
Open Cryptanalysis Platform (OCP)

A New Collaborative Effort for Automated Cryptanalysis

Thomas Peyrin – Chunning Zhou
NTU Singapore

SKCAM 2025 - Roma
15th March 2025

Mainly on differential and linear cryptanalysis, but now also on integral distinguishers, cube attacks,

meet-in-the-middle attacks, etc.

Solving time is a crucial aspect and can be impacted by:

• the framework you use (SAT/MILP/CP/etc.)

• the strategy of modeling (many works on various modeling strategies)

• the solver (less contributions on that, different research field)

• the type of problem studied / scale

Timeline of Automated Cryptanalysis
202420232022202120202019201820172016201520142013201220112010

AD-HOC
algorithms

Mouha et al.
[SAT]

for ARX
ciphers

Gerault et al.
[CP]

for instantiating
diff. path

Mouha et al.
Wu et al.

[MILP]

Today almost all

cryptanalysis are

assisted by solvers

(FSE 2024: two

entire sessions just

for pure automated

cryptanalysis)

MILP

SAT

CP

Gohr
[ML]

for small SPECK

ML

CASCADA CLAASPTAGADACRYPTOSMT

Fully
automated

cryptanalysis ?

Automated cryptanalysis using declarative frameworks (SAT/MILP/CP/etc.) is
generally slower or at best same as ad-hoc tools, but so much more convenient

Open Cryptanalysis Platform

(Open-CP)

Open-CP: a new collaborative cryptanalysis platform

• Automatic generation of attacks / implementations

• In collaboration with all cryptanalysts willing to join !

• Free and open source

• Easy to use and contribute (define a common language we all

understand)

• Very modular, allows custom operators, etc.

• Easy to install (no or very minimal use of external tools)

• Start simple (differential)

• Goal: become the go-to platform for creating / testing / benchmarking

cryptanalysis

https://github.com/Open-CP/OCP

https://github.com/Open-CP/OCP

How to Define a Crypto Scheme ?

First step: define a common language we all agree with and

understand. Once we have that, a LOT of things are possible.

How do we describe a cipher in a generic way and have

this language usable for our global cryptanalysis platform ?

• Coded in Python: everything is an object and can have its own modeling

• Internal representation: a multipartite directed acyclic graph

– similar to TAGADA and CLAASP

Current Architecture of Open-CP

Operator
• input_vars
• output_vars
• model_version
• ID

Variable
• bitsize
• value
• ID

Primitive
State

Ex: Simon internal permutation
Simon key schedule

Ex: 1 bit,
8/32/64-bit words

Ex: Simon block cipher (1 state for
internal state, 1 state for key schedule
state, 1 state for subkey extraction)

Ex: equal, Sbox,
XOR/OR/AND,
matrix multiplication,
modular addition, …

Internal
state

Key
schedule

Subkey
extraction

A state is represented by a
collection of rounds, each
round is composed of a
collection of layers.

Advantage: this allows very
easy indexing and usage

vars[r][l][i] for variable at
round r, layer l, position i

Drawback: some redundant
variables, but not a problem,
we can clean after if needed

State Architecture of Open-CP

State

Round 1

Round 2

Layer 1

Layer 2

Ex: AES internal state has 10 rounds of

4 layers each (SB, SR, MC/ID, AC) with

16 variables of 8 bits each.

Easy and Fast cipher definition

Many functions already present to help you define a state very easily

S

P

E

C

K

S

K

I

N

N

Y

Modeling Example of Open-CP

Example: SPECK-32 block cipher

variables

operators

(image from Wikipedia)

Modeling Example of Open-CP

Example: SIMON-32 permutation

variables

operators

(image from Wikipedia)

Ex: SipHash

Architecture of Open-CP Tool

Primitive

GUI / Visualisation
module

Solving
module

Attacks
module

Implementations
module

Operator Variable

State

Implementations

Attacks

Figures

Core

Automatic Generation of C / Python code

C (rolled/unrolled) Python (rolled/unrolled)

Automatic Generation of SAT / MILP models

MILPSAT

One operator – several modelisations

Current Operators: Equal, NOT, AND, OR, XOR, NXOR, Sbox,

Modular Addition, Rotation/Shift, Matrix multiplication, Constant Addition

Soon to be added: AES round, Modular multiplication

One operator can have several types of modelisation !

Ex1: with an 8-bit variable, we can track exact or truncated differences

Ex2: Modular Addition can have different strategies of modeling

In OCP, you can switch any operator from one type of modelisation

to another very easily (simply change a flag).

=> You can have entire modeling strategies where some operators

behave differently than others (Ex: SHA attacks with linear/non linear)

Ciphers already implemented

• AES

• Ascon

• GIFT

• ROCCA

• Simon

• SipHash

• Skinny

• Speck

• ChaCha (probably this week ☺)

• more to come soon …

One primitive – several modelisations

One cipher can have several modelisations !

