Summary

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

The ECHO hash function

Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt Robshaw, and Yannick Seurin

Second NIST SHA-3 conference

Santa Barbara – August 23, 2010

Security

Summary

Description

Performance

Security

Description

Performance

Security

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Description

Performance

Security

What is ECHO?

- HAIFA domain extension algorithm + double pipe
- AES-based (reuses full AES rounds and mimics the AES structure)
- clean and simple (to understand, to implement, to analyze)
- same implementation for 256-bit and 512-bit versions
- same implementation for double/simple pipe mode

Description

Performance

Security

Summary

Description

Performance

Security

Summary

Software

• legacy processors: good performance (low cache overhead)

Summary

Software

• legacy processors: good performance (low cache overhead)

Software

- legacy processors: good performance (low cache overhead)
 - many candidates get good performance on the NIST platform (they exploit all the cache available) ...
 - ... but by going back just one generation of processors, some are severely penalized
- Core 2 Duo: average performance
- current processors (AES-NI): one of the fastest candidates

Example with Core i5 (see eBash or our AES-NI page):

ECHO-256: 6.8 c/B, ECHO-512: 12.6 c/B ECHO-SP-256: 5.8 c/B, ECHO-SP-512: 8.4 c/B

Summary

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hardware

ECHO offers a wide range of HW size/speed tradeoffs:

• high throughput:

one of the fastest FPGA candidates (26.5 Gbit/s - our website) **one of the fastest ASIC candidates** (14.8 Gbit/s - Lu et al.)

- **lightweight:** only 127 slices + 1 memory block on Virtex 5 and even smaller for ECHO-AES coprocessors (Beuchat et al.)
- **balanced throughput/area:** use of BRAM allows high throughput for small/medium area (Francq et al.)

Note: in general, ECHO-SP, the simple pipe mode, is faster than the double pipe:

- by a factor 1.16 for the 256-bit version
- by a factor 1.5 for the 512-bit version

Security

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Description

Performance

Security

Summary

Security

- untweaked (only 6 other schemes untweaked)
- **double-pipe security** (only 6 other schemes with full double-pipe security)
- well analyzed: SAC 2009, FSE 2010, CRYPTO 2010, SAC 2010, SHA-3 conference
- the simple design encourages the analyst to try a wide-range of old and new techniques:
 - truncated differential paths
 - rebound attack
 - start-from-the-middle attack and improved variants
 - super-Sbox attack and improved variants
 - multiple inbounds attack
- Unlike many other candidates, analysis confirms that the hash <u>and</u> the compression function offer a substantial margin for security

Cryptanalysis

		ECHO		ECHO-SP	
		256-bit	512-bit	256-bit	512-bit
compression	collision	38%	25%	38%	30%
function	distinguisher	87%	70%	75%	70%
hash	collision	50%	-	-	40%
function	distinguisher	63%	-	-	50%

Current best cryptanalysis

In chosen-salt setting:

• collision attack against ECHO-512 compression function reduced to 3 rounds

Security

Summary

Cryptanalysis

Distinguishers on internal permutation are interesting, but absolutely not a danger (because of the final folding phase)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Summary

Cryptanalysis

We improved our active Sboxes proofs:

number	best known	old		new	
of rounds	diff. path	bound	gap	bound	gap
1	5	5	0	5	0
2	40	25	15	40	0
3	60	45	15	60	0
4	200	125	75	200	0
5	250	130	120	205	45
6	285	150	135	240	45
7	320	170	150	260	60
8	445	250	195	400	45

The paths used for the attacks are almost optimal.

Security

Summary

Description

Performance

Security

- Simple, elegant, flexible, easy to understand/implement
- Performance: good in every situation, exceptional in some
 - current processors (AES-NI)
 - high throughput hardware
- Security:
 - untweaked
 - double-pipe security
 - one of the most studied SHA-3 candidates
 - compression function and hash function offer good margin for security
 - strong security arguments: new analysis shows that attackers are already using paths very close from being the best ones (> 400 active AES S-boxes over 8 rounds)