Generic Related-key Attacks for HMAC

Thomas Peyrin (joint work with Yu Sasaki and Lei Wang)

Nanyang Technological University - Singapore

SPACE 2012

Chennai, India - November 2, 2012

Introduction: hash functions and MACing

Hash functions

HMAC: MACing with hash functions

The attack models

Current state of HMAC

A generic related-key attack on HMAC

Distinguish-R attack Intermediate internal state recovery Existential forgery attack Distinguish-H attack

Patching HMAC and Conclusion

Introduction: hash functions and MACing

HMAC: MACing with hash functions The attack models

Distinguish-R attack Distinguish-H attack

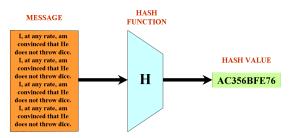
Introduction: hash functions and MACing Hash functions

HMAC: MACing with hash functions
The attack models
Current state of HMAC

A generic related-key attack on HMAC
Distinguish-R attack
Intermediate internal state recovery
Existential forgery attack
Distinguish-H attack

Patching HMAC and Conclusion

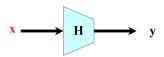
What is a Hash Function?



- H maps an **arbitrary length input** (the message M) to a **fixed length output** (typically n = 128, n = 160 or n = 256).
- no secret parameter.
- *H* must be easy to compute.
- examples: MD5 (1992), SHA-1 (1995), SHA-2 (2001), SHA-3 (2012)

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that H(x) = y, in less than $\theta(2^n)$ operations.



pre-image resistance:

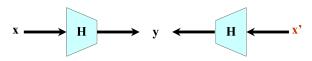
given an output challenge y, the attacker can not find a message x such that H(x) = y, in less than $\theta(2^n)$ operations.

2nd pre-image resistance:

given a challenge (x, y) so that H(x) = y, the attacker can not find a message $x' \neq x$ such that H(x') = y, in less than $\theta(2^n)$ operations.

collision resistance

the attacker can not find two messages (x, x') such that H(x) = H(x'), in less than $\theta(2^{n/2})$ operations (a generic attack with the birthday paradox exists [Yuval-79]).



pre-image resistance:

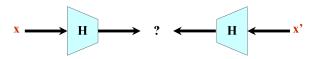
given an output challenge y, the attacker can not find a message x such that H(x) = y, in less than $\theta(2^n)$ operations.

2nd pre-image resistance:

given a challenge (x, y) so that H(x) = y, the attacker can not find a message $x' \neq x$ such that H(x') = y, in less than $\theta(2^n)$ operations.

collision resistance:

the attacker can not find two messages (x, x') such that H(x) = H(x'), in less than $\theta(2^{n/2})$ operations (a generic attack with the birthday paradox exists [Yuval-79]).



pre-image resistance:

given an output challenge y, the attacker can not find a message x such that H(x) = y, in less than $\theta(2^n)$ operations.

2nd pre-image resistance:

given a challenge (x, y) so that H(x) = y, the attacker can not find a message $x' \neq x$ such that H(x') = y, in less than $\theta(2^n)$ operations.

collision resistance:

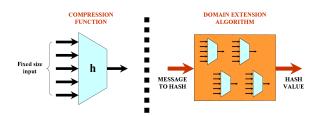
the attacker can not find two messages (x, x') such that H(x) = H(x'), in less than $\theta(2^{n/2})$ operations (a generic attack with the birthday paradox exists [Yuval-79]).

And other ones: near collisions, multicollisions, random oracle look-alike, ...

General construction

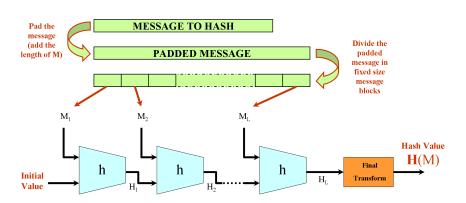
For historical reasons, most hash functions are composed of two elements:

- a compression function *h*: a function for which the input and output size is fixed.
- a domain extension algorithm: an iterative process that uses the compression function *h* so that the hash function *H* can handle inputs of arbitrary length.



