
Key-Schedule in (Lightweight)
Symmetric-Key Cryptography

Thomas Peyrin

NTU - Singapore

TCCM-CACR 2016
Yinchuan, China - August 31, 2016

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Iterated block ciphers

An iterated block cipher is composed of two parts :

. an internal permutation f repeated r times (also named
round function)

. a key schedule that generates r + 1 subkeys K → (k0, . . . , kr)

Key Schedule

K

P = s0 f s1
. . . f sr

sr+1 = C

k0 k1 kr−1 kr

For a compression function, the key schedule is also named the
message expansion

permutations KS role KS const. Skinny Future

Iterated block ciphers

An iterated block cipher is composed of two parts :

. an internal permutation f repeated r times (also named
round function)

. a key schedule that generates r + 1 subkeys K → (k0, . . . , kr)

K g . . . g

P = s0 f s1
. . . f sr

sr+1 = C

k0 k1 kr−1 kr

For a compression function, the key schedule is also named the
message expansion

permutations KS role KS const. Skinny Future

Permutations

We know how to design a good permutation :
. Feistel network - DES, SHA-2
. Substitution-Permutation network (SPN) - AES, Keccak
(SHA-3)

FSubkey

le
ft

br
an

ch
ri
gh

t
br
an

ch

1 round

FSubkey

le
ft

br
an

ch
ri
gh

t
br
an

ch

1 round

permutations KS role KS const. Skinny Future

Permutations

We know how to design a good permutation :
. Feistel network - DES, SHA-2
. Substitution-Permutation network (SPN) - AES, Keccak
(SHA-3)

Subkey

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox
pe

rm
ut
at
io
n
la
ye

r

1 round

Subkey

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox

pe
rm

ut
at
io
n
la
ye

r

1 round

permutations KS role KS const. Skinny Future

Permutations

We know how to design a good permutation :
. Feistel network - DES, SHA-2
. Substitution-Permutation network (SPN) - AES, Keccak
(SHA-3)

Many recent primitives try to use only permutations to avoid
the key schedule (sponge functions, Grøstl, LED)

permutations KS role KS const. Skinny Future

Ex : the AES-128 round function

AddRoundKey

4 cells

4 cells

8 bits

SubBytes

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

ShiftRows MixColumns

The 128-bit round function of AES-128 is an SPN :
. AddRoundKey : xor incoming 128-bit subkey

. SubBytes : apply the 8-bit Sbox to each byte

. ShiftRows : rotate the i-th line by i positions to the left

. MixColumns : apply the AES-128MDS matrix to each columns
independently (branching number = 5)

10/12/14 rounds for AES-128/AES-192/AES-256

permutations KS role KS const. Skinny Future

Differentials and differential characteristics

Differential (characteristics)
. used in differential cryptanalysis
. sequence of differences at each round for an iterated primitive
. a differential is a collection of characteristics

Example

δ ∆

δ1

δ2

δ3

. δ → ∆ is a differential

. δ → δ1 → δ2 → δ3 → ∆ is a differential characteristic

. P(δ → δ1 → δ2 → δ3 → ∆) is its differential probability

permutations KS role KS const. Skinny Future

Differentials and differential characteristics

Differential characteristics
. differential characteristics are easier to handle than differentials

=⇒ we usually focus on characteristics
. designers’ goal :

upper-bound the differential probability of characteristics

Example : 4-round AES

1R 1R 1R 1R
difference

no difference

. 4-round characteristic with 25 active S-Boxes (minimal)

. AES S-Box : pmax = 2−6

. differential probability : p ≤ 2−6×25 = 2−150

permutations KS role KS const. Skinny Future

Proving 25 active Sboxes for 4 AES rounds (part I)

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

SB
SR MC

SB
SR MC

SB
SR MC

SB
SR MC

SB
SR MC

SR
SB MC

SB
SR MC

SR
SB MC

SB
SR MC

SB MC
SB
SR MC

SR
SB MC SB

SB
MC
SB

SR MC SR
SB
MC
SB

permutations KS role KS const. Skinny Future

Proving 25 active Sboxes for 4 AES rounds (part II)

