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Iterated block ciphers

An iterated block cipher is composed of two parts :

. an internal permutation f repeated r times (also named
round function)

. a key schedule that generates r + 1 subkeys K → (k0, . . . , kr)

Key Schedule

K

P = s0 f s1
. . . f sr

sr+1 = C

k0 k1 kr−1 kr

For a compression function, the key schedule is also named the
message expansion
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Permutations

We know how to design a good permutation :
. Feistel network - DES, SHA-2
. Substitution-Permutation network (SPN) - AES, Keccak
(SHA-3)
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Permutations

We know how to design a good permutation :
. Feistel network - DES, SHA-2
. Substitution-Permutation network (SPN) - AES, Keccak
(SHA-3)

Many recent primitives try to use only permutations to avoid
the key schedule (sponge functions, Grøstl, LED)
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Ex : the AES-128 round function

AddRoundKey
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The 128-bit round function of AES-128 is an SPN :
. AddRoundKey : xor incoming 128-bit subkey

. SubBytes : apply the 8-bit Sbox to each byte

. ShiftRows : rotate the i-th line by i positions to the left

. MixColumns : apply the AES-128MDS matrix to each columns
independently (branching number = 5)

10/12/14 rounds for AES-128/AES-192/AES-256
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Differentials and differential characteristics

Differential (characteristics)
. used in differential cryptanalysis
. sequence of differences at each round for an iterated primitive
. a differential is a collection of characteristics

Example

δ ∆

δ1

δ2

δ3

. δ → ∆ is a differential

. δ → δ1 → δ2 → δ3 → ∆ is a differential characteristic

. P(δ → δ1 → δ2 → δ3 → ∆) is its differential probability
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Differentials and differential characteristics

Differential characteristics
. differential characteristics are easier to handle than differentials

=⇒ we usually focus on characteristics
. designers’ goal :

upper-bound the differential probability of characteristics

Example : 4-round AES

1R 1R 1R 1R
difference

no difference

. 4-round characteristic with 25 active S-Boxes (minimal)

. AES S-Box : pmax = 2−6

. differential probability : p ≤ 2−6×25 = 2−150
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Proving 25 active Sboxes for 4 AES rounds (part I)
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Proving 25 active Sboxes for 4 AES rounds (part II)

SB
MC
SB

SR MC SR
SB
MC
SB

Theorem 1
Any active Super-box will contain at least 5 active Sboxes

Theorem 2
There will be at least 5 active Super-boxes in 4 AES rounds

Corollary
There are at least 25 active Sboxes in 4 AES rounds
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Min. num. of active Sboxes for AES in the SK model
Rounds 1 2 3 4 5 6 7 8 9 10
min 1 5 9 25 26 30 34 50 51 55

Question :
What would this table look like for the AES structure in the RK
model ?
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Meet-in-the-middle attacks

Attack sketch :
. choose two independent subparts KF and KB

of the key K and guess the remaining bits
K \ KF ∩ KB

. compute X forward from the plaintext (does
not depend on KB)

. compute X backward from the ciphertext
(does not depend on KF)

. check if you get a match on X. If so, test this
key candidate.

. complex improvements exist (splice-and-cut,
etc.)

ke
y

ciphertext

plaintext

Can be used for key-recovery on block ciphers or preimage on
hash functions

Meet-in-the-middle attacks are strongly depending on the
strength of the key-schedule
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Slide attacks

K g . . . g

P = s0 f s1
. . . f sr

sr+1 = C

k0 k1 kr−1 kr

Slide attacks :
. can happen if the very same round function fk is used to

build the permutation
. find a slid pair P′ = fk(P⊕ k), then you will have C′ = fk(C)

. once a slid pair is found, easy to recover the key if fk is
weak enough

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function
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Slide attacks
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. . .
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Slide attacks :
. can happen if the very same round function fk is used to

build the permutation
. find a slid pair P′ = fk(P⊕ k), then you will have C′ = fk(C)

. once a slid pair is found, easy to recover the key if fk is
weak enough

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function



permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems



permutations KS role KS const. Skinny Future

Symmetry attacks

K g . . . g

P = s0 f s1
. . . f sr

sr+1 = C

k0 k1 kr−1 kr

Symmetry attacks :
. can happen if a certain property can be maintained after
application of fk

