Recent Advances on Lightweight Cryptography Designs

Thomas Peyrin

Nanyang Technological University - Singapore

Séminaire de Cryptographie
Rennes
Outline

Introduction and Motivation

Minimizing the Memory

 Block ciphers
 Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)

LED (CHES 2011)

Conclusion and Future Works
Outline

Introduction and Motivation

Minimizing the Memory
Block ciphers
Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)

LED (CHES 2011)

Conclusion and Future Works
Lightweight crypto?

We expect RFID tags to be deployed widely (supply chain management, e-passports, contactless applications, etc.)

- we need to ensure authentication and/or confidentiality
- a basic RFID tag may have a total gate count of anywhere from 1000-10000 gates, with only 200-2000 gates budgeted for security
- hardware throughput and software performances are not the most important criterias, but they must be acceptable
- in general aim for smallest possible area, good FOM (throughput/area²), acceptable speed (hardware and software)
- block ciphers and hash functions are used as basic blocks for RFID device authentication and privacy-preserving protocols.
Lightweight hash functions?

Standardized or SHA-3 hash functions are too big:

- MD5 (8001 GE), SHA-1 (6122 GE), SHA-2 (10868 GE)
- BLAKE (9890 GE), GRøSTL (14622 GE), JH (?), KECCAK (20790 GE), SKEIN (12890 GE)

Recently, new lightweight hash functions have been proposed (much lower than 10000 GE):

- MAME [Yoshida et al. 2007]
- DM-PRESENT and H-PRESENT [Bogdanov et al. 2008]
- ARMADILLO [Badel et al. 2010]
- QUARK [Aumasson et al. 2010]
- PHOTON [Guo et al. 2011]
- SPONGENT [Bogdanov et al. 2011]
Lightweight block ciphers?

More mature than hash functions, but are lightweight block ciphers too provocative?

- **ARMADILLO**: key-recovery attacks [A+-2011]
- **HIGHT**: related-key attacks [K+-2010]
- **Hummingbird-1**: practical related-IV attacks [S-2011]
- **KTANTAN**: practical related-key attacks [Å-2011]
- **PRINTcipher**: large weak-keys classes [ÅJ-2011]

PRESENT and LED are still unbroken.
Current picture of lightweight primitives - graphically

![Graph showing the current picture of lightweight primitives. The graph plots memory size against GE (Gates Equivalent) cost for various cryptographic primitives. The optimum is indicated by a line connecting the points, highlighting the best balance between memory and GE.]

- **PHOTON**: Various versions like PHOTON-256/32/32, PHOTON-224/32/32, PHOTON-128/16/16, and PHOTON-80/20/16 are shown.
- **AES**: Listed as a point on the graph.
- **H-PRESENT-128**
- **TRIVIUM**
- **AES**: Listed as a point on the graph.
- **DM-PRESENT-80**
- **DM-PRESENT-128**
- **PRESENT-128**
- **LED-128**
- **LED-64**
- **U-QUARK**
- **KLEIN-96**
- **KLEIN-64**
- **KLEIN-80**
- **KATAN-64**
- **KATAN-128**
- **PRESENT-80/PICCOLO-80/LED-80**
- **PRESENT-80**
- **PRESENT-128**
- **PHOTON-128/16/16**
- **PHOTON-256/32/32**
- **PHOTON-224/32/32**
- **D-QUARK**
- **S-QUARK**
- **DESXL**
- **DESL**
- **DS-QUARK**
- **GRAIN**
- **KLEIN-96**
- **KLEIN-80**
- **KLEIN-64**
- **U-QUARK**
- **PRESENT-128**
- **LED-128**
- **LED-64**
- **PHOTON-128/16/16**
- **PHOTON-256/32/32**
- **PHOTON-224/32/32**

The graph illustrates the trade-offs between memory size and GE for different cryptographic primitives, with the line showing the theoretical optimum.

Conclusion:
Discuss the implications of the graph for choosing lightweight primitives for specific applications.
Current picture of lightweight block ciphers - graphically
Current picture of lightweight hash functions - graphically

- **PHOTON-256/32/32**
- **S-QUARK**
- **H-PRESENT-128**
- **PHOTON-224/32/32**
- **D-QUARK**
- **DM-PRESENT-128**
- **PHOTON-160/36/36**
- **D-QUARK**
- **DM-PRESENT-80**
- **PHOTON-128/16/16**
- **U-QUARK**
- **PHOTON-80/20/16**
- **PHOTON-80/20/16**

GE

internal memory

Th. optimum
Lightweight \sim low memory
Lightweight \sim low memory
Lightweight \sim low memory

