A generic related-key attack on HMAC Conclusion

Introduction
00000 000000
[e]e] 000000
0000 000
000000 0000

Generic Related-key Attacks for HMAC

Thomas Peyrin
(joint work with Yu Sasaki and Lei Wang)

Nanyang Technological University - Singapore

SPACE 2012

Chennai, India - November 2, 2012
e NANYANG

TECHNOLOGICAL
UNIVERSITY




Introduction A generic related-key attack on Conclusion

00000 000000
(e]e} 000000

0000 [e]e]e}
000000 0000

Outline

Introduction: hash functions and MACing
Hash functions
HMAC: MACing with hash functions
The attack models
Current state of HMAC

A generic related-key attack on HMAC
Distinguish-R attack
Intermediate internal state recovery
Existential forgery attack
Distinguish-H attack

Patching HMAC and Conclusion



0000 000
000000

Outline

Introduction: hash functions and MACing
Hash functions

HMAC: MACing with hash functions
The attack models
Current state of HMAC

A generic related-key attack on HMAC
Distinguish-R attack

Intermediate internal state recovery

Existential forgery attack
Distinguish-H attack

Patching HMAC and Conclusion

«O>» «F»r» « >

«E>

DA



Introduction A generic related-key attack on HMAC
©0000
[e]e]

Conclusion
000000
000000
0000 000
000000 0000

Outline

Introduction: hash functions and MACing
Hash functions



Introduction
00000

What is a Hash Function ?

HASH

MESSAGE FUNCTION

I, at any rate, am
convinced that He
does not throw dice.

I, at any rate, am HASH VALUE

convinced that He
does not throw dice.

g H ey AC356BFE76
convinced that He
does not throw dice.
L, at any rate, am
convinced that He

does not throw dice.

\ 4

e H maps an arbitrary length input (the message M) to a fixed length
output (typically n = 128, n = 160 or n = 256).

no secret parameter.

H must be easy to compute.

examples: MD5 (1992), SHA-1 (1995), SHA-2 (2001), SHA-3 (2012)
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The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) =y, in less than 6(2") operations.
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The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) =y, in less than 6(2") operations.

2nd pre-image resistance:

given a challenge (x,) so that H(x) = y, the attacker can not find a message x’ # x
such that H(x") = y, in less than 6(2") operations.
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The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) =y, in less than 6(2") operations.

2nd pre-image resistance:

given a challenge (x,) so that H(x) = y, the attacker can not find a message x’ # x
such that H(x") = y, in less than 6(2") operations.

collision resistance:

the attacker can not find two messages (x, x') such that H(x) = H(x), in less than
0(2"/?) operations (a generic attack with the birthday paradox exists [Yuval-79]).

X > FHW rﬁ > x’
L ~
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The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) =y, in less than 6(2") operations.

2nd pre-image resistance:

given a challenge (x,y) so that H(x) = y, the attacker can not find a message x’ # x
such that H(x") = y, in less than 6(2") operations.

collision resistance:

the attacker can not find two messages (x,x’) such that H(x) = H(x'), in less than
6(2"/?) operations (a generic attack with the birthday paradox exists [Yuval-79]).

And other ones: near collisions, multicollisions, random oracle look-alike, ...
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General construction

For historical reasons, most hash functions are composed of two
elements:

e a compression function /: a function for which the input and output
size is fixed.

¢ a domain extension algorithm: an iterative process that uses the
compression function / so that the hash function H can handle inputs

of arbitrary length.
COMPRESSION DOMAIN EXTENSION
FUNCTION u ALGORITHM

u

P |

L

Fixed size u
input h p— | | # #
H MESSAGE HASH
™ TO HASH VALUE

\
L
u
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The Merkle-Damgard domain extension algorithm

The most famous domain extension algorithm used is called the
Merkle-Damgard [Merkle Damgard-89] iterative algorithm.

Pad the | MESSAGE TO HASH |
message
(add the Divide the
length of M) | PADDED MESSAGE | padded
message in
fixed size
message
blocks
Hash Value
ma  HOM)
Initial T
Value
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HMAC and NMAC (Bellare et al. - 1996)

A MAC outputs an n-bit value from a k-bit key K and an arbitrary long
message M.

NMAC(Kla K27M) = H(K27H(K17M))

n bits

K1

n bits

NMAC

K2



Introduction

oe

HMAC and NMAC (Bellare et al. - 1996)

A MAC outputs an n-bit value from a k-bit key K and an arbitrary long
message M.

HMAC(K,M) = H(K @ opad || H(K & ipad || M))

HMAC
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HMAC and NMAC (Bellare et al. - 1996)

A MAC outputs an n-bit value from a k-bit key K and an arbitrary long
message M.

