
h′
h′

LFSR2

LFSR3

XOR C1

roundP = s0

h′
h′
h′

. . .

. . .

. . .

XOR C2

. . .

XOR Cr−1

round

h′
h′
h′

LFSR2

LFSR3

XOR Cr

sr = C

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

SKINNY results

SKINNY versions

Tweakey size t
Block size n n 2n 3n

64 32 rounds 36 rounds 40 rounds
128 40 rounds 48 rounds 56 rounds

SKINNY

. A ultra-lightweight family of tweakable block ciphers

. Security guarantees for differential/linear cryptanalysis
(both single and related-key)

. Efficient and competitive software/hardware implementations

. Scalable security

. Suitable for most lightweight applications

. Perform and share publicly full security analysis



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Security of SKINNY and comparison with SIMON and others

Ratio of rounds required for Diff/Lin trail resistance

Cipher Single Key (SK) Related Key (RK)
SKINNY-128-128 15/40 = 37% 19/40 = 47%
SIMON-128-128 37/68 = 54% no bound known
AES-128 4/10 = 40% 6/10 = 60%

Ratio of attacked rounds
Cipher Single Key (SK) Related Key (RK)
SKINNY-128-128 18/40 = 45% 19/40 = 48%
SIMON-128-128 49/68 = 72% ? ≥ 72%
AES-128 7/10 = 70% 7/10 = 70%

There were SKINNY cryptanalysis competitions :
https://sites.google.com/site/skinnycipher/
cryptanalysis-competition

https://sites.google.com/site/skinnycipher/cryptanalysis-competition
https://sites.google.com/site/skinnycipher/cryptanalysis-competition


lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Remus + SKINNY

Remus mode with SKINNY

Variant Cycles
Area w/o Area Throughput Thput/Area

interface (GE) (GE) (Gbps) (Gbps/kGE)

Remus-N1 44 3106 3611 2.96 0.82

Remus-N2 44 4230 4774 3.46 0.72

Remus-M1 44(AD)/88(M) 3115 3805 2.16 0.56

Remus-M2 44(AD)/88(M) 4295 4962 2.34 0.47

Table – ASIC Round-Based Implementations of Remus using the
TSMC 65nm standard cell library. Power and Energy are estimated at
10 Mhz.



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Romulus + SKINNY

Romulus mode with SKINNY

Variant Cycles
Area w/o Area Throughput Thput/Area

interface (GE) (GE) (Gbps) (Gbps/kGE)

Basic Iterative 60 5514 6620 2.78 0.42

Unrolled x4† 18 8231 9286 6.18 0.67

Unrolled x4‡ 18 9632 10748 9.27 0.86

†Minimum Area ;
‡ 1 GHz;

Table – ASIC Round-Based Implementations of Romulus-N1 using the
TSMC 65nm standard cell library. Power and Energy are estimated at
10 Mhz.



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Outline

1 Lightweight Cryptography : a
Multi-Dimensional Problem

2 BC/TBC/SPONGE for AE?

3 Remus and Romulus

4 Instantiating Remus and Romulus
. SKINNY
. TGIF

5 Conclusion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

SKINNY

- Thank Goodness It’s Friday -
(TGIF)

T. Iwata, M. Khairallah, K. Minematsu,
T. Peyrin, Y. Sasaki, S.M. Sim and L. Sun

Our goal : to propose a tweakable block-cipher based on
GIFT design principles : performant everywhere

https://sites.google.com/site/tgif-ae/

https://sites.google.com/site/tgif-ae/


lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Classical view of GIFT-64 (CHES 2017)

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

RKi

RKi+1

Figure – 2 Rounds of GIFT-64.



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Classical view of GIFT-64 (CHES 2017)

slice 0 slice 1 slice 2 slice 3
0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

1
17
33
49

5
21
37
53

9
25
41
57

13
29
45
61

2
18
34
50

6
22
38
54

10
26
42
58

14
30
46
62

3
19
35
51

7
23
39
55

11
27
43
59

15
31
47
63

Input bits

slice 0 slice 1 slice 2 slice 3
0
12
8
4

16
28
24
20

32
44
40
36

48
60
56
52

5
1
13
9

21
17
29
25

37
33
45
41

53
49
61
57

10
6
2
14

26
22
18
30

42
38
34
46

58
54
50
62

15
11
7
3

31
27
23
19

47
43
39
35

63
59
55
51

Output bits



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Classical view of GIFT-64 (CHES 2017)

