

Ryad Benadjila Olivier Billet Henri Gilbert
Gilles Macario-Rat
Thomas Peyrin*
Matt Robshaw
Yannick Seurin
(* Ingenico, all other authors at Orange Labs)

design principles

- simple to describe: echoing the AES design
- simple to analyze: exceptionally strong security proofs
- lessons from recent cryptanalytic advances
- domain extension: HAIFA + double-pipe
- compression function: input neutral

domain extension: double pipe

$$
\text { message }+ \text { padding : } \quad M_{1}\left|M_{2}\right| \cdots \mid M_{L}
$$

- double size chaining variable (avoid multicollisions)
- we also use HAIFA features:
- pad the message with message length and hash length
- use a bit counter as a compression function input
- integrate the salt as an optional compression function input

compression function up to 256 bits

input message:
12 words (1536 bits)

compression function up to 512 bits

round function

- ROUND $=$ BIG.SubWords + BIG.ShiftRows + BIG.MixColumns

round function

BIG.SubWords

- K is an internal counter incremented each time it is used

round function

BIG.ShiftRows

- apply the usual ShiftRows transformation on 128-bit words

round function

BIG.MixColumns

- apply the MixColumns of AES to 4-tuples of bytes throughout the state

design philosophy

- avoid related key attacks
- the keys used for the 2-round AES are fixed
- no message expansion: attacker can only control the beginning of the computation
- input neutral
- message and chaining inputs are handled similarly
- leveraging AES security
- by using AES rounds as a component
- by using AES structure: ECHO is a BIG AES

differential proofs

- probability of differential characteristics
- ECHO 256: $p \leqslant 2^{-1500}$ (at least 250 active AES S-boxes)
- ECHO 512: $p \leqslant 2^{-1650}$ (at least 275 active AES S-boxes)
- proof sketch
- at least 25 active S-boxes for 4 rounds of AES
\Rightarrow at least 25 active "ECHO S-boxes" for 4 rounds of ECHO
- an "ECHO S-box" is 2 rounds of AES
\Rightarrow at least 5 active AES S-boxes
- therefore, at least 125 active AES S-boxes for 4 rounds of ECHO
- even attackers who entirely control 4 rounds of ECHO have a success probability lower than 2^{-750}
- probability of differentials
- for 4 rounds of ECHO: $p \leqslant 2^{-452}$
- we can reuse AES proofs to get differentials bounds for ECHO

other attacks

- truncated differentials (e.g. Grindahl cryptanalysis)
- do not endanger ECHO because of the strong diffusion
- achieved through many MixColumns transformations
- related salt/counter attacks
- prevented by strong lower bounds on the number of active S-boxes
- even when salt/counters are under full control of the attacker
- structural cryptanalysis
- very well studied for the AES (square, partial sum, bottleneck)
- far from being a threat for ECHO with the current state-of-the-art
- algebraic cryptanalysis
- much larger algebraic system than in the case of the AES

security claims

attack	MD single pipe	HAIFA single pipe	ECHO
collision	\checkmark	\checkmark	\checkmark
preimage	\checkmark	\checkmark	\checkmark
$2^{\text {nd }}$ preimage	X	\checkmark	\checkmark
multicollision	X	X	\checkmark

ECHO is (multi-)collision and (2nd-)preimage resistant

implementation

- flexible design gives the same implementation for all variants
- hardware parallelism
- take full advantage of Intel AES instructions set
- implementation for Intel emulator available on web site
- no dependency between AES instructions calls
- leverage existing AES implementations
- benefit from AES countermeasures against side-channel attacks
- benefit from speed improvements of AES implementations
- good performances on legacy CPUs
- low cache overhead (four AES lookup tables)

comparisons

		AES rounds per 128 bits (256 / 512)	256 bits speed (c/B)			512 bits speed (c/B)			
		64 bits	32 bits	intel AES	64 bits	32 bits	intel AES		
	ECHO		21/40	28.5	32.5	$\leqslant 6$ *	53.5	61.0	$\leqslant 12$ *
	FUGUE	N/A	33.3	38.0	x	75.5	78.2	x	
	Grost	N/A	22.4	22.9	x	30.1	37.5	x	
$\begin{aligned} & .0 \\ & \hline \frac{0}{2} \\ & \frac{0}{0} \\ & \hline \frac{\bar{c}}{\omega} \end{aligned}$	ECHO-SP	18/27	24.4	27.8	$\leqslant 5 *$	35.7	40.7	$\leqslant 8$ *	
	LANE	21/28	25.7	40.5	5	145.3	152.2	?	
	SHAvite-3	13/21	26.7	35.3	$\leqslant 8$	38.2	55.0	$\leqslant 12$	

* code for Intel emulator available from ECHO web page

- a simple and clean design
- strong security arguments
- full flexibility in a single primitive
- support of the Intel AES instructions set