SB
MC
SB

SR MC SR
SB
MC
SB

Theorem 1
Any active Super-box will contain at least 5 active Sboxes

Theorem 2
There will be at least 5 active Super-boxes in 4 AES rounds

Corollary
There are at least 25 active Sboxes in 4 AES rounds

permutations KS role KS const. Skinny Future

Proving 25 active Sboxes for 4 AES rounds (part II)

SB
MC
SB

SR MC SR
SB
MC
SB

Theorem 1
Any active Super-box will contain at least 5 active Sboxes

Theorem 2
There will be at least 5 active Super-boxes in 4 AES rounds

Corollary
There are at least 25 active Sboxes in 4 AES rounds

permutations KS role KS const. Skinny Future

Min. num. of active Sboxes for AES in the SK model
Rounds 1 2 3 4 5 6 7 8 9 10
min 1 5 9 25 26 30 34 50 51 55

Question :
What would this table look like for the AES structure in the RK
model ?

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Meet-in-the-middle attacks

Attack sketch :
. choose two independent subparts KF and KB

of the key K and guess the remaining bits
K \ KF ∩ KB

. compute X forward from the plaintext (does
not depend on KB)

. compute X backward from the ciphertext
(does not depend on KF)

. check if you get a match on X. If so, test this
key candidate.

. complex improvements exist (splice-and-cut,
etc.)

ke
y

ciphertext

plaintext

Can be used for key-recovery on block ciphers or preimage on
hash functions

Meet-in-the-middle attacks are strongly depending on the
strength of the key-schedule

permutations KS role KS const. Skinny Future

Meet-in-the-middle attacks

Attack sketch :
. choose two independent subparts KF and KB

of the key K and guess the remaining bits
K \ KF ∩ KB

. compute X forward from the plaintext (does
not depend on KB)

. compute X backward from the ciphertext
(does not depend on KF)

. check if you get a match on X. If so, test this
key candidate.

. complex improvements exist (splice-and-cut,
etc.)

K B
K F

K
\

K F
∩

K B

ciphertext

plaintext

Can be used for key-recovery on block ciphers or preimage on
hash functions

Meet-in-the-middle attacks are strongly depending on the
strength of the key-schedule

permutations KS role KS const. Skinny Future

Meet-in-the-middle attacks

Attack sketch :
. choose two independent subparts KF and KB

of the key K and guess the remaining bits
K \ KF ∩ KB

. compute X forward from the plaintext (does
not depend on KB)

. compute X backward from the ciphertext
(does not depend on KF)

. check if you get a match on X. If so, test this
key candidate.

. complex improvements exist (splice-and-cut,
etc.)

K B
K F

K
\

K F
∩

K B

ciphertext

plaintext

X

Can be used for key-recovery on block ciphers or preimage on
hash functions

Meet-in-the-middle attacks are strongly depending on the
strength of the key-schedule

permutations KS role KS const. Skinny Future

Meet-in-the-middle attacks

Attack sketch :
. choose two independent subparts KF and KB

of the key K and guess the remaining bits
K \ KF ∩ KB

. compute X forward from the plaintext (does
not depend on KB)

. compute X backward from the ciphertext
(does not depend on KF)

. check if you get a match on X. If so, test this
key candidate.

. complex improvements exist (splice-and-cut,
etc.)

K B
K F

K
\

K F
∩

K B

ciphertext

plaintext

X

Can be used for key-recovery on block ciphers or preimage on
hash functions

Meet-in-the-middle attacks are strongly depending on the
strength of the key-schedule

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Slide attacks

K g . . . g

P = s0 f s1
. . . f sr

sr+1 = C

k0 k1 kr−1 kr

Slide attacks :
. can happen if the very same round function fk is used to

build the permutation
. find a slid pair P′ = fk(P⊕ k), then you will have C′ = fk(C)

. once a slid pair is found, easy to recover the key if fk is
weak enough

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function

permutations KS role KS const. Skinny Future

Slide attacks

P = s0 f s1
. . . f sr

sr+1 = C
k k k k

Slide attacks :
. can happen if the very same round function fk is used to

build the permutation
. find a slid pair P′ = fk(P⊕ k), then you will have C′ = fk(C)