Ex1: ASCON state with 5 64-bit variables or 320 1-bit variables

Ex2: SuperSbox representation for a few rounds

In OCP, you can choose one type of modelisation very easily (simply set
a flag).

ASCON round

OCP Current State

Current capabilities of OCP:

- Differential cryptanalysis (single or related key)

- Truncated differential cryptanalysis (single or related key)

- Implementations automatically output test vectors, makes sure your

entire model is correct

Coming soon: linear cryptanalysis, differential-linear cryptanalysis,

additional modeling improvements (Matsui branch and bound option),

additional modeling of the operators (window heuristic for mod addition, etc.)

Help us include more attacks / models !

Issue: inverse of primitives ?

Documentation

https://github.com/Open-CP/OCP/wiki

Documentation (Quick Start for Users)

https://github.com/Open-CP/OCP/wiki

Documentation (Quick Start for Contributors)

https://github.com/Open-CP/OCP/wiki

Main TODOs: Core and Attack Module

• Core OCP:

– Growing the pre-existing library of ciphers

– Growing the pre-existing library of operators

– Growing the number of different models/representations

for each operators/ciphers

– Conversions between variable types ?

– Operating modes ?

• Attacks module:

– More attack types ! (linear / differential-linear / boomerang /

impossible diff / division property / etc.)

– Key recovery phase (started incorporating Autoguess)

– Pre-existing library of attacks

– Standardized benchmarks for comparing attacks

– Allow modular combination of attacks/models

– not limited to MILP and SAT ! Ad-hoc algorithms also welcome

Attacks
module

Primitive

Operator Variable

State

Main TODOs: Other Modules

• Implementations module:

– VHDL, Rust, other use cases?

– Automatic verification of test vectors for new representations

– Faster C implementations

– Optimized Sbox / Diffusion matrix implementations database

– Long-term future: side-channels resistant implementations

• Solving module:

– CP ? ML ? Others ?

– More MILP and SAT solvers

– Parallelization

• Visualisation module:

– Automated visualisations of the attacks

– Graphical interface for user interaction (cipher design / attack config.)

– Automated generation of LaTeX/TikZ figures !!!

Implementations
module

GUI / Visualisation
module

Solving
module

OCP - Organisation

We need to establish (simple) governance to have proper:

• development processes into place,

• responsibilities,

• communication, regular meetings, valuable feedback.

One person responsible for each (sub)module ?

Philosophy:

• Remain Free and Open Source (careful if you copy code!)

• Don’t rely on external tools unless really necessary (keep install simple)

• Keep code clean and compact

• Keep code generic !

We want YOU !

If interested to contribute / getting updates:

• contact thomas.peyrin@ntu.edu.sg

• or join the googlegroup

automated-cryptanalysis@googlegroups.com

• or click on this link:

https://groups.google.com/g/automated-cryptanalysis

• GitHub:

https://github.com/Open-CP/OCP

Thanks to all the cryptanalysts that already joined the list and gave feedback !

mailto:thomas.peyrin@ntu.edu.sg
mailto:automated-cryptanalysis@googlegroups.com
https://groups.google.com/g/automated-cryptanalysis
https://github.com/Open-CP/OCP

Thank You !

Grazie !

	Slide 1: Open Cryptanalysis Platform (OCP) A New Collaborative Effort for Automated Cryptanalysis
	Slide 2: Timeline of Automated Cryptanalysis
	Slide 3: Open Cryptanalysis Platform (Open-CP)
	Slide 4: Open-CP: a new collaborative cryptanalysis platform
	Slide 5: How to Define a Crypto Scheme ?
	Slide 6: Current Architecture of Open-CP
	Slide 7: State Architecture of Open-CP
	Slide 8: Easy and Fast cipher definition
	Slide 9: Modeling Example of Open-CP
	Slide 10: Modeling Example of Open-CP
	Slide 11: Ex: SipHash
	Slide 12: Architecture of Open-CP Tool
	Slide 13: Automatic Generation of C / Python code
	Slide 14: Automatic Generation of SAT / MILP models
	Slide 15: One operator – several modelisations
	Slide 16: Ciphers already implemented
	Slide 17: One primitive – several modelisations
	Slide 18: OCP Current State
	Slide 19: Documentation
	Slide 20: Documentation (Quick Start for Users)
	Slide 21: Documentation (Quick Start for Contributors)
	Slide 22: Main TODOs: Core and Attack Module
	Slide 23: Main TODOs: Other Modules
	Slide 24: OCP - Organisation
	Slide 25: We want YOU !
	Slide 26

