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What is a Hash Function ?

• H maps an arbitrary length input (the message M) to a fixed length
output (typically n = 128, n = 160 or n = 256).

• no secret parameter.

• H must be easy to compute.

• examples: MD5 (1992), SHA-1 (1995), SHA-2 (2001), SHA-3 (2012)
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The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) = y, in less than θ(2n) operations.

2nd pre-image resistance:

given a challenge (x, y) so that H(x) = y, the attacker can not find a message x′ 6= x
such that H(x′) = y, in less than θ(2n) operations.

collision resistance:
the attacker can not find two messages (x, x′) such that H(x) = H(x′), in less than
θ(2n/2) operations (a generic attack with the birthday paradox exists [Yuval-79]).
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The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) = y, in less than θ(2n) operations.

2nd pre-image resistance:

given a challenge (x, y) so that H(x) = y, the attacker can not find a message x′ 6= x
such that H(x′) = y, in less than θ(2n) operations.

collision resistance:
the attacker can not find two messages (x, x′) such that H(x) = H(x′), in less than
θ(2n/2) operations (a generic attack with the birthday paradox exists [Yuval-79]).

And other ones: near collisions, multicollisions, random oracle look-alike, ...
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General construction

For historical reasons, most hash functions are composed of two
elements:
• a compression function h: a function for which the input and output

size is fixed.

• a domain extension algorithm: an iterative process that uses the
compression function h so that the hash function H can handle inputs
of arbitrary length.
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The Merkle-Damgård domain extension algorithm

The most famous domain extension algorithm used is called the
Merkle-Damgård [Merkle Damgård-89] iterative algorithm.
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HMAC and NMAC (Bellare et al. - 1996)

A MAC outputs an n-bit value from a k-bit key K and an arbitrary long
message M.

NMAC(K1,K2,M) = H(K2,H(K1,M))
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message M.

HMAC(K,M) = H(K ⊕ opad ||H(K ⊕ ipad ||M))
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Universal and existential forgery

The game played:

The attacker can query an oracle, HMACK, and tries to generate a valid MAC with the
key K for a message that he didn’t query yet

When the message is chosen by the challenger:
it is a universal forgery

When the message is chosen by the attacker:
it is an existential forgery
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Distinguishing-R

The game played:

The attacker can query an oracle, FK, that is instantiated either with HMACK, or with a
random function RK. He must obtain non-negligible advantage in distinguishing the
two cases:

Adv(A) = |Pr[A(HMACK) = 1]− Pr[A(RK) = 1]| .
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Distinguishing-H

The game played:

The attacker can query an oracle, HMACK, that is instantiated either with HMACH(h)
K or

with HMACH(r)
K , where H is a known dedicated hash function, h a known dedicated

compression function, and r a randomly chosen function. He must obtain
non-negligible advantage in distinguishing the two cases:

Adv(A) =
∣∣∣Pr[A(HMACH(h)

K ) = 1]− Pr[A(HMACH(r)
K ) = 1]

∣∣∣ .
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Known dedicated attacks on HMAC

Attack Key Setting Target Size #Rounds Comp. Ref.
Dist.-H Single key MD4 128 Full 2121.5 [KBPH06]
Dist.-H Single key MD5 128 33/64 2126.1 [KBPH06]
Dist.-H Single Key MD5 128 Full 297 [WYWZZ09]
Dist.-H Single key 3p HAVAL 256 Full 2228.6 [KBPH06]
Dist.-H Single key 4p HAVAL 256 102/128 2253.9 [KBPH06]
Dist.-H Single key SHA0 160 Full 2109 [KBPH06]
Dist.-H Single key SHA1 160 43/80 2154.9 [KBPH06]
Dist.-H Single key SHA1 160 50/80 2153.5 [RR08]
Dist.-H Related Key SHA1 160 58/80 2158.74 [RR08]
Inner key rec. Single Key MD4 128 Full 263 [CY06]
Inner key rec. Single Key SHA0 160 Full 284 [CY06]
Inner key rec. Single Key SHA1 64 34/80 232 [RR08]
Inner key rec. Single Key 3p HAVAL 256 Full 2122 [LCKSH08]
Full key rec. Single Key MD4 128 Full 295 [FLN07]
Full key rec. Single Key MD4 128 Full 277 [WOK08]
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Known generic attacks on HMAC