. once a slid pair is found, easy to recover the key if fk is
weak enough

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function

permutations KS role KS const. Skinny Future

Slide attacks

P = s0 ⊕ k fk fks1
fks2

. . .
s3

fk fksr−1
fksr

sr+1 = C

Slide attacks :
. can happen if the very same round function fk is used to

build the permutation
. find a slid pair P′ = fk(P⊕ k), then you will have C′ = fk(C)

. once a slid pair is found, easy to recover the key if fk is
weak enough

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function

permutations KS role KS const. Skinny Future

Slide attacks

P = s0 ⊕ k fk fks1
fks2

. . .
s3

fk fksr−1
fksr

sr+1 = C

P′ = s1 fk fks1
fks2

. . .
s3

fk fksr−1
fksr

C′ = fk(sr−1)

Slide attacks :
. can happen if the very same round function fk is used to

build the permutation
. find a slid pair P′ = fk(P⊕ k), then you will have C′ = fk(C)

. once a slid pair is found, easy to recover the key if fk is
weak enough

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Symmetry attacks

K g . . . g

P = s0 f s1
. . . f sr

sr+1 = C

k0 k1 kr−1 kr

Symmetry attacks :
. can happen if a certain property can be maintained after
application of fk

. allows to maintain a low entropy in the internal state

. more generally : invariant subspace attacks

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function

permutations KS role KS const. Skinny Future

Symmetry attacks

SB SR MC

Symmetry attacks :
. can happen if a certain property can be maintained after
application of fk

. allows to maintain a low entropy in the internal state

. more generally : invariant subspace attacks

To prevent them :
Easy to patch using constants or a counter in the key schedule
or in the internal state function

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Weak-keys

A weak-key class is a set of keys for which the attack can break
the cipher faster than exhaustive search

Weak-keys for block cipher and hash functions
. weak-keys are not too problematic for a block cipher as
long as the weak-key class remains small

. situation is completely different for a hash function : a
single weak key can potentially be catastrophic
(ex. IDEA cipher)

E

hi

hi+1

Davies-Meyer

M E

M

hi+1

Matyas–Meyer–Oseas

hi E

M

hi+1

Miyaguchi-Preneel

hi

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Related-key attacks for block ciphers

The related-key security model
The attacker is allowed to make queries to the key K, but also to
other keys K′, K′′, etc. “related” to the key K

Why studying related-keys attacks ?
. some protocols might use simple updates to generate new keys
. related-key analysis helps to understand hash functions
. more generally, in the ideal case, a cipher shouldn’t have any

structural flaw, so we could even extend this model to
known-key/chosen-key attacker

A LOT of block ciphers have been broken in this model
(AES-256 for example)

permutations KS role KS const. Skinny Future

Message expansion for hash function

"related-key" attacks are actually the base of most hash function
collision attacks

The case of hash functions :
. key-schedule for block ciphers = message expansion for
hash functions

. the message expansion is crucial in a hash function,
because fully controlled by the attacker

. must resist collision attacks, but also any distinguishing
property

A LOT of hash functions have been broken because of an
insufficiently secure message expansion
(SHA-0, SHA-1, many SHA-3 candidates for example)

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Key schedule design

we don’t really know
how to design an efficient and secure key schedule

Our current knowledge for building key
schedules/message expansion is sparse :
. general technique use ad-hoc KS to decorrelate the KS and the

internal BC, so hard ot prove anything and hard to analyse
. AES has a rather efficient key schedule (about 25% to 40% of the

internal permutation part), but no clue about its security
. in order to get simple provable confidence in the key schedule,

designers proposed inefficient solutions :
◦ WHIRLPOOL has a very strong message expansion, but then one

round is not efficient
◦ LED has no key schedule, but requires more rounds to resist RK

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

The AES key schedules

<
<S

AES-128

<
<S

AES-192

<
<S

S

AES-256

Rationale :
. XORs for inter-column diffusion, shift for inter-row diffusion,

Sbox for non-linearity, counter to break symmetries
. quite different from the AES round function

permutations KS role KS const. Skinny Future

Security issues with the AES key schedule

AK0
SB
SR MC AK1

KS

SB
SR MC AK2

SB
SR MC AK3

KS

SB
SR MC AK4

SB
SR MC AK5

SB
SR MC AK6

SB
SR MC AK7

KS

SB
SR MC AK8

SB
SR MC AK9

KS

SB
SR MC AK10

SB
SR MC AK11

KS

SB
SR MC AK12

SB
SR MC AK13

KS

SB
SR MC

KS

KS

Related-key attacks on the full AES-256 and AES-192
. existence of 2-round local collision paths [BKN09]
. 14-round path with only 24 active Sboxes (5 in the key schedule,