The Merkle-Damgård domain extension algorithm

The most famous domain extension algorithm used is called the **Merkle-Damgård** [Merkle Damgård-89] iterative algorithm.



Introduction: hash functions and MACing

Hash functions

HMAC: MACing with hash functions

The attack models
Current state of HMAC

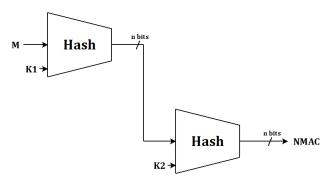
A generic related-key attack on HMAC Distinguish-R attack Intermediate internal state recovery Existential forgery attack Distinguish-H attack

Patching HMAC and Conclusion

HMAC and NMAC (Bellare et al. - 1996)

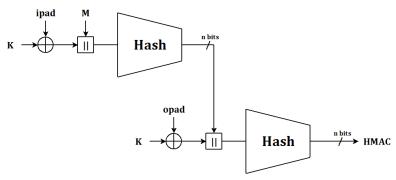
A MAC outputs an *n*-bit value from a *k*-bit key *K* and an arbitrary long message *M*.

$$NMAC(K_1, K_2, M) = H(K_2, H(K_1, M))$$



A MAC outputs an *n*-bit value from a *k*-bit key *K* and an arbitrary long message *M*.

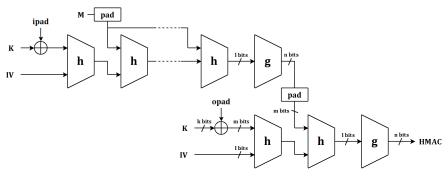
$$\mathtt{HMAC}(K, M) = H(K \oplus \mathtt{opad} \mid\mid H(K \oplus \mathtt{ipad} \mid\mid M))$$



HMAC and NMAC (Bellare et al. - 1996)

A MAC outputs an *n*-bit value from a *k*-bit key *K* and an arbitrary long message *M*.

$$\operatorname{HMAC}(K,M) = H(K \oplus \operatorname{\mathbf{opad}} || \ H(K \oplus \operatorname{\mathbf{ipad}} || \ M))$$



Introduction: hash functions and MACing

Hash functions

HMAC: MACing with hash functions

The attack models

Current state of HMAC

A generic related-key attack on HMAC

Distinguish-R attack
Intermediate internal state recov

Existential forgery attack

Distinguish-H attack

Patching HMAC and Conclusion

Universal and existential forgery

The game played:

The attacker can query an oracle, \mathtt{HMAC}_K , and tries to generate a valid MAC with the key K for a message that he didn't query yet

When the message is chosen by the **challenger**: it is a **universal forgery**

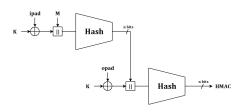
When the message is chosen by the **attacker**: it is an **existential forgery**

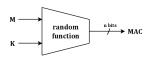
Distinguishing-R

The game played:

The attacker can query an oracle, F_K , that is instantiated either with HMAC $_K$, or with a random function R_K . He must obtain non-negligible advantage in distinguishing the two cases:

$$Adv(\mathcal{A}) = |\Pr[\mathcal{A}(\texttt{HMAC}_K) = 1] - \Pr[\mathcal{A}(R_K) = 1]|$$
.