. allows to maintain a low entropy in the internal state

. more generally : invariant subspace attacks

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function
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Symmetry attacks

SB SR MC

Symmetry attacks :
. can happen if a certain property can be maintained after
application of fk

. allows to maintain a low entropy in the internal state

. more generally : invariant subspace attacks

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function
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Weak-keys

A weak-key class is a set of keys for which the attack can break
the cipher faster than exhaustive search

Weak-keys for block cipher and hash functions
. weak-keys are not too problematic for a block cipher as
long as the weak-key class remains small

. situation is completely different for a hash function : a
single weak key can potentially be catastrophic
(ex. IDEA cipher)
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Related-key attacks for block ciphers

The related-key security model
The attacker is allowed to make queries to the key K, but also to
other keys K′, K′′, etc. “related” to the key K

Why studying related-keys attacks ?
. some protocols might use simple updates to generate new keys
. related-key analysis helps to understand hash functions
. more generally, in the ideal case, a cipher shouldn’t have any

structural flaw, so we could even extend this model to
known-key/chosen-key attacker

A LOT of block ciphers have been broken in this model
(AES-256 for example)
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Message expansion for hash function

"related-key" attacks are actually the base of most hash function
collision attacks

The case of hash functions :
. key-schedule for block ciphers = message expansion for
hash functions

. the message expansion is crucial in a hash function,
because fully controlled by the attacker

. must resist collision attacks, but also any distinguishing
property

A LOT of hash functions have been broken because of an
insufficiently secure message expansion
(SHA-0, SHA-1, many SHA-3 candidates for example)
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Key schedule design

we don’t really know
how to design an efficient and secure key schedule

Our current knowledge for building key
schedules/message expansion is sparse :
. general technique use ad-hoc KS to decorrelate the KS and the

internal BC, so hard ot prove anything and hard to analyse
. AES has a rather efficient key schedule (about 25% to 40% of the

internal permutation part), but no clue about its security
. in order to get simple provable confidence in the key schedule,

designers proposed inefficient solutions :
◦ WHIRLPOOL has a very strong message expansion, but then one

round is not efficient
◦ LED has no key schedule, but requires more rounds to resist RK



permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems



permutations KS role KS const. Skinny Future

The AES key schedules

<
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AES-128

<
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AES-192

<
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S

AES-256

Rationale :
. XORs for inter-column diffusion, shift for inter-row diffusion,

Sbox for non-linearity, counter to break symmetries
. quite different from the AES round function
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Security issues with the AES key schedule
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KS
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SR MC

KS

KS

Related-key attacks on the full AES-256 and AES-192
. existence of 2-round local collision paths [BKN09]
. 14-round path with only 24 active Sboxes (5 in the key schedule,

19 in the internal state)
. later improved in [BK09] using boomerang technique (since very

good small differential paths exist) :
key recovery attack with 299.5 time and data

. harder to attack AES-192 and so far no attack on AES-128
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Proven bounds for AES-128

Single-key model

Rounds 1 2 3 4 5 6 7 8 9 10
min 1 5 9 25 26 30 34 50 51 55

Related-key model (truncated differences)
Rounds 1 2 3 4 5 6 7 8 9 10
min 0 1 3 9 11 13 15 21 23 25

Related-key model (actual differences)
Rounds 1 2 3 4 5 6 7 8 9 10
min 0 1 5 13 17 ? ? ? ? ?
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The PRESENT key schedule

PRESENT is a 64-bit block cipher - based on SPN, but using 4-bit
Sboxes and bit permutation as permutation layer.