HMAC(K,M) = H(K ® opad || H(K & ipad || M))
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The attack models
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Universal and existential forgery

The game played:

The attacker can query an oracle, HMACk, and tries to generate a valid MAC with the
key K for a message that he didn’t query yet

When the message is chosen by the challenger:
it is a universal forgery

When the message is chosen by the attacker:
it is an existential forgery
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Distinguishing-R

The game played:
The attacker can query an oracle, Fg, that is instantiated either with HMACk, or with a
random function Rx. He must obtain non-negligible advantage in distinguishing the

two cases:
Adv(A) = [Pr[A(aMACK) = 1] — PrlA(Rk) = 1]| .

random
function

MAC

HMAC
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Distinguishing-H

The game played:

The attacker can query an oracle, HMACk, that is instantiated either with HMAC?

with HMAC?(”, where H is a known dedicated hash function, & a known dedicated
compression function, and r a randomly chosen function. He must obtain
non-negligible advantage in distinguishing the two cases:

@ or

Adv(A) = ]Pr[A(HMAcf“)) = 1] — Pr[A(avacl?) = 1]‘ .

ipad M
L random
function

random
function
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Known dedicated attacks on HMAC

Attack Key Setting Target Size | #Rounds | Comp. Ref.
Dist.-H Single key MD4 128 Full 21215 [KBPHO06]
Dist.-H Single key MD5 128 33/64 2126:1 [KBPHO6]
Dist.-H Single Key MD5 128 Full 297 [WYWZZ09]
Dist.-H Singlekey | 3p HAVAL | 256 Full 22286 [KBPHO6]
Dist.-H Singlekey | 4p HAVAL | 256 | 102/128 | 22339 [KBPHO6]
Dist.-H Single key SHAOQ 160 Full 2109 [KBPHO06]
Dist.-H Single key SHA1 160 43/80 2154.9 [KBPHO06]
Dist.-H Single key SHA1 160 50/80 21535 [RRO8]
Dist-H Related Key SHA1 160 58/80 | 21874 [RRO08]
Inner key rec. | Single Key MD4 128 Full 263 [CYO06]
Inner key rec. | Single Key SHAO 160 Full 284 [CY06]
Inner key rec. Single Key SHA1 64 34/80 232 [RRO8]
Inner key rec. | Single Key | 3p HAVAL | 256 Full 2122 [LCKSHO8]
Full key rec. Single Key MD4 128 Full 2% [FLNO7]
Full key rec. Single Key MD4 128 Full 277 [WOKO8]




Introduction ric related-key attack on Conclusion

Known generic attacks on HMAC

The setting

We try to find generic attacks on HMAC with a k-bit when instantiated with an n-bit
hash function using a [-bit internal state (with I < 2n and k sufficiently big to avoid
brute force key recovery)

Distinguishing-H attack costs 2' computations (ideal)

Universal forgery attack costs 2" computations (ideal)

™ pad |

ipad

HMAC
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Known generic attacks on HMAC

Distinguishing-R attack costs 2//> computations (not ideal)

The procedure

® step 1: query 2//2 messages and gather all pairs (M, M’) that collides on the output

® step 2: for all colliding pairs, append an extra random message block M; and check if
this new message pair (M||M;, M'||M;) collides as well

® step 3: if it does, the oracle implements HMAC, otherwise it is a random function

poa M Lpad]

Ibits
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Known generic attacks on HMAC

Existential forgery attack costs 2//> computations (not ideal)

The procedure

® step 1: query 2//2 messages and gather all pairs (M, M) that collides on the output

® step 2: for all colliding pairs, append an extra random message block M; and check if
this new message pair (M||M7, M’||M;) collides as well. Pick one such pair.

® step 3: append another extra random message block M, and query the MAC for message
M]||M,. Then it is equal to the MAC for message (M’||M>)

pag M Lpad]

Ibits

opad
kbits m bits

HMAC
Ibits
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Known generic attacks on HMAC

. Generic
Attack Key Setting
Complexity
Universal forgery | Single Key 2"
Existential forgery | Single Key 22
Dist.-R Single Key 2!/
Dist.-H Single Key 2!
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A generic related-key attack on

Known generic attacks on HMAC

. Generic
Attack Key Setting
Complexity
Universal forgery | Related Key 2"7?
Existential forgery | Related Key 2122
Dist.-R Related Key 2122
Dist.-H Related Key 22

Conclusion
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What weakness to attack ?

NMAC

n bits

n bits

NMAC

K2
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What weakness to attack ?

HMAC
(with key K)

HMAC
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What weakness to attack ?

HMAC
(with key K’ = K@ ipad @ opad)

n bits

K@ ipad @ opad =~/

n bits

K@ ipad @ opad =~/ HMAC
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What weakness to attack ?