Distinguishing-H

The game played:

The attacker can query an oracle, \mathtt{HMAC}_K , that is instantiated either with $\mathtt{HMAC}_K^{H(h)}$ or with $\mathtt{HMAC}_K^{H(r)}$, where H is a known dedicated hash function, h a known dedicated compression function, and r a randomly chosen function. He must obtain non-negligible advantage in distinguishing the two cases:

$$Adv(\mathcal{A}) = \left| \Pr[\mathcal{A}(\texttt{HMAC}_K^{H(h)}) = 1] - \Pr[\mathcal{A}(\texttt{HMAC}_K^{H(r)}) = 1] \right|.$$



Introduction: hash functions and MACing

Hash functions
HMAC: MACing with hash functions
The attack models

Current state of HMAC

A generic related-key attack on HMAC Distinguish-R attack Intermediate internal state recovery Existential forgery attack Distinguish-H attack

Patching HMAC and Conclusion

Known dedicated attacks on HMAC

Attack	Key Setting	Target	Size	#Rounds	Comp.	Ref.
DistH	Single key	MD4	128	Full	$2^{121.5}$	[KBPH06]
DistH	Single key	MD5	128	33/64	$2^{126.1}$	[KBPH06]
DistH	Single Key	MD5	128	Full	2 ⁹⁷	[WYWZZ09]
DistH	Single key	3p HAVAL	256	Full	$2^{228.6}$	[KBPH06]
DistH	Single key	4p HAVAL	256	102/128	$2^{253.9}$	[KBPH06]
DistH	Single key	SHA0	160	Full	2^{109}	[KBPH06]
DistH	Single key	SHA1	160	43/80	$2^{154.9}$	[KBPH06]
DistH	Single key	SHA1	160	50/80	2153.5	[RR08]
DistH	Related Key	SHA1	160	58/80	2158.74	[RR08]
Inner key rec.	Single Key	MD4	128	Full	263	[CY06]
Inner key rec.	Single Key	SHA0	160	Full	284	[CY06]
Inner key rec.	Single Key	SHA1	64	34/80	2 ³²	[RR08]
Inner key rec.	Single Key	3p HAVAL	256	Full	2^{122}	[LCKSH08]
Full key rec.	Single Key	MD4	128	Full	2^{95}	[FLN07]
Full key rec.	Single Key	MD4	128	Full	2 ⁷⁷	[WOK08]

Known generic attacks on HMAC

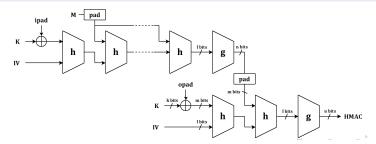
The setting

000000

We try to find generic attacks on HMAC with a k-bit when instantiated with an n-bit hash function using a l-bit internal state (with $l \le 2n$ and k sufficiently big to avoid brute force key recovery)

Distinguishing-H attack costs 2^l computations (ideal)

Universal forgery attack costs 2ⁿ computations (ideal)

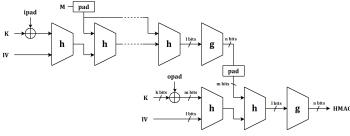


000000

Distinguishing-R attack costs 2^{1/2} computations (not ideal)

The procedure

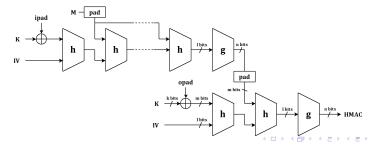
- **step 1:** query $2^{l/2}$ messages and gather all pairs (M, M') that collides on the output
- step 2: for all colliding pairs, append an extra random message block M_1 and check if this new message pair $(M||M_1,M'||M_1)$ collides as well
- step 3: if it does, the oracle implements HMAC, otherwise it is a random function



Existential forgery attack costs $2^{1/2}$ computations (not ideal)

The procedure

- **step 1:** query $2^{l/2}$ messages and gather all pairs (M, M') that collides on the output
- step 2: for all colliding pairs, append an extra random message block M_1 and check if this new message pair $(M||M_1, M'||M_1)$ collides as well. Pick one such pair.
- step 3: append another extra random message block M_2 and query the MAC for message $M||M_2$. Then it is equal to the MAC for message $(M'||M_2)$



Known generic attacks on HMAC

Attack	Key Setting	Generic	
Attack	Key Setting	Complexity	
Universal forgery	Single Key	2^n	
Existential forgery	Single Key	$2^{l/2}$	
DistR	Single Key	$2^{l/2}$	
DistH	Single Key	2^l	

Known generic attacks on HMAC

Attack	Key Setting	Generic	
Attack	Key Setting	Complexity	
Universal forgery	Related Key	2 ⁿ ?	
Existential forgery	Related Key	2 ^{l/2} ?	
DistR	Related Key	2 ^{l/2} ?	
DistH	Related Key	2 ^l ?	