The key schedule of the PRESENT-80 block cipher
. The key is 80 bits and the subkeys 64 bits

. Extract : the round subkey is the 64 MSB of the key state

. Shift : rotate the key state by 19 bit positions to the right

. Sbox : apply one Sbox to the 4 MSBs of the key state

. Counter : add a 5-bit round counter to the key state

. very simple and hardware friendly

. quite different from the round function

. still no related-key attack on full PRESENT

. even better : the best attacks on PRESENT are not in related-key
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The key-schedule of WHIRLPOOL internal block cipher

Recent lessons learned in block ciphers design :
. designing key schedules seems hard
. obtaining security proofswhen also considering differences in

the key schedule seems hard as well

WHIRLPOOL rationale :
use an entire round function as key schedule update
. only leverages the quality of the permutation since we do

know how to build good permutations
. trivial to prove a minimal number of active Sboxes in the RK

model
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The key-schedule of WHIRLPOOL internal block cipher

P

K

1 round

KS

1 round

KS

1 round

KS

1 round

KS

C

Issues with WHIRLPOOL’s key schedule :
. security is greatly reduced when used inside a hash

construction ([LMRRS09]), but probably ok when used in a
classical block cipher scenario (unknown key)

. it is quite slow (×2 slower if a new key has to be used)
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The key-schedule of LED

Recent lessons learned in block ciphers design :
. designing key schedules seems hard
. obtaining security proofswhen also considering differences in

the key schedule seems hard as well

LED rationale : use NO key schedule
. much simpler for cryptanalysts : not relying on the difficulty to

analyze (a lot of cryptanalysis has been performed since
publication of LED)

. only leverages the quality of the permutation since we do
know how to build good permutations

. you can directly hardwire the key in some particular scenarios

. can benefit from security proofs (see recent security proofs on
iterated Even-Mansour schemes)

. easy to prove a minimal number of active Sboxes in the RK
model
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The key-schedule of LED : first attempt

Key repeated every round

P 1 round

K
1 round

K
1 round

K K
1 round

K K
C

Paths exist with only 1 active Sbox per round on average

1 round

AC SB ShR MC
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The key-schedule of LED : second attempt

Key repeated every two rounds

P 2 rounds

K
2 rounds

K
2 rounds

K K
2 rounds

K K
C

Paths exist with only 2.5 active Sboxes per round on average

1 round

AC SB ShR MC

1 round

AC SB ShR MC
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The key-schedule of LED : third attempt

Key repeated every four rounds

P 4 rounds

K
4 rounds

K
4 rounds

K K
4 rounds

K K
C

Paths exist with only 3.125 active Sboxes per round on average

1 round

AC SB ShR MC

1 round

AC SB ShR MC

1 round

AC SB ShR MC

1 round

AC SB ShR MC
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The key-schedule of LED

For 64-bit key :
XOR the key to the internal state every four rounds, for a total
of 8 steps (or 32 rounds) :

P 4 rounds

K
4 rounds

K
4 rounds

K K
4 rounds

K K
C

For 128-bit key :
Divide the key into two equal chunks K1 and K2 and
alternatively XOR them to the internal state every four rounds,
for a total of 12 steps (or 48 rounds) :

P 4 rounds

K1

4 rounds

K2

4 rounds

K1 K2

4 rounds

K2 K1

C
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The TWEAKEY framework

The TWEAKEY framework rationale [ASIACRYPT’14] :
tweak and key should be treated the same way −→ tweakey

P = s0 f s1
. . . f sr

sr+1 = C

tk0 h

g

h

g

tk1 . . . h

g

tkr−1

g

tkr

TWEAKEY generalizes the class of key-alternating ciphers
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The TWEAKEY framework

P = s0 f s1
. . . f sr

sr+1 = C

tk0 h

g

h

g

tk1 . . . h

g

tkr−1

g

tkr

The main issue :
adding more tweakey state makes the security drop, or renders
security hard to study, even for automated tools

Idea : the STK construction (Superposition-TWEAKEY)
separate the tweakey material in several words, design a secure
tweakey schedule for one word and then superpose them in a secure
way
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The STK construction (Superposition-TWEAKEY)

STK Tweakey Schedule

h′
h′

...

h′

α1

α2

αp

tk0

XOR C0

ART

f

h′
h′

...

h′

α1

α2

αp

XOR C1

ART

fP = s0

h′
h′

...

h′

. . .

. . .

. . .

XOR C2

ART

. . .

XOR Cr−1

ART

f

h′
h′

...

h′

α1

α2

αp

XOR Cr

ART

sr = C

From the TWEAKEY framework to the STK construction :
. the tweakey state update function h consists in the same

subfunction h′ applied to each tweakey word
(for example a simple permutation of the cells positions)

. the subtweakey extraction function g consists in XORing all the
words together
◦ reduce the implementation overhead
◦ simplify the security analysis
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The STK construction (Superposition-TWEAKEY)

STK Tweakey Schedule

h′
h′

...

h′

α1

α2

αp

tk0

XOR C0

ART

f

h′
h′

...

h′

α1

α2

αp

XOR C1

ART

fP = s0

h′
h′

...

h′

. . .