slice 0 slice 1 slice 2 slice 3
0
12
8
4

16
28
24
20

32
44
40
36

48
60
56
52

5
1
13
9

21
17
29
25

37
33
45
41

53
49
61
57

10
6
2
14

26
22
18
30

42
38
34
46

58
54
50
62

15
11
7
3

31
27
23
19

47
43
39
35

63
59
55
51

Input bits

slice 0 slice 1 slice 2 slice 3
0
48
32
16

12
60
44
28

8
56
40
24

4
52
36
20

21
5
53
37

17
1
49
33

29
13
61
45

25
9
57
41

42
26
10
58

38
22
6
54

34
18
2
50

46
30
14
62

63
47
31
15

59
43
27
11

55
39
23
7

51
35
19
3

Output bits



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Classical view of GIFT-64 (CHES 2017)

slice 0 slice 1 slice 2 slice 3
0
48
32
16

12
60
44
28

8
56
40
24

4
52
36
20

21
5
53
37

17
1
49
33

29
13
61
45

25
9
57
41

42
26
10
58

38
22
6
54

34
18
2
50

46
30
14
62

63
47
31
15

59
43
27
11

55
39
23
7

51
35
19
3

Input bits

slice 0 slice 1 slice 2 slice 3
0
4
8
12

48
52
56
60

32
36
40
44

16
20
24
28

17
21
25
29

1
5
9
13

49
53
57
61

33
37
41
45

34
38
42
46

18
22
26
30

2
6
10
14

50
54
58
62

51
55
59
63

35
39
43
47

19
23
27
31

3
7
11
15

Output bits



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Classical view of GIFT-64 (CHES 2017)

slice 0 slice 1 slice 2 slice 3
0
4
8
12

48
52
56
60

32
36
40
44

16
20
24
28

17
21
25
29

1
5
9
13

49
53
57
61

33
37
41
45

34
38
42
46

18
22
26
30

2
6
10
14

50
54
58
62

51
55
59
63

35
39
43
47

19
23
27
31

3
7
11
15

Input bits

slice 0 slice 1 slice 2 slice 3
0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

1
17
33
49

5
21
37
53

9
25
41
57

13
29
45
61

2
18
34
50

6
22
38
54

10
26
42
58

14
30
46
62

3
19
35
51

7
23
39
55

11
27
43
59

15
31
47
63

Output bits



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

A new view of GIFT-64 (unpublished)

We found a new way to represent and compute GIFT-64



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

A new view of GIFT-64 (unpublished)

slice 0 slice 1 slice 2 slice 3
0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

1
17
33
49

5
21
37
53

9
25
41
57

13
29
45
61

2
18
34
50

6
22
38
54

10
26
42
58

14
30
46
62

3
19
35
51

7
23
39
55

11
27
43
59

15
31
47
63

Input bits

slice 0 slice 1 slice 2 slice 3
← ←← ←←←

0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

5
21
37
53

9
25
41
57

13
29
45
61

1
17
33
49

10
26
42
58

14
30
46
62

2
18
34
50

6
22
38
54

15
31
47
63

3
19
35
51

7
23
39
55

11
27
43
59

Output bits



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

A new view of GIFT-64 (unpublished)

slice 0 slice 1 slice 2 slice 3
0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

5
21
37
53

9
25
41
57

13
29
45
61

1
17
33
49

10
26
42
58

14
30
46
62

2
18
34
50

6
22
38
54

15
31
47
63

3
19
35
51

7
23
39
55

11
27
43
59

Input bits

slice 0 slice 1 slice 2 slice 3
↑ ↑↑ ↑↑↑

0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

21
37
53
5

25
41
57
9

29
45
61
13

17
33
49
1

42
58
10
26

46
62
14
30

34
50
2
18

38
54
6
22

63
15
31
47

51
3
19
35

55
7
23
39

59
11
27
43

Output bits



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

A new view of GIFT-64 (unpublished)

slice 0 slice 1 slice 2 slice 3
0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

21
37
53
5

25
41
57
9

29
45
61
13

17
33
49
1

42
58
10
26

46
62
14
30

34
50
2
18

38
54
6
22

63
15
31
47

51
3
19
35

55
7
23
39

59
11
27
43

Input bits

slice 0 slice 1 slice 2 slice 3
→ →→ →→→

0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

17
33
49
1

21
37
53
5

25
41
57
9

29
45
61
13

34
50
2
18

38
54
6
22

42
58
10
26

46
62
14
30

51
3
19
35

55
7
23
39

59
11
27
43

63
15
31
47

Output bits



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

A new view of GIFT-64 (unpublished)

slice 0 slice 1 slice 2 slice 3
0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