19 in the internal state)
. later improved in [BK09] using boomerang technique (since very

good small differential paths exist) :
key recovery attack with 299.5 time and data

. harder to attack AES-192 and so far no attack on AES-128

permutations KS role KS const. Skinny Future

Proven bounds for AES-128

Single-key model

Rounds 1 2 3 4 5 6 7 8 9 10
min 1 5 9 25 26 30 34 50 51 55

Related-key model (truncated differences)
Rounds 1 2 3 4 5 6 7 8 9 10
min 0 1 3 9 11 13 15 21 23 25

Related-key model (actual differences)
Rounds 1 2 3 4 5 6 7 8 9 10
min 0 1 5 13 17 ? ? ? ? ?

permutations KS role KS const. Skinny Future

The PRESENT key schedule

PRESENT is a 64-bit block cipher - based on SPN, but using 4-bit
Sboxes and bit permutation as permutation layer.

The key schedule of the PRESENT-80 block cipher
. The key is 80 bits and the subkeys 64 bits

. Extract : the round subkey is the 64 MSB of the key state

. Shift : rotate the key state by 19 bit positions to the right

. Sbox : apply one Sbox to the 4 MSBs of the key state

. Counter : add a 5-bit round counter to the key state

. very simple and hardware friendly

. quite different from the round function

. still no related-key attack on full PRESENT

. even better : the best attacks on PRESENT are not in related-key

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

The key-schedule of WHIRLPOOL internal block cipher

Recent lessons learned in block ciphers design :
. designing key schedules seems hard
. obtaining security proofswhen also considering differences in

the key schedule seems hard as well

WHIRLPOOL rationale :
use an entire round function as key schedule update
. only leverages the quality of the permutation since we do

know how to build good permutations
. trivial to prove a minimal number of active Sboxes in the RK

model

permutations KS role KS const. Skinny Future

The key-schedule of WHIRLPOOL internal block cipher

P

K

1 round

KS

1 round

KS

1 round

KS

1 round

KS

C

Issues with WHIRLPOOL’s key schedule :
. security is greatly reduced when used inside a hash

construction ([LMRRS09]), but probably ok when used in a
classical block cipher scenario (unknown key)

. it is quite slow (×2 slower if a new key has to be used)

permutations KS role KS const. Skinny Future

The key-schedule of WHIRLPOOL internal block cipher

P

K

1 round

1 round

1 round

1 round

1 round

1 round

1 round

1 round

C

Issues with WHIRLPOOL’s key schedule :
. security is greatly reduced when used inside a hash

construction ([LMRRS09]), but probably ok when used in a
classical block cipher scenario (unknown key)

. it is quite slow (×2 slower if a new key has to be used)

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

The key-schedule of LED

Recent lessons learned in block ciphers design :
. designing key schedules seems hard
. obtaining security proofswhen also considering differences in

the key schedule seems hard as well

LED rationale : use NO key schedule
. much simpler for cryptanalysts : not relying on the difficulty to

analyze (a lot of cryptanalysis has been performed since
publication of LED)

. only leverages the quality of the permutation since we do
know how to build good permutations

. you can directly hardwire the key in some particular scenarios

. can benefit from security proofs (see recent security proofs on
iterated Even-Mansour schemes)