The storage of one bit depends the technology, but for UMC 180nm it costs about:

- 4.67 GE for one input flip-flop
- 6 GE for two inputs flip-flop

Of course, all the security parameters will be small in order to avoid any waste of memory because of unwanted extra security:

- **block ciphers**: 64-bit block, 64 to 128-bit key
- **hash functions**: depends on security property. Can go from 64-bit hash output for preimage up to 256-bit output for collision resistance

“Security made to measure” (M. Robshaw)
Outline

Introduction and Motivation

Minimizing the Memory
 Block ciphers
 Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)

LED (CHES 2011)

Conclusion and Future Works
Outline

Introduction and Motivation

Minimizing the Memory

Block ciphers
Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)
LED (CHES 2011)

Conclusion and Future Works
Minimizing the memory for block ciphers

Minimizing the memory for block ciphers:

- **Key schedule:**
 - avoid complex key expansion or non-invertible key schedules!
 - use simple invertible key register update (AES, PRESENT, KATAN)
 - or subkeys simply selected from master key bits (IDEA, PICCOLO, KTANTAN)
 - or no key schedule: subkeys = master key (LED)
 - for the two last, one can hardwire the key and further save memory in some scenarios

- **Internal permutation:**
 - use general construction that allows maximal serialisation
 - avoid classical Feistel, better to use Feistel with many branches (for a light internal function F, one can use the PICCOLO trick)
 - for SPN, use small MixColumns (or use PHOTON/LED trick)
Outline

Introduction and Motivation

Minimizing the Memory
 Block ciphers
 Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)

LED (CHES 2011)

Conclusion and Future Works
A sponge function has been proven to be indifferentiable from a random oracle up to $2^{c/2}$ calls to the internal permutation P. However, the best known generic attacks have the following complexity:

- **Collision:** $\min\{2^{n/2}, 2^{c/2}\}$
- **Second-preimage:** $\min\{2^n, 2^{c/2}\}$
- **Preimage:** $\min\{2^{\min\{n,c+r\}}, \max\{2^{\min\{n-r,c\}}, 2^{c/2}\}\}$
Sponges vs Davies-Meyer

We would like to build the smallest possible hash function with no better collision attack than generic \(2^{n/2}\) operations. Thus we try to minimize the internal state size:

- **in a classical Davies-Meyer compression function** using a \(m\)-bit block cipher with \(k\)-bit key, one needs to store \(2m + k\) bits. We minimize the internal state size with \(m \approx n\) and \(k\) as small as possible.

- **in sponge functions**, one needs to store \(c + r\) bits. We minimize the internal state size by using \(c \approx n\) and a bitrate \(r\) as small as possible.

Sponge function will require about twice less memory bits for lightweight scenarios.
Outline

Introduction and Motivation

Minimizing the Memory
 Block ciphers
 Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)

LED (CHES 2011)

Conclusion and Future Works
Basic lightweight design tricks

- **constants:** use no constants, or at least some that are easy to generate with a LFSR (avoid pure counter)

- **non-linearity:**
 - use NLFSR (KATAN)
 - use NAND gates (KECCAK)
 - use small Sboxes (PRESENT, LED, PICCOLO...). 4-bit Sboxes seem a good compromise between size (PRESENT Sbox is about 20GE) and cryptographic quality, since a 8-bit Sbox is quite big (AES Sbox is about 230 GE)

- **diffusion:**
 - use bit position permutation branching (PRESENT): almost no diffusion (the diffusion is provided by the Sboxes), but fast and lightweight ... be carefull with hull effect
 - serially computable MDS (PHOTON, LED): very good diffusion, lightweight, but slow
What is an **MDS Matrix** (“Maximum Distance Separable”)?

- it is used as **diffusion layer** in many block ciphers and in particular **AES**
- it has excellent diffusion properties. In short, for a d-cell vector, we are ensured that at least $d + 1$ input / output cells will be active ...
- ... which is very good for linear / differential cryptanalysis resistance

The **AES** diffusion matrix can be implemented fast in software (using tables), but **the situation is not so great in hardware**. Indeed, even if the coefficients of the matrix minimize the hardware footprint, $d - 1$ cells of temporary memory are needed for the computation.

\[
A = \begin{pmatrix}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{pmatrix}
\]
Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if A^d is MDS.

$$A = \begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0 \\
Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1}
\end{pmatrix}$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use d lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware
Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix \(A \) and check if \(A^d \) is MDS.

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1}
\end{pmatrix}
\begin{pmatrix}
v_0 \\
v_1 \\
\vdots \\
v_{d-4} \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{pmatrix} =
\begin{pmatrix}
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot
\end{pmatrix}
\]

- we keep the same good diffusion properties since \(A^d \) is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use \(d \) lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware
Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if A^d is MDS.