17
33
49
1

21
37
53
5

25
41
57
9

29
45
61
13

34
50
2
18

38
54
6
22

42
58
10
26

46
62
14
30

51
3
19
35

55
7
23
39

59
11
27
43

63
15
31
47

Input bits

slice 0 slice 1 slice 2 slice 3
↓ ↓↓ ↓↓↓

0
16
32
48

4
20
36
52

8
24
40
56

12
28
44
60

1
17
33
49

5
21
37
53

9
25
41
57

13
29
45
61

2
18
34
50

6
22
38
54

10
26
42
58

14
30
46
62

3
19
35
51

7
23
39
55

11
27
43
59

15
31
47
63

Output bits



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

A new view of GIFT-64 (unpublished)

We found a new way to represent and compute GIFT-64

. It will compute exactly 4 rounds of GIFT-64

. It “magically" comes back to the normal representation at
the end of the 4 rounds

. Gives excellent micro-controller performance, without use
of tables

. Exactly the same cipher, so we maintain GIFT best
performances on ASIC (energy and area)



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

A new view of GIFT-128 (unpublished)

It also works for GIFT-128, but :
. more complicated
. you have to “reset” the representation after 4 rounds, so
less gain than for GIFT-64

It will benefit to NIST submisssions that use GIFT-128 :
. GIFT-COFB
(S. Banik, A. Chakraborti, T. Iwata, K. Minematsu,
M. Nandi, T. Peyrin, Y. Sasaki, S.M. Sim, Y. Todo)

. SUNDAE-GIFT
(S. Banik, A. Bogdanov, T. Peyrin, Y. Sasaki, S.M. Sim, E.
Tischhauser, Y. Todo)



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

GIFT to TGIF-TBC

Main ideas underlying TGIF-TBC :
. we load the input and save the output directly in bitslice

representation to avoid packing/unpacking
. 4 rounds of GIFT-64 is very efficient, so we use it as a blackbox
. ... in a Misty construction to get 128-bit block
. designed a strong and lightweight key schedule, specially

adapted to the bitslice representation

L′ R′

≪ 55

G
I
F
T
b 4

L R

TK

TGIF-TBC step function

TK0 TK1 TK2 TK3

TK ′
0 TK ′

1 TK ′
2 TK ′

3

≪ 8

0x1

TGIF-TBC key schedule



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

TGIF-TBC features

Results for TGIF-TBC :
. surprisingly resistant against diff/lin attacks, even in

related-tweakey model
. this allowed to get even better performances than GIFT-128 :

same for ASIC, better for µ-controllers and high-end servers
. now with a tweak capability
. special tweakey schedule feature : the tweakey state naturally

comes back to its original value at the end

Ratio of rounds required for Diff/Lin trail resistance

Cipher Single Key (SK) Related Key (RK)
TGIF-TBC 12/18 = 67% 12/18 = 67%
GIFT-128 25/40 = 62% no bound known
SKINNY-128-128 15/40 = 37% 19/40 = 47%
SIMON-128-128 37/68 = 54% no bound known
AES-128 4/10 = 40% 6/10 = 60%



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

TGIF = Remus + TGIF-TBC

TGIF = Remus mode with TGIF-TBC

Variant Cycles
Area w/o Area Throughput Thput/Area

interface (kGE) (kGE) (Gbps) (Gbps/kGE)

TGIF-N1 22 4307 4813 3.68 0.76

TGIF-N2 22 5406 5950 3.68 0.62

TGIF-M1 22(AD)/44(M) 4250 4940 2.45 0.5

TGIF-M2 22(AD)/44(M) 5569 6236 2.45 0.39

TGIF-N1 22 - 5945 5.9 1

TGIF-N2 22 - 7009 5.9 0.85

TGIF-M1 22(AD)/44(M) - 6133 3.87 0.63

TGIF-M2 22(AD)/44(M) - 7345 3.87 0.52

Table – ASIC Step-Based Implementations of TGIF using the TSMC
65nm standard cell library at minimum area. Power and Energy are
estimated at 10 Mhz.



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Outline

1 Lightweight Cryptography : a
Multi-Dimensional Problem

2 BC/TBC/SPONGE for AE?

3 Remus and Romulus

4 Instantiating Remus and Romulus
. SKINNY
. TGIF

5 Conclusion



lightweight crypto BC/TBC/SPONGE Remus/Romulus Instances conclusion

Future Works

Possible future works :
. Analysis of NIST submitted designs
. More TBC-based modes for various cryptographic needs !
Especially side-channel resistance

. Sponges are good for absorbing (full state absorption), not
for squeezing or encryption (waste of computation)

. Hybrid Sponge-TBC modes?
best of both worlds : sponge for absorb, TBC for encryption



Thank you!


	Lightweight Cryptography: a Multi-Dimensional Problem
	BC/TBC/SPONGE for AE ?
	Remus and Romulus
	Instantiating Remus and Romulus
	SKINNY
	TGIF

	Conclusion