. . .

. . .

XOR C2

ART

. . .

XOR Cr−1

ART

f

h′
h′

...

h′

α1

α2

αp

XOR Cr

ART

sr = C

From the TWEAKEY framework to the STK construction :
. problem : strong interaction between the parallel branches of

tweakey state
. solution : differentiate the parallel branches (for example by

simply using distinct multiplications in a small field or LFSRs)
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The STK construction : rationale

Design choices
. very simple transformations : linear and lightweight
. multiplication in GF(2c) or LFSRs control the number of

cancellations in g, when the subtweakeys are XORed to the
internal state

. one can bound the number of cancellations

Security analysis

A security analysis is now possible with STK :
. when considering one tweakey word, we ensure that function h′

is itself a good tweakey schedule
. when considering several tweakey words, we reuse existing tools

searching for good differential paths :
for these tools it is easy to add the cancellation bound
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SKINNY website

Joint work with C. Beierle, S. Kölbl, G. Leander, A. Moradi, Y.
Sasaki, P. Sasdrich and S.M. Sim
(CRYPTO 2016)

Paper, Specifications, Results and Updates available at :
https://sites.google.com/site/skinnycipher/

Any new cryptanalysis of SKINNY is welcome !

https://sites.google.com/site/skinnycipher/
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SKINNY goals and results

Goals
. Provide an alternative to NSA-designed SIMON block cipher
. Construct a lightweight (tweakable) block cipher
. Achieve scalable security
. Suitable for most lightweight applications
. Perform and share full security analysis
. Efficient software/hardware implementations in many scenarios

Results
. SKINNY family of (tweakable) block ciphers
. Block sizes n : 64 and 128 bits
. Various key+tweak sizes : n, 2n and 3n bits
. Security guarantees for differential/linear cryptanalysis

(both single and related-key)
. Efficient and competitive software/hardware implementations

◦ Round-based SKINNY-64-128 : 1696 GE (SIMON : 1751 GE)
◦ on Skylake (avx2) : 2.78 c/B (SIMON : 1.81 c/B) for fixed-key
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SKINNY general design strategy

. Start from weak crypto components, but providing very efficient
implementations

◦ Opposed to AES : strong Sbox and diffusion⇒ only 10
rounds

◦ Similar to SIMON : only AND/XOR/ROT⇒many rounds

. Reuse AESwell-understood design

. Remove all operations not strictly necessary to security

. Result : removing any operations from SKINNY results in an
unsecure cipher
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SKINNY specifications : overview

Specifications
. SKINNY has a state of either 64 bit (s = 4) or 128 bits (s = 8).
. tweakey schedule generalises the STK construction
. Internal state IS : viewed as a 4× 4 matrix of s-bit elements.
⇒ |IS| = n = 16s ∈ {64, 128}.

. The tweakey size can be n, 2n or 3n.

Number of rounds
Tweakey size

Block size n n 2n 3n

64 32 36 40
128 40 48 56

Comparison : SKINNY-64-128 has 36 rounds, SIMON-64-128 has 44 rounds.
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SKINNY round function

AES-like round function
. SubCells (SC) : Application of a s-bit Sbox to all 16 cells

. AddConstants (AC) : Inject round constants in the state

. AddRoundTweakey (ART) : Extract and inject the subtweakeys
to half the state

. ShiftRows (SR) : Right-rotate Line i by i positions

. MixColumns (MC) : Multiply the state by a binary matrix

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns
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SKINNY 4-bit Sbox

MSB LSB

MSB LSB

S4 : 4-bit Sbox for SKINNY-64-∗

. Almost PICCOLO Sbox

. Implementation :
4 NOR and 4 XOR

. Hardware cost : 12 GE

Properties

. Maximal diff. probability : 2−2

. Maximal abs. linear bias : 2−2

. deg(S4) = deg(S−14 ) = 3

. One fixed point :
S4(0xF) = 0xF

. Branch number : 2
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SKINNY 8-bit Sbox