HMAC: MACing with hash functions

The attack models

A generic related-key attack on HMAC

Distinguish-R attack Distinguish-H attack

HMAC: MACing with hash functions

The attack models

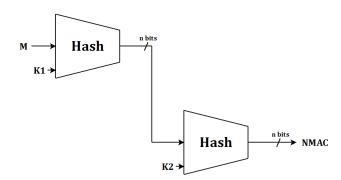
A generic related-key attack on HMAC Distinguish-R attack

Distinguish-H attack

0.0000 00000 000 000

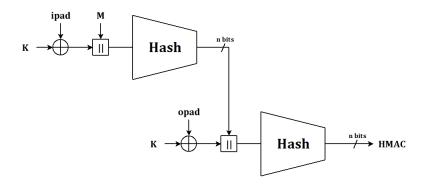
What weakness to attack?

NMAC



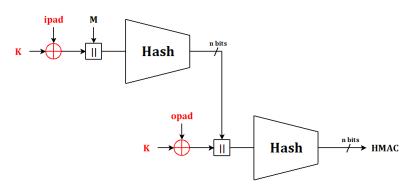
What weakness to attack?

HMAC



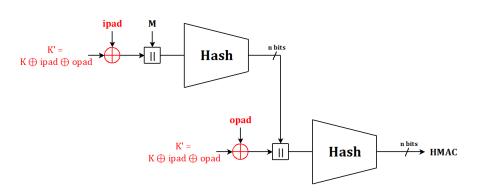
What weakness to attack?

HMAC **(with key** *K***)**

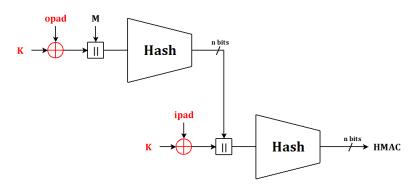


What weakness to attack?

$\begin{array}{c} \operatorname{HMAC} \\ \text{(with key } K' = K \oplus \operatorname{\mathtt{ipad}} \oplus \operatorname{\mathtt{opad}}) \end{array}$

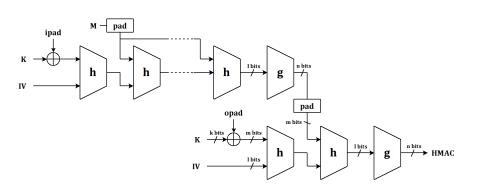


$\begin{array}{c} \operatorname{\texttt{HMAC}} \\ \text{(with key } K' = K \oplus \mathtt{ipad} \oplus \mathtt{opad)} \end{array}$



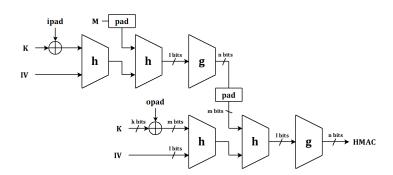
What to detect?

HMAC (with key *K* and arbitrary message)



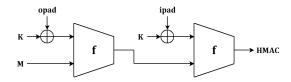
What to detect?

HMAC **(with key** *K* **and** *n***-bit message)**

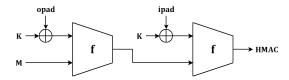


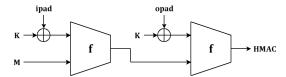
What to detect?

HMAC (with key *K* and *n*-bit message)

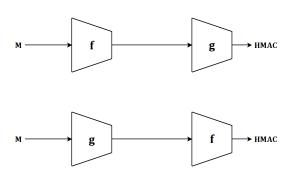


What to detect?