The setting

We try to find generic attacks on HMAC with a k-bit when instantiated with an n-bit
hash function using a l-bit internal state (with l ≤ 2n and k sufficiently big to avoid
brute force key recovery)

Distinguishing-H attack costs 2l computations (ideal)

Universal forgery attack costs 2n computations (ideal)
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Known generic attacks on HMAC

Distinguishing-R attack costs 2l/2 computations (not ideal)

The procedure

• step 1: query 2l/2 messages and gather all pairs (M,M′) that collides on the output
• step 2: for all colliding pairs, append an extra random message block M1 and check if

this new message pair (M||M1,M′||M1) collides as well
• step 3: if it does, the oracle implements HMAC, otherwise it is a random function
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Known generic attacks on HMAC

Existential forgery attack costs 2l/2 computations (not ideal)

The procedure

• step 1: query 2l/2 messages and gather all pairs (M,M′) that collides on the output
• step 2: for all colliding pairs, append an extra random message block M1 and check if

this new message pair (M||M1,M′||M1) collides as well. Pick one such pair.
• step 3: append another extra random message block M2 and query the MAC for message

M||M2. Then it is equal to the MAC for message (M′||M2)
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Known generic attacks on HMAC

Attack Key Setting
Generic

Complexity

Universal forgery Single Key 2n

Existential forgery Single Key 2l/2

Dist.-R Single Key 2l/2

Dist.-H Single Key 2l
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Known generic attacks on HMAC

Attack Key Setting
Generic

Complexity

Universal forgery Related Key 2n ?

Existential forgery Related Key 2l/2 ?

Dist.-R Related Key 2l/2 ?

Dist.-H Related Key 2l ?
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What weakness to attack ?

NMAC
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What weakness to attack ?

HMAC
(with key K)
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What weakness to attack ?
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What to detect ?

HMAC
(with key K and arbitrary message)
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What to detect ?

HMAC
(with key K and n-bit message)
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What to detect ?

HMAC
(with K and K′ = K ⊕ ipad⊕ opad and n-bit message)
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What to detect ?

HMAC
(with K and K′ = K ⊕ ipad⊕ opad and n-bit message)
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What to detect ?

Functions f (g(x)) and g(f (x)) have a particular cycle structure:

there is a 1-to-1 correspondence between cycles of f (g(x)) and g(f (x))
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How to detect the cycle structure ?

=⇒ by measuring cycles length

The game played (distinguishing-R in the related-key model):

The attacker can query two oracles, FK and FK′ , that are instantiated either with
HMACK and HMACK′ , or with two independent random functions RK and RK′ . He
must obtain non-negligible advantage in distinguishing the two cases:

Adv(A) = |Pr[A(HMACK,HMACK′) = 1]− Pr[A(RK,RK′) = 1]|
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The attack

First step (walk A)

Start from an n-bit random input message, query FK, and keep querying as new
message the MAC just received. Continue so for about 2n/2 + 2n/2−1 queries until
getting a collision among the MACs received.

If no collision is found, or if the collision occurred in the 2n/2 first queries, the
attacker outputs 0.
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The attack

Second step (walk B)

Do the same for oracle FK′ .
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The attack

Third step (colliding walk A and walk B)

If the cycle of walk A has the same length as the one from walk B, then output 1.
Otherwise output 0.
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Results - distinguishing-R for HMAC with wide-pipe

The advantage of the attacker is non-negligible and the complexity
of the distinguisher is about 2n/2 + 2n/2−1 computations for each of
the first and second phase, thus about 2n/2+1 computations in total.

