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Introduction

What is a Hash Function ?

HASH

MESSAGE FUNCTION

I, at any rate, am
convinced that He
does not throw dice.

I, at any rate, am HASH VALUE

H e AC356BFE76

convinced that He
does not throw dice.
1, at any rate, am
convinced that He
does not throw dice.
L, at any rate, am
convinced that Ile
does not throw dice.

\ 4

e H maps an arbitrary length input (the message M) to a fixed length
output (typically n = 128, n = 160 or n = 256).

e no secret parameter.

H must be easy to compute.
e examples: MD5 (1992), SHA-1 (1995), SHA-2 (2001), SHA-3 (2012)
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The security goals
given an output challenge y, the attacker can not find a message x such that

H(x) =y, in less than #(2") operations.




Introduction i : MACing with hash functions A generic related-key attack on Conclusion
o

The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) =y, in less than #(2") operations.

2nd pre-image resistance:

given a challenge (x,) so that H(x) = y, the attacker can not find a message x’ # x
such that H(x") = y, in less than 6(2") operations.
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: MACing with hash functions

The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) =y, in less than #(2") operations.

2nd pre-image resistance:

given a challenge (x,) so that H(x) = y, the attacker can not find a message x’ # x
such that H(x") = y, in less than 6(2") operations.

collision resistance:

the attacker can not find two messages (x, x') such that H(x) = H(x), in less than
6(2"/?) operations (a generic attack with the birthday paradox exists [Yuval-79]).
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: MACing with hash functions A

The security goals

pre-image resistance:

given an output challenge y, the attacker can not find a message x such that
H(x) =y, in less than 6(2") operations.

2nd pre-image resistance:

given a challenge (x,y) so that H(x) = y, the attacker can not find a message x’ # x
such that H(x") = y, in less than 6(2") operations.

collision resistance:

the attacker can not find two messages (x,x’) such that H(x) = H(x'), in less than
6(2"/?) operations (a generic attack with the birthday paradox exists [Yuval-79]).

And other ones: near collisions, multicollisions, random oracle look-alike, ...
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General construction

For historical reasons, most hash functions are composed of two
elements:

e a compression function /: a function for which the input and output
size is fixed.

¢ a domain extension algorithm: an iterative process that uses the
compression function / so that the hash function H can handle inputs
of arbitrary length.

COMPRESSION DOMAIN EXTENSION
FUNCTION ALGORITHM

MESSAGE HASH
TO HASH VALUE

Fixed size )
input h —
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The Merkle-Damgard domain extension algorithm

The most famous domain extension algorithm used is called the
Merkle-Damgard [Merkle Damgard-89] iterative algorithm.

Pad the | MESSAGE TO HASH |
message
(add the Divide the
length of M) | PADDED MESSAGE | padded
message In
fixed size
message
blocks
Hash Value
Final H(M)
Initial ez |

Value
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HMAC and NMAC (Bellare et al. - 1996)
A MAC outputs an n-bit value from a k-bit key K and an arbitrary long
message M.

NMAC(Kl, KZ,M) = H(Kz,H(K1,M))

n bits

K1

n bits

NMAC

K2
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HMAC and NMAC (Bellare et al. - 1996)

A MAC outputs an n-bit value from a k-bit key K and an arbitrary long
message M.

HMAC(K,M) = H(K ® opad || H(K & ipad || M))

HMAC
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HMAC and NMAC (Bellare et al. - 1996)

A MAC outputs an n-bit value from a k-bit key K and an arbitrary long

message M.