. easy to prove a minimal number of active Sboxes in the RK
model

permutations KS role KS const. Skinny Future

The key-schedule of LED : first attempt

Key repeated every round

P 1 round

K
1 round

K
1 round

K K
1 round

K K
C

Paths exist with only 1 active Sbox per round on average

1 round

AC SB ShR MC

permutations KS role KS const. Skinny Future

The key-schedule of LED : second attempt

Key repeated every two rounds

P 2 rounds

K
2 rounds

K
2 rounds

K K
2 rounds

K K
C

Paths exist with only 2.5 active Sboxes per round on average

1 round

AC SB ShR MC

1 round

AC SB ShR MC

permutations KS role KS const. Skinny Future

The key-schedule of LED : third attempt

Key repeated every four rounds

P 4 rounds

K
4 rounds

K
4 rounds

K K
4 rounds

K K
C

Paths exist with only 3.125 active Sboxes per round on average

1 round

AC SB ShR MC

1 round

AC SB ShR MC

1 round

AC SB ShR MC

1 round

AC SB ShR MC

permutations KS role KS const. Skinny Future

The key-schedule of LED

For 64-bit key :
XOR the key to the internal state every four rounds, for a total
of 8 steps (or 32 rounds) :

P 4 rounds

K
4 rounds

K
4 rounds

K K
4 rounds

K K
C

For 128-bit key :
Divide the key into two equal chunks K1 and K2 and
alternatively XOR them to the internal state every four rounds,
for a total of 12 steps (or 48 rounds) :

P 4 rounds

K1

4 rounds

K2

4 rounds

K1 K2

4 rounds

K2 K1

C

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

The TWEAKEY framework

The TWEAKEY framework rationale [ASIACRYPT’14] :
tweak and key should be treated the same way −→ tweakey

P = s0 f s1
. . . f sr

sr+1 = C

tk0 h

g

h

g

tk1 . . . h

g

tkr−1

g

tkr

TWEAKEY generalizes the class of key-alternating ciphers

permutations KS role KS const. Skinny Future

The TWEAKEY framework

P = s0 f s1
. . . f sr

sr+1 = C

tk0 h

g

h

g

tk1 . . . h

g

tkr−1

g

tkr

The main issue :
adding more tweakey state makes the security drop, or renders
security hard to study, even for automated tools

Idea : the STK construction (Superposition-TWEAKEY)
separate the tweakey material in several words, design a secure
tweakey schedule for one word and then superpose them in a secure
way

permutations KS role KS const. Skinny Future

The STK construction (Superposition-TWEAKEY)

STK Tweakey Schedule

h′
h′

...

h′

α1

α2

αp

tk0

XOR C0

ART

f

h′
h′

...

h′

α1

α2

αp

XOR C1

ART

fP = s0

h′
h′

...

h′

. . .

. . .

. . .

XOR C2

ART

. . .

XOR Cr−1

ART

f

h′
h′

...

h′

α1

α2

αp

XOR Cr

ART

sr = C

From the TWEAKEY framework to the STK construction :
. the tweakey state update function h consists in the same

subfunction h′ applied to each tweakey word
(for example a simple permutation of the cells positions)

. the subtweakey extraction function g consists in XORing all the
words together
◦ reduce the implementation overhead
◦ simplify the security analysis

permutations KS role KS const. Skinny Future

The STK construction (Superposition-TWEAKEY)

STK Tweakey Schedule

h′
h′

...

h′

α1

α2

αp

tk0

XOR C0

ART

f

h′
h′

...

h′

α1

α2

αp

XOR C1

ART

fP = s0

h′
h′

...

h′

. . .

. . .

. . .

XOR C2

ART

. . .

XOR Cr−1

ART

f

h′
h′

...

h′

α1

α2

αp

XOR Cr

ART

sr = C

From the TWEAKEY framework to the STK construction :
. problem : strong interaction between the parallel branches of

tweakey state
. solution : differentiate the parallel branches (for example by

simply using distinct multiplications in a small field or LFSRs)

permutations KS role KS const. Skinny Future

The STK construction : rationale

Design choices
. very simple transformations : linear and lightweight
. multiplication in GF(2c) or LFSRs control the number of

cancellations in g, when the subtweakeys are XORed to the
internal state

. one can bound the number of cancellations

Security analysis

A security analysis is now possible with STK :
. when considering one tweakey word, we ensure that function h′

is itself a good tweakey schedule
. when considering several tweakey words, we reuse existing tools

searching for good differential paths :
for these tools it is easy to add the cancellation bound

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

SKINNY website

Joint work with C. Beierle, S. Kölbl, G. Leander, A. Moradi, Y.
Sasaki, P. Sasdrich and S.M. Sim
(CRYPTO 2016)