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1}
\end{pmatrix}
\begin{pmatrix}
v_0 \\
v_1 \\
\vdots \\
v_{d-4} \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{pmatrix}
=
\begin{pmatrix}
v_1 \\
v_1 \\
\vdots \\
v_{d-4} \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{pmatrix}
\]

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use d lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware
Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if A^d is MDS.

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1}
\end{pmatrix}
\cdot
\begin{pmatrix}
v_0 \\
v_1 \\
\vdots \\
v_{d-4} \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{pmatrix}
=
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_{d-2} \\
v_{d-1}
\end{pmatrix}
$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use d lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware
Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix \(A \) and check if \(A^d \) is MDS.

\[
\begin{bmatrix}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
Z_0 \\
Z_1 \\
Z_2 \\
Z_3 \\
\vdots \\
Z_{d-4} \\
Z_{d-3} \\
Z_{d-2} \\
Z_{d-1}
\end{bmatrix}
\times
\begin{bmatrix}
v_0 \\
v_1 \\
\vdots \\
v_{d-4} \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{bmatrix}
=
\begin{bmatrix}
v_1 \\
v_2 \\
\vdots \\
v_{d-3}
\end{bmatrix}
\]

- we keep the same good diffusion properties since \(A^d \) is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use \(d \) lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware
Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if A^d is MDS.

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 \\
Z_0 & Z_1 & Z_2 & Z_3 & \ldots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1}
\end{pmatrix}
\begin{pmatrix}
v_0 \\
v_1 \\
\vdots \\
v_{d-4} \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{pmatrix}
=
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{pmatrix}
\]

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use d lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware
Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if A^d is MDS.

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 \\
\vdots & & & & & \vdots & & & \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 \\
Z_0 & Z_1 & Z_2 & Z_3 & \ldots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1}
\end{pmatrix}
\begin{pmatrix}
v_0 \\
v_1 \\
\vdots \\
v_{d-4} \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{pmatrix}
=
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_{d-3} \\
v_{d-2} \\
v_{d-1}
\end{pmatrix}
$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use d lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware
Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if A^d is MDS.

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
v_0 \\
v_1 \\
\vdots \\
v_{d-4} \\
v_{d-3} \\
v_{d-2} \\
v_{d-1} \\
\end{pmatrix}
=
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_{d-3} \\
v_{d-2} \\
v_{d-1} \\
v_0 \\
\end{pmatrix}
$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use d lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware
Tweaking AES for hardware: AES–HW

The smallest AES implementation requires 2400 GE with 263 GE dedicated to the MixColumns layer (the matrix A is MDS).

$$A = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{pmatrix} \quad A^{-1} = \begin{pmatrix} 14 & 11 & 13 & 9 \\ 9 & 14 & 11 & 13 \\ 13 & 9 & 14 & 11 \\ 11 & 13 & 9 & 14 \end{pmatrix}$$

A tweaked AES–HW implementation requires 2210 GE with 74 GE dedicated to the MixColumnsSerial layer (the matrix $(B)^4$ is MDS):

$$(B)^4 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 4 \end{pmatrix}^4 = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 4 & 9 & 6 & 17 \\ 17 & 38 & 24 & 66 \\ 66 & 149 & 100 & 11 \end{pmatrix} \quad B^{-1} = \begin{pmatrix} 2 & 1 & 4 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
Outline

Introduction and Motivation

Minimizing the Memory
 Block ciphers
 Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)

LED (CHES 2011)

Conclusion and Future Works
The \((c + r)\)-bit internal state is viewed as a \(d \times d\) matrix of \(s\)-bit cells.
The internal permutations apply **12 rounds** of an AES-like fixed-key permutation:

- **AddConstants**: xor round-dependant constants to the first column
- **SubCells**: apply the \texttt{PRESENT} (when $s = 4$) or AES Sbox (when $s = 8$) to each cell
- **ShiftRows**: rotate the i-th line by i positions to the left
- **MixColumnsSerial**: apply the special MDS matrix to each columns
AES-like fixed-key permutation security

- **AES-like permutations** are simple to understand, well studied, provide very good security

- One can easily derive clear and powerful proofs on the minimal number of active Sboxes for 4 rounds of the permutation:
 \[(d + 1)^2 \text{ active Sboxes for 4 rounds of PHOTON}\]