HMAC
(with key K’ = K@ ipad @ opad)

Hash

n bits

HMAC
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What to detect ?

HMAC

(with key K and arbitrary message)

Ibits

opad

k bits m bits

;

w

1bits

n bits

[pad |

m bits ~.

1 bits

n bits

HMAC
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What to detect ?

HMAC
(with key K and n-bit message)

nbits

1bits nbits

h HMAC

v
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What to detect ?

HMAC
(with key K and n-bit message)

opad ipad

HMAC
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What to detect ?

HMAC
(with K and K’ = K @ ipad @& opad and n-bit message)

opad ipad

f f HMAC

ipad opad

f f HMAC
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What to detect ?

HMAC
(with K and K’ = K & ipad & opad and n-bit message)

M E g HMAC
M ) f HMAC
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What to detect ?

Functions f(g(x)) and g(f(x)) have a particular cycle structure:

there is a 1-to-1 correspondence between cycles of f(g(x)) and g(f(x))

NS — g T gMAcg —> ¥ HMACk
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How to detect the cycle structure ?

—> by measuring cycles length

NS — g 7 gMAacy —>7 ¥ HMACk

The game played (distinguishing-R in the related-key model):

The attacker can query two oracles, Fx and Fy/, that are instantiated either with
HMACk and HMACk/, or with two independent random functions Rx and Rx/. He
must obtain non-negligible advantage in distinguishing the two cases:

Adv(A) = |Pr[A(HMACKk, HMACk/ ) = 1] — Pr[A(Rk, Rxr) = 1]|
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The attack

First step (walk A)

Start from an n-bit random input message, query Fk, and keep querying as new
message the MAC just received. Continue so for about 2"/ 4 2"/>~1 queries until
getting a collision among the MACs received.

If no collision is found, or if the collision occurred in the 2"/ first queries, the
attacker outputs 0.

NS — g 7> HMACk, — Y HMACy

Za

walk A

n/2
atleast2 elements in the structure
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Second step (walk B)

Do the same for oracle Fx:.

NS —>g 7> HMACx — Y HMACk

I

n/2
atleast2 elements in the structure (

walk B ’\_/l
N N
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The attack

Third step (colliding walk A and walk B)
If the cycle of walk A has the same length as the one from walk B, then output 1.

Otherwise output 0.
NS — g T HMACk —> ¥ HMACk
............... 13
walk A
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Results - distinguishing-R for HMAC with wide-pipe

The advantage of the attacker is non-negligible and the complexity
of the distinguisher is about 2"/2 4- 2/2~1 computations for each of
the first and second phase, thus about on/2+1 computations in total.

We implemented and verified the distinguisher. With SHA-2 truncated to
32 bits, we found two walks A and B that have the same cycle length of
79146 elements with 217 computations. The best previously known attack
for HMAC instantiated with SHA-2 truncated to 32 bits required 2!
computations.

1 i N i
Attack | Key Setting Target Old Gene.nc e Gen?nc
Complexity Complexity

Dist.-R | Related Key | Wide-pipe 2172 21/2+1
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How to recover the intermediate internal state ?

We would like to know some of the intermediate internal state of HMACk
and HMACk

Inside a colliding cycle for HMACk and HMACk, the input or output queries
to HMACk are intermediate internal state of HMACx (and vice-versa) ... but
we don’t know which one it is, so we need to synchronize the cycles

NS — g N gMACxk —> Y HMACy

walk A
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Synchronized and Unsynchronized cycles

There are two cases for a collision between walk A and walk B:
e collision in the tail
e collision in the cycle

If the collision happens in the tail, then the cycles are directly

synchronized

Nfr, — fx

out

T gMACx — Y HMACk

walk A 2a
walk A

Lﬂlii_\_»/_g walk B <
@/‘_»\/l D NP7

unsynchronized cycles synchronized cycles
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Synchronized and Unsynchronized cycles

We just build walk A and walk B with a tail long enough, such that the collision is
likely to happen in the tail.

The procedure

® step 1 (build walk A): same as before, but just ensure that tail in walk A has size at least
on/2=2

® step 2 (build walk B): same as step 1, but with queries to K’ = K @ ipad @ opad

® step 3: check if the cycle have the same length, and if so, there is a good chance that it
happened in the tail. Then you can recover the intermediate internal states.

Nk, —> fr. 7 — HMACx — Y HMACk

walk A

Zp
( walk A PR
walk B 5

We_<— D N2

unsynchronized cycles synchronized cycles
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Internal state recovery for wide-pipe

For a wide-pipe hash, the attack is not over, because we have to revert the output
truncation function from the intermediate internal state and recover all [ bits.