Paper, Specifications, Results and Updates available at :
https://sites.google.com/site/skinnycipher/

Any new cryptanalysis of SKINNY is welcome !

https://sites.google.com/site/skinnycipher/

permutations KS role KS const. Skinny Future

SKINNY goals and results

Goals
. Provide an alternative to NSA-designed SIMON block cipher
. Construct a lightweight (tweakable) block cipher
. Achieve scalable security
. Suitable for most lightweight applications
. Perform and share full security analysis
. Efficient software/hardware implementations in many scenarios

Results
. SKINNY family of (tweakable) block ciphers
. Block sizes n : 64 and 128 bits
. Various key+tweak sizes : n, 2n and 3n bits
. Security guarantees for differential/linear cryptanalysis

(both single and related-key)
. Efficient and competitive software/hardware implementations

◦ Round-based SKINNY-64-128 : 1696 GE (SIMON : 1751 GE)
◦ on Skylake (avx2) : 2.78 c/B (SIMON : 1.81 c/B) for fixed-key

permutations KS role KS const. Skinny Future

SKINNY general design strategy

. Start from weak crypto components, but providing very efficient
implementations

◦ Opposed to AES : strong Sbox and diffusion⇒ only 10
rounds

◦ Similar to SIMON : only AND/XOR/ROT⇒many rounds

. Reuse AESwell-understood design

. Remove all operations not strictly necessary to security

. Result : removing any operations from SKINNY results in an
unsecure cipher

permutations KS role KS const. Skinny Future

SKINNY specifications : overview

Specifications
. SKINNY has a state of either 64 bit (s = 4) or 128 bits (s = 8).
. tweakey schedule generalises the STK construction
. Internal state IS : viewed as a 4× 4 matrix of s-bit elements.
⇒ |IS| = n = 16s ∈ {64, 128}.

. The tweakey size can be n, 2n or 3n.

Number of rounds
Tweakey size

Block size n n 2n 3n

64 32 36 40
128 40 48 56

Comparison : SKINNY-64-128 has 36 rounds, SIMON-64-128 has 44 rounds.

permutations KS role KS const. Skinny Future

SKINNY round function

AES-like round function
. SubCells (SC) : Application of a s-bit Sbox to all 16 cells

. AddConstants (AC) : Inject round constants in the state

. AddRoundTweakey (ART) : Extract and inject the subtweakeys
to half the state

. ShiftRows (SR) : Right-rotate Line i by i positions

. MixColumns (MC) : Multiply the state by a binary matrix

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

permutations KS role KS const. Skinny Future

SKINNY 4-bit Sbox

MSB LSB

MSB LSB

S4 : 4-bit Sbox for SKINNY-64-∗

. Almost PICCOLO Sbox

. Implementation :
4 NOR and 4 XOR

. Hardware cost : 12 GE

Properties

. Maximal diff. probability : 2−2

. Maximal abs. linear bias : 2−2

. deg(S4) = deg(S−14) = 3

. One fixed point :
S4(0xF) = 0xF

. Branch number : 2

permutations KS role KS const. Skinny Future

SKINNY 8-bit Sbox

MSB LSB

MSB LSB

S8 : 8-bit Sbox for SKINNY-128-∗

. Generalize the S4 construction

. Implementation :
8 NOR and 8 XOR

. Hardware cost : 24 GE

Properties

. Maximal diff. probability : 2−2

. Maximal abs. linear bias : 2−2

. deg(S8) = deg(S−18) = 6

. One fixed point :
S8(0xFF) = 0xFF

. Branch number : 2

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Overview of SKINNY security

Claims
. Security against known classes of attacks
. Security in the related-key model
. No guarantees for known or chosen key
. No claim for related-cipher security

(the constant does not encode the cipher parameters)

Attack vectors considered
. Differential/Linear cryptanalysis
. Integral attack
. Division property
. Meet-in-the-middle attack
. Impossible differential attack
. Invariant subspace attack
. Slide attack
. Algebraic attack

permutations KS role KS const. Skinny Future

Comparing differential/linear bounds

. We adapt the number of rounds to get resistance (+ margin) :
◦ SKINNY-64-64/128/192 has 32/36/40 rounds
◦ SKINNY-128-128/256/384 has 40/48/56 rounds