HMAC(K,M) = H(K ® opad || H(K & ipad || M))

ipad

M
1bits
h ______
IV ——»

Ibits nbits
HMAC
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The attack models
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Universal and existential forgery

The game played:

The attacker can query an oracle, HMACk, and tries to generate a valid MAC with the
key K for a message that he didn’t query yet

When the message is chosen by the challenger:
it is a universal forgery

When the message is chosen by the attacker:
it is an existential forgery
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Distinguishing-R

Conclusion

The game played:

The attacker can query an oracle, Fg, that is instantiated either with HMACk, or with a
random function Rx. He must obtain non-negligible advantage in distinguishing the

two cases:
Adv(A) = |Pr[A(aMACK) = 1] — PrlA(Rk) = 1]| .

random
function

HMAC
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Distinguishing-H

The game played:

The attacker can query an oracle, HMACk, that is instantiated either with HMAC?

with HMAC?(Y), where H is a known dedicated hash function, & a known dedicated
compression function, and r a randomly chosen function. He must obtain
non-negligible advantage in distinguishing the two cases:

&) or

Adv(A) = |Pr[A(avack®) = 1] — PrlA(amMacE ) = 1]

random
function

HMAC
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HMAC: MACing with hash functions

Current state of HMAC
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Known dedicated attacks on HMAC

Attack Key Setting Target Size | #Rounds | Comp. Ref.
Dist.-H Single key MD4 128 Full 21215 [KBPHO06]
Dist.-H Single key MD5 128 33/64 2126.1 [KBPHO06]
Dist.-H Single Key MD5 128 Full 2% [WYWZZ09]
Dist.-H Singlekey | 3p HAVAL | 256 Full 22286 [KBPHO6]
Dist.-H Singlekey | 4p HAVAL | 256 | 102/128 | 22339 [KBPHO06]
Dist.-H Single key SHAOQ 160 Full 2109 [KBPHO06]
Dist.-H Single key SHA1 160 43/80 21549 [KBPHO6]
Dist-H Single key SHA1 160 50/80 21535 [RRO08]
Dist.-H Related Key SHA1 160 58/80 | 21874 [RRO8]
Inner key rec. | Single Key MD4 128 Full 263 [CY06]
Inner key rec. | Single Key SHAO 160 Full 284 [CY06]
Inner key rec. Single Key SHA1 64 34/80 232 [RRO8]
Inner key rec. | Single Key | 3p HAVAL | 256 Full 2122 [LCKSHO8]
Full key rec. Single Key MD4 128 Full 2% [FLNO7]
Full key rec. Single Key MD4 128 Full 277 [WOKO08]
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Known generic attacks on HMAC

The setting

We try to find generic attacks on HMAC with a k-bit when instantiated with an n-bit
hash function using a [-bit internal state (with [ < 2n and k sufficiently big to avoid
brute force key recovery)

Distinguishing-H attack costs 2' computations (ideal)

Universal forgery attack costs 2" computations (ideal)

pag M Lad]

opad

Kkbits mbits

Ibits
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Known generic attacks on HMAC

Distinguishing-R attack costs 2//> computations (not ideal)

The procedure

® step 1: query 2//2 messages and gather all pairs (M, M’) that collides on the output

® step 2: for all colliding pairs, append an extra random message block M; and check if
this new message pair (M||M;, M'||M;) collides as well

® step 3: if it does, the oracle implements HMAC, otherwise it is a random function

poa M Lpad]

Ibits

opad
Kbits mbits

HMAC
Ibits
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Known generic attacks on HMAC

Existential forgery attack costs 2//> computations (not ideal)

The procedure

® step 1: query 2//2 messages and gather all pairs (M, M’) that collides on the output
p L- query g g p P

® step 2: for all colliding pairs, append an extra random message block M; and check if
this new message pair (M]||M7, M’||M;) collides as well. Pick one such pair.

® step 3: append another extra random message block M, and query the MAC for message
M||M;. Then it is equal to the MAC for message (M'||M;)

pad M Lpad]

Ibits

HMAC
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Known generic attacks on HMAC

. Generic
Attack Key Setting
Complexity
Universal forgery | Single Key 2"
Existential forgery | Single Key 212
Dist.-R Single Key 2!/
Dist.-H Single Key 2!
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c related-key attack on

Known generic attacks on HMAC

. Generic
Attack Key Setting
Complexity
Universal forgery | Related Key 2" 72
Existential forgery | Related Key 2122
Dist.-R Related Key 21122
Dist.-H Related Key 2l

Conclusion
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What weakness to attack ?