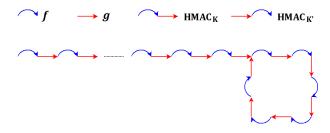


What to detect?



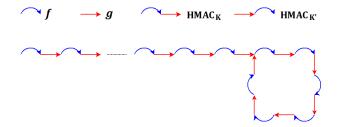
Functions f(g(x)) and g(f(x)) have a particular cycle structure:

there is a 1-to-1 correspondence between cycles of f(g(x)) and g(f(x))



How to detect the cycle structure?

⇒ by measuring cycles length



The game played (distinguishing-R in the related-key model):

The attacker can query two oracles, F_K and $F_{K'}$, that are instantiated either with HMAC_K and $\mathsf{HMAC}_{K'}$, or with two independent random functions R_K and $R_{K'}$. He must obtain non-negligible advantage in distinguishing the two cases:

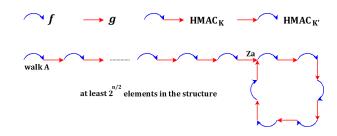
$$Adv(\mathcal{A}) = |\Pr[\mathcal{A}(\mathsf{HMAC}_K, \mathsf{HMAC}_{K'}) = 1] - \Pr[\mathcal{A}(R_K, R_{K'}) = 1]|$$

The attack

First step (walk A)

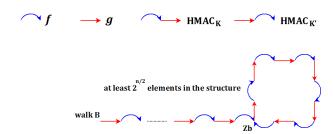
Start from an n-bit random input message, query F_K , and keep querying as new message the MAC just received. Continue so for about $2^{n/2} + 2^{n/2-1}$ queries until getting a collision among the MACs received.

If no collision is found, or if the collision occurred in the $2^{n/2}$ first queries, the attacker outputs 0.



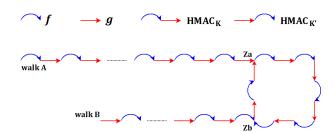
Second step (walk B)

Do the same for oracle $F_{K'}$.



Third step (colliding walk A and walk B)

If the cycle of walk A has the same length as the one from walk B, then output 1. Otherwise output 0.



The advantage of the attacker is non-negligible and **the complexity of the distinguisher** is about $2^{n/2} + 2^{n/2-1}$ computations for each of the first and second phase, thus **about** $2^{n/2+1}$ **computations in total**.

We implemented and verified the distinguisher. With SHA-2 truncated to 32 bits, we found two walks A and B that have the same cycle length of 79146 elements with 2^{17} computations. The best previously known attack for HMAC instantiated with SHA-2 truncated to 32 bits required 2^{128} computations.

Attack	Key Setting	Target	Old Generic Complexity	New Generic Complexity
DistR	Related Key	Wide-pipe	$2^{l/2}$	$2^{n/2+1}$

Outline

Introduction: hash functions and MACing

Hash functions

HMAC: MACing with hash functions

The attack models

Current state of HMA

A generic related-key attack on HMAC

Distinguish-R attack

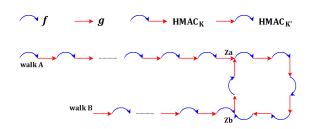
Intermediate internal state recovery

Existential forgery attack Distinguish-H attack

Patching HMAC and Conclusion

We would like to know some of the intermediate internal state of \mathtt{HMAC}_K and $\mathtt{HMAC}_{K'}$

Inside a colliding cycle for ${\tt HMAC}_K$ and ${\tt HMAC}_{K'}$, the input or output queries to ${\tt HMAC}_K$ are intermediate internal state of ${\tt HMAC}_{K'}$ (and vice-versa) ... but we don't know which one it is, so we need to synchronize the cycles

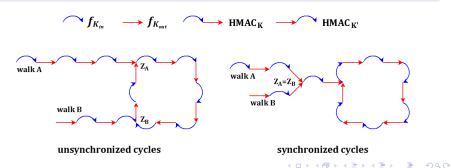


There are two cases for a collision between walk A and walk B:

000000

- collision in the tail
- collision in the cycle

If the collision happens in the tail, then the cycles are directly synchronized

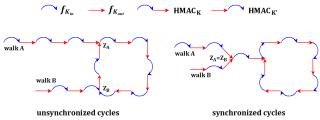


Synchronized and Unsynchronized cycles

We just build walk A and walk B with a tail long enough, such that the collision is likely to happen in the tail.