. As a result, for all SKINNY variants :
◦ SK security reached in 20− 40% of the rounds
◦ TK2 security reached in 40− 50% of the rounds

Comparison with other 64/128 and 128/128 ciphers

Cipher Single Key (SK) Related Key (RK)
SKINNY-64-128 8/36 = 22% 15/36 = 42%
SIMON-64-128 19/44 = 43% no bound known
SKINNY-128-128 15/40 = 37% 19/40 = 47%
SIMON-128-128 41/72 = 57% no bound known
AES-128 4/10 = 40% 6/10 = 60%
NOEKEON-128 12/16 = 75% 12/16 = 75%

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Theoretical performances of SKINNY

#operations per bit Round-based
Cipher Rounds without KS with KS area estimation

SKINNY-64-128 36 117 139.5 8.68
SIMON-64-128 44 88 154 8.68
PRESENT-64-128 31 147.2 161.8 12.43
PICCOLO-64-128 31 162.75 162.75 12.35

SKINNY-128-128 40 130 130 7.01
SIMON-128-128 72 136 204 7.34
NOEKEON-128-128 16 100 200 30.36
AES-128-128 10 202.5 248.1 59.12

Example of SKINNY-64-128 (more in the paper)
. 1R : (4 NOR+ 4 XOR)/4 [SB]+ (3 XOR)/4 [MC]+ (32 XOR)/64 [ART]

. That is (per bit per round) : 1 NOR + 2.25 XOR

. #operations per bit (without KS) : (1+ 2.25)× 36 = 117

. Very low number of operations per plaintext bit. Challenge : do better.

permutations KS role KS const. Skinny Future

Round-based implementation results

Area Delay Through-
put

@100KHz

Through-
put

@maxi-
mum

GE ns KBit/s MBit/s

SKINNY-64-128 1696 1.87 177.78 951.11
SKINNY-128-128 2391 2.89 320.00 1107.20
SKINNY-128-256 3312 2.89 266.67 922.67

SIMON-64-128 1751 1.60 145.45 870
SIMON-128-128 2342 1.60 188.24 1145
SIMON-128-256 3419 1.60 177.78 1081

LED-64-128 3036 - 133.0 -
PRESENT-64-128 1884 - 200.00 -
PICCOLO-64-128 1773 - 193.94 -

permutations KS role KS const. Skinny Future

Outline

1 Permutations for symmetric key primitives
2 Key schedule role

. Meet-in-the-middle attacks

. Slide attacks

. Symmetry attacks

. Weak keys

. Related-key attacks
3 Key schedule constructions

. AES and PRESENT

. WHIRLPOOL key schedule

. LED key schedule

. The TWEAKEY framework
4 The Skinny tweakable block cipher

. SKINNY security

. SKINNY performances
5 Future directions and open problems

permutations KS role KS const. Skinny Future

Open problems in key-schedule security analysis

For security proofs :
. tighter bounds ?
. bounds for more rounds ?
. actual differences instead of truncated differences ?
. generic proof for any state size ?

For automated tools :
. more efficient algorithms (what about AES-128 after 5 rounds ?)
. design tools to analyse other types of functions

(e.g. ARX functions)
. automated tools for other attack types

(MitM, division property, etc.)

permutations KS role KS const. Skinny Future

Open problems in key-schedule constructions

For key schedule design :
. LED and WHIRLPOOL are not so efficient, others designs security

is hard to prove
can we design efficient and easily provable key schedules ?

. STK construction from TWEAKEY framework seems to be a
good tradeoff, but we need more analysis
(differentials, linear hulls ?)

. linear/non linear key schedule ?

. invertible/non invertible ?

Thank you !

	Permutations for symmetric key primitives
	Key schedule role
	Meet-in-the-middle attacks
	Slide attacks
	Symmetry attacks
	Weak keys
	Related-key attacks

	Key schedule constructions
	AES and PRESENT
	WHIRLPOOL key schedule
	LED key schedule
	The TWEAKEY framework

	The Skinny tweakable block cipher
	SKINNY security
	SKINNY performances

	Future directions and open problems