NMAC

n bits

n bits

NMAC

K2
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What weakness to attack ?

HMAC

HMAC
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What weakness to attack ?

HMAC
(with key K)

n bits

Hash HMAC
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What weakness to attack ?

HMAC
(with key K’ = K @ ipad @ opad)
Yy

ipad M

S

K D ipad ) opad L/ ’]l,

opad

K'=
K D ipad ) opad L/ ’]l, Hash

Conclusion

n bits

HMAC
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What weakness to attack ?

HMAC
(with key K’ = K@ ipad @ opad)

n bits

Hash HMAC




pad

A generic related-key attack on HMAC

00@000

What to detect ?

HMAC

(with key K and arbitrary message)

1bits

opad

k bits m bits

3

w

1bits

n bits

[pad |

m bits ~.

1 bits

n bits

HMAC
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What to detect ?

HMAC
(with key K and n-bit message)

nbits

1bits n bits

h HMAC

v
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What to detect ?

HMAC
(with key K and n-bit message)

opad ipad

f f HMAC
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What to detect ?

HMAC
(with K and K’ = K @ ipad @ opad and n-bit message)

opad ipad

f f HMAC

ipad opad

f f HMAC
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What to detect ?

HMAC
(with K and K’ = K & ipad & opad and n-bit message)

M E g HMAC
M B f HMAC
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What to detect ?

Functions f(g(x)) and g(f (x)) have a particular cycle structure:

there is a 1-to-1 correspondence between cycles of f(g(x)) and g(f(x))

NS — g 7 gMAcy —> Y HMACk
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How to detect the cycle structure ?

= by measuring cycles length

NS — g 7 gMAcy —>7 ¥ HMACk

The game played (distinguishing-R in the related-key model):

The attacker can query two oracles, Fx and F, that are instantiated either with
HMACk and HMACg/, or with two independent random functions Rx and Rx/. He
must obtain non-negligible advantage in distinguishing the two cases:

Ado(A) = |Pr[A(HMACKk, HMACk/ ) = 1] — Pr[A(Rk, Rxs) = 1]|
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The attack

First step (walk A)

Start from an n-bit random input message, query Fk, and keep querying as new
message the MAC just received. Continue so for about 2"/2 4 2"/2~! queries until
getting a collision among the MACs received.

If no collision is found, or if the collision occurred in the 2"/ first queries, the
attacker outputs 0.

i — g 7> HMACk, — Y HMACy

Za

walk A

n/2
atleast2 elements in the structure
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The attack

Second step (walk B)

Do the same for oracle Fx:.

— g T gMACx —> Y HMACy

I

n/2
atleast2 elements in the structure (

walk B ’\_/l
N N
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The attack

Third step (colliding walk A and walk B)

If the cycle of walk A has the same length as the one from walk B, then output 1.
Otherwise output 0.

/_\f

Za
walk A
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Results - distinguishing-R for HMAC with wide-pipe

The advantage of the attacker is non-negligible and the complexity
of the distinguisher is about 2/2 4 2""/2~! computations for each of
the first and second phase, thus about on/2+1 computations in total.

We implemented and verified the distinguisher. With SHA-2 truncated to
32 bits, we found two walks A and B that have the same cycle length of
79146 elements with 27 computations. The best previously known attack
for HMAC instantiated with SHA-2 truncated to 32 bits required 2%
computations.

1 i N i
Attack | Key Setting Target Old Gene.rlc e Gen?nc
Complexity Complexity

Dist.-R | Related Key | Wide-pipe 2!/2 on/2+1
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Conclusion
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How to recover the intermediate internal state ?