- We avoid any key schedule issue since the permutations are fixed-key

<table>
<thead>
<tr>
<th></th>
<th>(P_{100})</th>
<th>(P_{144})</th>
<th>(P_{196})</th>
<th>(P_{256})</th>
<th>(P_{288})</th>
</tr>
</thead>
<tbody>
<tr>
<td>differential path probability</td>
<td>(2^{-72})</td>
<td>(2^{-98})</td>
<td>(2^{-128})</td>
<td>(2^{-162})</td>
<td>(2^{-294})</td>
</tr>
<tr>
<td>differential probability</td>
<td>(2^{-50})</td>
<td>(2^{-72})</td>
<td>(2^{-98})</td>
<td>(2^{-128})</td>
<td>(2^{-246})</td>
</tr>
<tr>
<td>linear approximation probability</td>
<td>(2^{-72})</td>
<td>(2^{-98})</td>
<td>(2^{-128})</td>
<td>(2^{-162})</td>
<td>(2^{-294})</td>
</tr>
<tr>
<td>linear hull probability</td>
<td>(2^{-50})</td>
<td>(2^{-72})</td>
<td>(2^{-98})</td>
<td>(2^{-128})</td>
<td>(2^{-246})</td>
</tr>
</tbody>
</table>

Table: Upper bounds for 4 rounds of the five PHOTON internal permutations.
Rebound attack and improvements

The currently best known technique achieves 8 rounds for an AES-like permutation, with quite low complexity.

<table>
<thead>
<tr>
<th></th>
<th>P_{100}</th>
<th>P_{144}</th>
<th>P_{196}</th>
<th>P_{256}</th>
<th>P_{288}</th>
</tr>
</thead>
<tbody>
<tr>
<td>computations</td>
<td>2^8</td>
<td>2^8</td>
<td>2^8</td>
<td>2^8</td>
<td>2^{16}</td>
</tr>
<tr>
<td>memory</td>
<td>2^4</td>
<td>2^4</td>
<td>2^4</td>
<td>2^4</td>
<td>2^8</td>
</tr>
<tr>
<td>generic</td>
<td>2^{10}</td>
<td>2^{12}</td>
<td>2^{14}</td>
<td>2^{16}</td>
<td>2^{24}</td>
</tr>
</tbody>
</table>

Improvements are unlikely since no key is used in the permutation, so the amount of freedom degrees given to the attacker is limited to the minimum.
Other cryptanalysis techniques

- **cube testers**: the best we could find within practical time complexity is at most 3 rounds for all PHOTON variants.

- **zero-sum partitions**: distinguishers for at most 8 rounds (for complexity $< 2^{c/2}$).

- **algebraic attacks**: the entire system for the internal permutations of PHOTON consists of $d^2 \cdot N_r \cdot \{21, 40\}$ quadratic equations in $d^2 \cdot N_r \cdot \{8, 16\}$ variables.

- **slide attacks on permutation level**: all rounds of the internal permutation are made different thanks to the round-dependent constants addition.

- **slide attacks on operating mode level**: the sponge padding rule from PHOTON forces the last message block to be different from zero.

- **rotational cryptanalysis**: any rotation property in a cell will be directly removed by the application of the Sbox layer.

- **integral attacks**: can reach 7 rounds with complexity $2^{s(2d-1)}$.
Hardware implementation results of PHOTON

- S-QUARK
- H-PRESENT-128
- DM-PRESENT-128
- D-QUARK
- DM-PRESENT-80
- U-QUARK
- PHOTON-256/32/32
- PHOTON-224/32/32
- PHOTON-160/36/36
- PHOTON-128/16/16
- PHOTON-80/20/16
- PHOTON-80/20/16
- PHOTON-128/16/16
- PHOTON-160/36/36
- PHOTON-224/32/32
- PHOTON-256/32/32

Graph showing internal memory against GE with various PHOTON models plotted.

Th. optimum
Outline

Introduction and Motivation

Minimizing the Memory
 Block ciphers
 Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)

LED (CHES 2011)

Conclusion and Future Works
A single round of LED

The 64-bit round function is an SP-network (we apply 32 to 48 rounds):

- **AddConstants**: xor round-dependent constants to the two first columns
- **SubCells**: apply the PRESENT 4-bit Sbox to each cell
- **ShiftRows**: rotate the i-th line by i positions to the left
- **MixColumnsSerial**: apply the special MDS matrix to each columns independently
Example: LED key schedule

For 64-bit key, the key is xored to the internal state every four rounds. In related-key setting, one gets at least half of the boxes active:

\[
P \xrightarrow{4 \text{ rounds}} K \xrightarrow{4 \text{ rounds}} K \xrightarrow{4 \text{ rounds}} K \xrightarrow{4 \text{ rounds}} \cdots \xrightarrow{4 \text{ rounds}} K \xrightarrow{4 \text{ rounds}} C
\]