The procedure

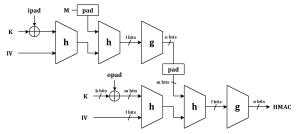
- **step 1 (build walk A):** same as before, but just ensure that tail in walk A has size at least $2^{n/2-2}$
- step 2 (build walk B): same as step 1, but with queries to $K' = K \oplus ipad \oplus opad$
- step 3: check if the cycle have the same length, and if so, there is a good chance that it
 happened in the tail. Then you can recover the intermediate internal states.



For a wide-pipe hash, the attack is not over, because we have to revert the output truncation function from the intermediate internal state and recover all *l* bits.

The procedure

- step 1: obtain an intermediate internal state
- step 2: find a collision by doing query with one extra block of random data
- step 3: go through all the 2^{l-n} candidates and check offline which one would have give you this collision



00000

The complexity of the internal state recovery is about $2^{n/2+2}$ queries and 2^{l-n+1} computations in total.

Attack	Key Setting	Target	Old Generic Complexity	New Generic Complexity
DistR	Related Key	Wide-pipe	$2^{l/2}$	$2^{n/2+1}$
Inner state rec.	Related Key	Narrow or Wide	2^n	$2^{n/2+2} + 2^{l-n+1}$

Outline

Introduction: hash functions and MACing

Hash functions

HMAC: MACing with hash functions

The attack models
Current state of HMA

A generic related-key attack on HMAC

Distinguish-R attack
Intermediate internal state recovery

Existential forgery attack

Distinguish-H attack

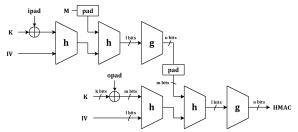
Patching HMAC and Conclusion

Existential forgery attack

Once we have recovered an internal state, forging a valid MAC is easy

The procedure

- step 1: obtain an intermediate internal state for a message M₁
- **step 2:** append an extra block of message with a difference (M_2, M'_2) , such that you get a collision after the first hash function call $(2^{n/2}$ offline computations)
- step 3: query ${\tt HMAC}_K(M_1||pad||M_2)$ and the attacker can forge ${\tt HMAC}_K(M_1||pad||M_2')$ since they are equal



Results - existential forgery for HMAC

The **complexity to forge a valid MAC** is the complexity of the internal state recovery $(2^{n/2+2} + 2^{l-n+1}$ **computations**), and a collision search on n bits $(2^{n/2}$ **computations**)

Attack	Key Setting	Target	Old Generic	New Generic
Attack			Complexity	Complexity
DistR	Related Key	Wide-pipe	$2^{l/2}$	$2^{n/2+1}$
Inner state rec.	Related Key	Narrow or Wide	2^n	$2^{n/2+2} + 2^{l-n+1}$
Ex. forgery	Related Key	Wide-pipe	$2^{l/2}$	$2^{n/2+2} + 2^{l-n+1}$

Outline

Introduction: hash functions and MACing

Hash functions

HMAC: MACing with hash functions

The attack models

Current state of HMAC

A generic related-key attack on HMAC

Distinguish-R attack Intermediate internal state recovery Existential forgery attack

Distinguish-H attack

Patching HMAC and Conclusion

Distinguishing-H for HMAC

The game played (distinguishing-H in the related-key model):