MSB LSB

MSB LSB

S8 : 8-bit Sbox for SKINNY-128-∗

. Generalize the S4 construction

. Implementation :
8 NOR and 8 XOR

. Hardware cost : 24 GE

Properties

. Maximal diff. probability : 2−2

. Maximal abs. linear bias : 2−2

. deg(S8) = deg(S−18 ) = 6

. One fixed point :
S8(0xFF) = 0xFF

. Branch number : 2
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Overview of SKINNY security

Claims
. Security against known classes of attacks
. Security in the related-key model
. No guarantees for known or chosen key
. No claim for related-cipher security

(the constant does not encode the cipher parameters)

Attack vectors considered
. Differential/Linear cryptanalysis
. Integral attack
. Division property
. Meet-in-the-middle attack
. Impossible differential attack
. Invariant subspace attack
. Slide attack
. Algebraic attack
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Comparing differential/linear bounds

. We adapt the number of rounds to get resistance (+ margin) :
◦ SKINNY-64-64/128/192 has 32/36/40 rounds
◦ SKINNY-128-128/256/384 has 40/48/56 rounds

. As a result, for all SKINNY variants :
◦ SK security reached in 20− 40% of the rounds
◦ TK2 security reached in 40− 50% of the rounds

Comparison with other 64/128 and 128/128 ciphers

Cipher Single Key (SK) Related Key (RK)
SKINNY-64-128 8/36 = 22% 15/36 = 42%
SIMON-64-128 19/44 = 43% no bound known
SKINNY-128-128 15/40 = 37% 19/40 = 47%
SIMON-128-128 41/72 = 57% no bound known
AES-128 4/10 = 40% 6/10 = 60%
NOEKEON-128 12/16 = 75% 12/16 = 75%
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Theoretical performances of SKINNY

#operations per bit Round-based
Cipher Rounds without KS with KS area estimation

SKINNY-64-128 36 117 139.5 8.68
SIMON-64-128 44 88 154 8.68
PRESENT-64-128 31 147.2 161.8 12.43
PICCOLO-64-128 31 162.75 162.75 12.35

SKINNY-128-128 40 130 130 7.01
SIMON-128-128 72 136 204 7.34
NOEKEON-128-128 16 100 200 30.36
AES-128-128 10 202.5 248.1 59.12

Example of SKINNY-64-128 (more in the paper)
. 1R : (4 NOR+ 4 XOR)/4 [SB]+ (3 XOR)/4 [MC]+ (32 XOR)/64 [ART]

. That is (per bit per round) : 1 NOR + 2.25 XOR

. #operations per bit (without KS) : (1+ 2.25)× 36 = 117

. Very low number of operations per plaintext bit. Challenge : do better.
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Round-based implementation results

Area Delay Through-
put

@100KHz

Through-
put

@maxi-
mum

GE ns KBit/s MBit/s

SKINNY-64-128 1696 1.87 177.78 951.11
SKINNY-128-128 2391 2.89 320.00 1107.20
SKINNY-128-256 3312 2.89 266.67 922.67

SIMON-64-128 1751 1.60 145.45 870
SIMON-128-128 2342 1.60 188.24 1145
SIMON-128-256 3419 1.60 177.78 1081

LED-64-128 3036 - 133.0 -
PRESENT-64-128 1884 - 200.00 -
PICCOLO-64-128 1773 - 193.94 -
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Open problems in key-schedule security analysis

For security proofs :
. tighter bounds ?
. bounds for more rounds ?
. actual differences instead of truncated differences ?
. generic proof for any state size ?

For automated tools :
. more efficient algorithms (what about AES-128 after 5 rounds ?)
. design tools to analyse other types of functions

(e.g. ARX functions)
. automated tools for other attack types

(MitM, division property, etc.)
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Open problems in key-schedule constructions

For key schedule design :
. LED and WHIRLPOOL are not so efficient, others designs security

is hard to prove
can we design efficient and easily provable key schedules ?

. STK construction from TWEAKEY framework seems to be a
good tradeoff, but we need more analysis
(differentials, linear hulls ?)

. linear/non linear key schedule ?

. invertible/non invertible ?



Thank you !
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