We implemented and verified the distinguisher. With SHA-2 truncated to
32 bits, we found two walks A and B that have the same cycle length of
79146 elements with 217 computations. The best previously known attack
for HMAC instantiated with SHA-2 truncated to 32 bits required 2128

computations.

Attack Key Setting Target
Old Generic New Generic
Complexity Complexity

Dist.-R Related Key Wide-pipe 2l/2 2n/2+1
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How to recover the intermediate internal state ?

We would like to know some of the intermediate internal state of HMACK
and HMACK′

Inside a colliding cycle for HMACK and HMACK′ , the input or output queries
to HMACK are intermediate internal state of HMACK′ (and vice-versa) ... but
we don’t know which one it is, so we need to synchronize the cycles
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Synchronized and Unsynchronized cycles

There are two cases for a collision between walk A and walk B:

• collision in the tail

• collision in the cycle

If the collision happens in the tail, then the cycles are directly
synchronized
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Synchronized and Unsynchronized cycles

We just build walk A and walk B with a tail long enough, such that the collision is
likely to happen in the tail.

The procedure
• step 1 (build walk A): same as before, but just ensure that tail in walk A has size at least

2n/2−2

• step 2 (build walk B): same as step 1, but with queries to K′ = K ⊕ ipad⊕ opad

• step 3: check if the cycle have the same length, and if so, there is a good chance that it
happened in the tail. Then you can recover the intermediate internal states.
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Internal state recovery for wide-pipe

For a wide-pipe hash, the attack is not over, because we have to revert the output
truncation function from the intermediate internal state and recover all l bits.

The procedure
• step 1: obtain an intermediate internal state
• step 2: find a collision by doing query with one extra block of random data
• step 3: go through all the 2l−n candidates and check offline which one would have give

you this collision
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Results - internal state recovery for HMAC

The complexity of the internal state recovery is about 2n/2+2 queries
and 2l−n+1 computations in total.

Attack Key Setting Target
Old Generic New Generic
Complexity Complexity

Dist.-R Related Key Wide-pipe 2l/2 2n/2+1

Inner state rec. Related Key Narrow or Wide 2n 2n/2+2 + 2l−n+1
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Existential forgery and distinguish-H attack

• once we have recovered an internal state, forging a valid MAC
is easy

• if we can recover an internal state, then distinguish-H is easy

The complexity to forge a valid MAC or distinguish-H is the
complexity of the internal state recovery
(2n/2+2 + 2l−n+1 computations)

Attack Key Setting Target
Old Generic New Generic
Complexity Complexity

Dist.-R Related Key Wide-pipe 2l/2 2n/2+1

Inner state rec. Related Key Narrow or Wide 2n 2n/2+2 + 2l−n+1

Ex. forgery Related Key Wide-pipe 2l/2 2n/2+2 + 2l−n+1

Dist.-H Related Key Narrow or Wide 2l 2n/2+2 + 2l−n+1
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Our results

Our attacks on HMAC work when the key has length m, or m− 1
because ipad = 0x3636 · · · 36 and opad = 0x5C5C · · · 5C

=⇒ The choice of ipad and opad was in fact important

Attack Key Setting Target
Old Generic New Generic
Complexity Complexity

Dist.-R Related Key Wide-pipe 2l/2 2n/2+1

Inner state rec. Related Key Narrow or Wide 2n 2n/2+2 + 2l−n+1

Ex. forgery Related Key Wide-pipe 2l/2 2n/2+2 + 2l−n+1

Dist.-H Related Key Narrow or Wide 2l 2n/2+2 + 2l−n+1
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Patching HMAC

1st try:

We use a different IV for the hash function in the inner and outer call ...
... but that would require to change the H definition and implementations

2nd try:

We truncate the HMAC output ...
... but having a smaller output reduces the expected security

Our solution:
Just prepend a ”0” bit to the message M:

• no more possible for the attacker to synchronize the computation chains: the
inner and outer function are made distinct

• no need to change the specification of H, even better: can be done on top of
HMAC implementations

• almost zero performance drop
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Thank you for your attention !
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