0000

The attacker can query two oracles, ${\tt HMAC}_K$ and ${\tt HMAC}_{K'}$, that are instantiated either with $({\tt HMAC}_K^{H(h)}, {\tt HMAC}_{K'}^{H(h)})$ or with $({\tt HMAC}_K^{H(r)}, {\tt HMAC}_{K'}^{H(r)})$, where H is a known dedicated hash function, h a known dedicated compression function and r a randomly chosen function. He must obtain non-negligible advantage in distinguishing the two cases:

$$Adv(\mathcal{A}) = \left| \Pr[\mathcal{A}(\texttt{HMAC}_K^{H(h)}, \texttt{HMAC}_{K'}^{H(h)}) = 1] - \Pr[\mathcal{A}(\texttt{HMAC}_K^{H(r)}, \texttt{HMAC}_{K'}^{H(r)}) = 1] \right|.$$

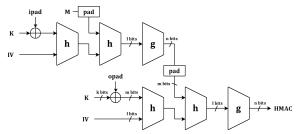
Once we have recovered an internal state, distinguishing-H is easy

The procedure

• **step 1:** obtain an intermediate internal state for a message M₁

0000

- **step 2:** from this internal state, append an extra block of message with a difference (M_2, M'_2) , such that you get a collision after applying the function $h(2^{n/2})$ computations)
- step 3: query $\texttt{HMAC}_K(M_1||pad||M_2)$ and $\texttt{HMAC}_K(M_1||pad||M_2')$, if they are equal the oracle is using h



A generic related-key attack on HMAC

Results - distinguishing-H for ${\tt HMAC}$

The advantage of the attacker is non-negligible and **the complexity of the distinguisher-H** is the complexity of the internal state recovery $(2^{n/2+2} + 2^{l-n+1}$ **computations**), and a collision search on n bits $(2^{n/2}$ **computations**)

Attack	Key Setting	Target	Old Generic	New Generic
Attack			Complexity	Complexity
DistR	Related Key	Wide-pipe	$2^{l/2}$	$2^{n/2+1}$
Inner state rec.	Related Key	Narrow or Wide	2^n	$2^{n/2+2} + 2^{l-n+1}$
Ex. forgery	Related Key	Wide-pipe	$2^{l/2}$	$2^{n/2+2} + 2^{l-n+1}$
DistH	Related Key	Narrow or Wide	2^l	$2^{n/2+2} + 2^{l-n+1}$

Outline

Introduction: hash functions and MACing

Hash functions

HMAC: MACing with hash functions

The attack models

Current state of HMAC

A generic related-key attack on HMAC

Distinguish-R attack

Existential forgery attack

Distinguish-H attack

Patching HMAC and Conclusion

Our results

Our attacks on HMAC work when the key has length m, or m-1 because ipad = $0 \times 3636 \cdots 36$ and opad = $0 \times 5C5C \cdots 5C$

⇒ The choice of ipad and opad was in fact important

Attack	Key Setting	Target	Old Generic	New Generic
Attack			Complexity	Complexity
DistR	Related Key	Wide-pipe	$2^{l/2}$	$2^{n/2+1}$
Inner state rec.	Related Key	Narrow or Wide	2^n	$2^{n/2+2} + 2^{l-n+1}$
Ex. forgery	Related Key	Wide-pipe	$2^{l/2}$	$2^{n/2+2} + 2^{l-n+1}$
DistH	Related Key	Narrow or Wide	2^l	$2^{n/2+2} + 2^{l-n+1}$

Patching HMAC

1^{st} try:

We use a different IV for the hash function in the inner and outer call ...

 \dots but that would require to change the H definition and implementations

2nd try:

We truncate the HMAC output ...

... but having a smaller output reduces the expected security

Our solution:

Just prepend a "0" bit to the message M:

- no more possible for the attacker to synchronize the computation chains: the inner and outer function are made distinct
- no need to change the specification of H, even better: can be done on top of HMAC implementations
- almost zero performance drop

Thank you for your attention!