For up to 128-bit key, the key is divided into two equal chunks K_1 and K_2 that are alternatively xored to the internal state every four rounds. In related-key setting, one gets at least half of the boxes active:

\[
P \xrightarrow{4 \text{ rounds}} K_1 \xrightarrow{4 \text{ rounds}} K_2 \xrightarrow{4 \text{ rounds}} K_1 \xrightarrow{4 \text{ rounds}} K_2 \xrightarrow{4 \text{ rounds}} \cdots \xrightarrow{4 \text{ rounds}} K_2 \xrightarrow{4 \text{ rounds}} K_1 \xrightarrow{4 \text{ rounds}} C
\]
Differential/linear attacks

- **AES-like permutations** are simple to understand, well studied, provide very good security

- **In single-key model:** one can easily derive proofs on the minimal number of active Sboxes for 4 rounds of the permutation:
 \[(d + 1)^2 = 25 \text{ active Sboxes for 4 rounds of LED}\]

- **In related-key model:** we have at least half of the 4-round steps active, using the same reasoning we obtain:
 \[(d + 1)^2 = 25 \text{ active Sboxes for 8 rounds of LED}\]

<table>
<thead>
<tr>
<th></th>
<th>LED-64 SK</th>
<th>LED-64 RK</th>
<th>LED-128 SK</th>
<th>LED-128 RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimal no. of active Sboxes</td>
<td>200</td>
<td>100</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>differential path probability</td>
<td>2^{-400}</td>
<td>2^{-200}</td>
<td>2^{-600}</td>
<td>2^{-300}</td>
</tr>
<tr>
<td>linear approx. probability</td>
<td>2^{-400}</td>
<td>2^{-200}</td>
<td>2^{-600}</td>
<td>2^{-300}</td>
</tr>
</tbody>
</table>
Rebound attack and improvements

In the chosen-related-key model, one can distinguish **15 rounds** (over 32) of LED-64 with complexity 2^{16}

In the chosen-related-key model, one can distinguish **27 rounds** (over 48) of LED-128 with complexity 2^{16}

Improvements are unlikely since no key is used during four rounds of the permutation, so the amount of freedom degrees given to the attacker is limited to the minimum.
Other cryptanalysis techniques

- **cube testers**: the best we could find within practical time complexity is at most 3 rounds

- **zero-sum partitions**: distinguishers for at most 12 rounds with 2^{64} complexity in the known-key model

- **algebraic attacks**: the entire system for a 64-bit fixed-key LED permutation consists of 10752 quadratic equations in 4096 variables

- **slide attacks**: all rounds are made different thanks to the round-dependent constants addition

- **rotational cryptanalysis**: any rotation property in a cell will be directly removed by the application of the Sbox layer

- **integral attacks**: currently can’t even break 2 steps
Software implementation results

Table: Software implementation results of LED.

<table>
<thead>
<tr>
<th>LED</th>
<th>table-based implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED-64</td>
<td>57 cycles/byte</td>
</tr>
<tr>
<td>LED-128</td>
<td>86 cycles/byte</td>
</tr>
</tbody>
</table>

One can use “Super-Sbox” implementations (ongoing work).
Outline

Introduction and Motivation

Minimizing the Memory
 Block ciphers
 Hash functions

Minimizing the Crypto

PHOTON (CRYPTO 2011)

LED (CHES 2011)

Conclusion and Future Works
Conclusion

PHOTON and LED:

• are very simple, clean and based on the AES design strategy

• are one of the smallest hash functions/block ciphers (both use serially computable MDS)

• have acceptable software performances

• provide provable security against classical linear/differential cryptanalysis both in the single-key and related-key models for LED

• have a large security margin:
 • PHOTON: very small amount of freedom degrees given to the attacker per iteration
 • LED: security analysis done in the very optimistic known/chosen-keys model, margin especially large in the single-key model.

PHOTON latest results on https://sites.google.com/site/photonhashfunction/
LED latest results on https://sites.google.com/site/ledblockcipher/
Future Works

• cryptanalysis!

• other aims than minimal area are possible: high throughput, energy consumption, a little bit everything, ...

• better key schedule: can we find key schedules that provably closes the gap between single-key and related-key models?

• better MDS matrices: can we find matrices that offer good diffusion (maybe not MDS), with hardware-friendly serial decomposition (maybe not fully serial), and with less clock cycles ... find the best tradeoff.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Minimizing memory</th>
<th>Minimizing crypto</th>
<th>PHOTON</th>
<th>LED</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thank you for your attention!