We would like to know some of the intermediate internal state of HMACk
and HMACk

Inside a colliding cycle for HMACk and HMACk, the input or output queries
to HMACk are intermediate internal state of HMACk (and vice-versa) ... but
we don’t know which one it is, so we need to synchronize the cycles

i —>g 7> uMAck —> ¥ HMACg
Za

]
C

walk A
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Synchronized and Unsynchronized cycles

There are two cases for a collision between walk A and walk B:
e collision in the tail
e collision in the cycle

If the collision happens in the tail, then the cycles are directly
synchronized

/_\‘fK,.,, — fk

out

T HMACK —> Y HMACy

walkA Za
walk A

( Zy=1g
walkB

w <
e R

unsynchronized cycles synchronized cycles
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Synchronized and Unsynchronized cycles

We just build walk A and walk B with a tail long enough, such that the collision is
likely to happen in the tail.

The procedure

® step 1 (build walk A): same as before, but just ensure that tail in walk A has size at least
on/2—2

® step 2 (build walk B): same as step 1, but with queries to K’ = K @ ipad @ opad

® step 3: check if the cycle have the same length, and if so, there is a good chance that it
happened in the tail. Then you can recover the intermediate internal states.

N fr  —> fr.. 7 O HMACk — ¥ HMACk

walkA B IkA /_\—’)
( wal Zaezy
walk B
Z
" D VA

unsynchronized cycles synchronized cycles
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Internal state recovery for wide-pipe

For a wide-pipe hash, the attack is not over, because we have to revert the output
truncation function from the intermediate internal state and recover all [ bits.

The procedure

® step 1: obtain an intermediate internal state
® step 2: find a collision by doing query with one extra block of random data

® step 3: go through all the 2/~" candidates and check offline which one would have give
you this collision

ipad M m

Ibits

HMAC
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Results - internal state recovery for HMAC

The complexity of the internal state recovery is about 2"/?+2 queries
and 2/~"*! computations in total.

Attack Key Setting Target Old Gene‘rlc New Gene‘3r1c
Complexity Complexity
Dist.-R Related Key Wide-pipe 2!/2 on/2+1

Inner state rec. | Related Key | Narrow or Wide 2" 2n/2+2 4 pl=ntl
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Existential forgery and distinguish-H attack

Conclusion
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Existential forgery and distinguish-H attack

e once we have recovered an internal state, forging a valid MAC
is easy
e if we can recover an internal state, then distinguish-H is easy

The complexity to forge a valid MAC or distinguish-H is the
complexity of the internal state recovery
(21/2+2 4 2l=n+1 computations)

Attack Key Setting Target oud Gene‘rlc New Gene‘:nc
Complexity Complexity
Dist.-R Related Key Wide-pipe 2l/2 21/2+1
Inner state rec. | Related Key | Narrow or Wide 2n 21/2+2 4 pl—n+1
Ex. forgery Related Key Wide-pipe 21/2 21/2+2 4 pl—n+1
Dist.-H Related Key | Narrow or Wide 2! 21/2+2 4 pl—n+1
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Conclusion

Our results

Our attacks on HMAC work when the key has length m, or m — 1
because ipad = 0x3636 --- 36 and opad = 0x5C5C --- 5C

= The choice of ipad and opad was in fact important

Attack Key Setting Target Old Gene‘rlc New Gene‘mc
Complexity Complexity
Dist.-R Related Key Wide-pipe 21/2 21/2+1
Inner state rec. | Related Key | Narrow or Wide 2" 2n/2+2 4 pl=ntl
Ex. forgery Related Key Wide-pipe 21/2 2n/2+2 4 pl=ntl
Dist.-H Related Key | Narrow or Wide 2! 2n/2+2 4 pl=ntl
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Patching HMAC

19 try:

We use a different IV for the hash function in the inner and outer call ...
... but that would require to change the H definition and implementations

i try:

We truncate the HMAC output ...
... but having a smaller output reduces the expected security

Our solution:

Just prepend a ”0” bit to the message M:

® no more possible for the attacker to synchronize the computation chains: the
inner and outer function are made distinct

® no need to change the specification of H, even better: can be done on top of
HMAC implementations

® almost zero performance drop
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Thank you for your attention !
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