The procedure

® step 1: obtain an intermediate internal state
® step 2: find a collision by doing query with one extra block of random data

® step 3: go through all the 2/~" candidates and check offline which one would have give
you this collision

ipad M m

Ibits

opad
Kbits mbits

HMAC
Ibits
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Results - internal state recovery for HMAC

The complexity of the internal state recovery is about 2"/?+? queries
and 2/~"*! computations in total.

Attack Key Setting Target Old Gene‘rlc New Gene'!rlc
Complexity Complexity
Dist.-R Related Key Wide-pipe 2!/2 2n/24+1

Inner state rec. | Related Key | Narrow or Wide 2" 21/2+2 4 pl—ntl
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Existential forgery attack

Once we have recovered an internal state, forging a valid MAC is easy

The procedure

® step 1: obtain an intermediate internal state for a message M;

® step 2: append an extra block of message with a difference (My, M}), such that you get a
collision after the first hash function call (2"/2 offline computations)

® step 3: query HMACk (M ||pad||M;) and the attacker can forge HMACk (M ||pad||M}) since
they are equal

ipad M m

Ibits

HMAC
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Results - existential forgery for HMAC

The complexity to forge a valid MAC is the complexity of the

internal state recovery (2"/?%2 4-2/="+1 computations), and a collision

search on 7 bits (2/2 computations)

Attack Key Setting Target oud Gene‘rlc New Gen?rlc
Complexity Complexity
Dist.-R Related Key Wide-pipe 2172 2n/2+1
Inner state rec. | Related Key | Narrow or Wide 2" 2n/242 4 pl=n+1
Ex. forgery Related Key Wide-pipe 2172 2n/242 4 pl=n+1
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Distinguishing-H for HMAC

The game played (distinguishing-H in the related-key model):

The attacker can query two oracles, HMACk and HMACy/, that are instantiated either
with (aMAcE ", avacE ™) or with (aMack”, aMack™), where H is a known
dedicated hash function, & a known dedicated compression function and r a
randomly chosen function. He must obtain non-negligible advantage in
distinguishing the two cases:

Adv(A) = |PriA(aMacy ™ aMack™) = 1] — PriA(amack”, aMack”) = 1] .
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Procedure for distinguishing-H for HMAC

Once we have recovered an internal state, distinguishing-H is easy

The procedure

® step 1: obtain an intermediate internal state for a message M;

® step 2: from this internal state, append an extra block of message with a difference
(M, M}), such that you get a collision after applying the function h (2"/2 computations)

® step 3: query HMACk (M ||pad||M) and HMACk (M ||pad||M}), if they are equal the oracle
is using h

ipad M m

Ibits

opad
Kbits mbits

HMAC
Ibits
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Results - distinguishing-H for HMAC

The advantage of the attacker is non-negligible and the complexity of the
distinguisher-H is the complexity of the internal state recovery (2"/?*2 4 2/="+1
computations), and a collision search on 7 bits (2"/> computations)

Attack

Key Setting

Target

Old Generic

New Generic

Complexity Complexity
Dist.-R Related Key Wide-pipe 2!/2 on/2+1
Inner state rec. | Related Key | Narrow or Wide 2" 2n/2+2 4 pl=ntl
Ex. forgery Related Key Wide-pipe 21/2 2n/2+2 4 pl=ntl
Dist.-H Related Key | Narrow or Wide 2! 2n/2+2 4 pl=ntl




0000 000
000000

Outline
Introduction: hash functions and MACing
Hash functions
HMAC: MACing with hash functions
The attack models
Current state of HMAC

A generic related-key attack on HMAC
Distinguish-R attack

Intermediate internal state recovery

Existential forgery attack
Distinguish-H attack

Patching HMAC and Conclusion

«O>» «F»r» « >

«E>

DA



Our results

Conclusion

Our attacks on HMAC work when the key has length m, or m — 1
36 and opad = 0x5C5C --- 5C

because ipad = 0x3636

= The choice of ipad and opad was in fact important

Attack

Key Setting

Target

Old Generic

New Generic

Complexity Complexity
Dist.-R Related Key Wide-pipe 2!/2 on/2+1
Inner state rec. | Related Key | Narrow or Wide 2" 2n/2+2 4 pl=ntl
Ex. forgery Related Key Wide-pipe 21/2 2n/2+2 4 pl=ntl
Dist.-H Related Key | Narrow or Wide 2! 2n/2+2 4 pl=ntl
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Patching HMAC

15 try:

We use a different IV for the hash function in the inner and outer call ...
... but that would require to change the H definition and implementations

o5 try:

We truncate the HMAC output ...
... but having a smaller output reduces the expected security

Just prepend a ”0” bit to the message M:

® no more possible for the attacker to synchronize the computation chains: the
inner and outer function are made distinct

® no need to change the specification of H, even better: can be done on top of
HMAC implementations

® almost zero performance drop



Conclusion

Thank you for your attention !
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