
Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Symmetric-Key Cryptography

Thomas Peyrin
Nanyang Technological University

Workshop on Mathematics for Defence
Institute for Mathematical Sciences

Singapore - April 12, 2012



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Outline

Introduction

Block Ciphers and Hash Functions

General Design Strategy
Block Ciphers
Hash Functions

Hardware Friendly Diffusion Matrices



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Outline

Introduction

Block Ciphers and Hash Functions

General Design Strategy
Block Ciphers
Hash Functions

Hardware Friendly Diffusion Matrices



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is cryptography ?

Cryptography = science of secrecy

a mix of mathematics, computer science and electronics



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is cryptography ?

Cryptography = science of secrecy

a mix of mathematics, computer science and electronics

Cryptography studies:

• pure problems such as confidentiality,



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is cryptography ?

Cryptography = science of secrecy

a mix of mathematics, computer science and electronics

Cryptography studies:

• pure problems such as confidentiality, authentication,



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is cryptography ?

Cryptography = science of secrecy

a mix of mathematics, computer science and electronics

Cryptography studies:

• pure problems such as confidentiality, authentication, integrity, etc.
• complex protocols such as identification, electronic voting, etc.



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is cryptography ?

Cryptography = science of secrecy

a mix of mathematics, computer science and electronics

Cryptography studies:

• pure problems such as confidentiality, authentication, integrity, etc.
• complex protocols such as identification, electronic voting, etc.

Cryptography is everywhere (security increasingly important):

• Industries:
telecommunications, banking, access control, logistic, medical, etc.

• Applications:
PC, cellphones, smart-cards, Internet, supply chain, cars, etc.



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is symmetric/asymmetric-key cryptography ?
Symmetric-key cryptography: Two users A and B share the same
secret key. A sends an encrypted message to B using its secret key, B
deciphers using the same key.

Asymmetric-key cryptography: A pair of keys private/public are
given to every user. A sends an encrypted message to B using B’s public
key. Only B can decipher using its own private key.



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Outline

Introduction

Block Ciphers and Hash Functions

General Design Strategy
Block Ciphers
Hash Functions

Hardware Friendly Diffusion Matrices



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is a hash function ?

Hash function: an algorithm that transforms an arbitrary-length input
message M into a fixed-length output value (hash value)

One should NOT be able to:

• invert the function (i.e. recover a message from the hash value)

• find two messages colliding (i.e. sharing the same hash value)



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is a hash function ?

Hash function: an algorithm that transforms an arbitrary-length input
message M into a fixed-length output value (hash value)

One should NOT be able to:

• invert the function (i.e. recover a message from the hash value)

• find two messages colliding (i.e. sharing the same hash value)



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Hash functions: applications

Many applications of hash functions:

• Signatures and Message Authentication Codes. Allows to digitally sign a
message or a file, and later verify the signature

• Integrity check. Used for example in most Internet protocols such as HTTP,
FTP or P2P downloading

• Passwords database protection. Store the hash instead of the password
• Confirmation of knowledge/commitment on a value.
• Pseudo-random number generator. Allows to generate a sequence of

numbers that approximates the properties of random numbers

Current status of hash functions:

• less mature field than block ciphers, very active
• most standardized hash functions got broken in 2004
• ongoing SHA-3 competition to select the future hash function standard



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

What is a block cipher ?

Block cipher: an algorithm that transforms a fixed-length block of
plaintext P (unencrypted text) data into a block of ciphertext C
(encrypted text) data of the same length, depending on a secret key K

One should NOT be able to:

• recover the secret key K faster than brute-force

• extract any information about the plaintext or the ciphertext



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Block ciphers: applications

Many applications of block ciphers:

• Confidentiality. When used with an operating mode, it allows to securely
transmit data over an insecure channel

• Message Authentication Codes. Allows to digitally sign a message or a file,
and later verify the signature

• Building block for other cryptography primitives. Such as hash functions,
stream-ciphers, etc.

Current status of block ciphers:

• 1976-2001: DES algorithm.
• 2001-today: AES algorithm, after a 5-year competition
• very recent cryptanalysis work show some light weaknesses for AES
• many other block cipher proposals, depending on the application



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Outline

Introduction

Block Ciphers and Hash Functions

General Design Strategy
Block Ciphers
Hash Functions

Hardware Friendly Diffusion Matrices



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Outline

Introduction

Block Ciphers and Hash Functions

General Design Strategy
Block Ciphers
Hash Functions

Hardware Friendly Diffusion Matrices



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

General construction of a block cipher



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

General construction of a block cipher



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

General construction of a permutation round

Feistel Network (DES)



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

General construction of a permutation round

Substitution-Permutation Network (AES)



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Outline

Introduction

Block Ciphers and Hash Functions

General Design Strategy
Block Ciphers
Hash Functions

Hardware Friendly Diffusion Matrices



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

General construction of a hash function

For historical reasons, most hash functions are composed of two
elements:

• a compression function h: a function for which the input and
output size is fixed.

• a domain extension algorithm: an iterative process that uses the
compression function h so that the hash function H can handle
inputs of arbitrary lenght.



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

The Merkle-Damgård domain extension algorithm

The most famous domain extension algorithm used is called the
Merkle-Damgård [Merkle Damgård-89] iterative algorithm.



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

The compression function

The MD/SHA family (MD4, MD5, SHA-0, SHA-1, SHA-2, ...)



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Outline

Introduction

Block Ciphers and Hash Functions

General Design Strategy
Block Ciphers
Hash Functions

Hardware Friendly Diffusion Matrices



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Lightweight crypto ?

We expect RFID tags to be deployed widely (supply chain
management, e-passports, contactless applications, etc.)

• we need to ensure authentication and/or confidentiality

• a basic RFID tag may have a total gate count of anywhere from
1000-10000 gates, with only 200-2000 gates budgeted for security

• hardware throughput and software performances are not the most
important criterias, but they must be acceptable

• block ciphers and hash functions are used as basic blocks for RFID
device authentication and privacy-preserving protocols.

Standard or SHA-3 hash functions are too big (around 10k GE)



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

MDS Matrix

What is an MDS Matrix (“Maximum Distance Separable”) ?
• it is used as diffusion layer in many crypto primitives (in

particular AES)

• it has excellent diffusion properties. In short, for a d-cell
vector, we are ensured that at least d + 1 input / output cells
will be active ...

• ... which is very good for linear / differential cryptanalysis
resistance

The AES diffusion matrix can be implemented
fast in software (using tables), but the situation
is not so great in hardware. Indeed, even if the
coefficients of the matrix minimize the
hardware footprint, d − 1 cells of temporary
memory are needed for the computation.

A =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2





Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

A =



0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1



• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1


·



v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1


=

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1


·



v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1


=



v1

.

.

.



• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1


·



v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1


=



v1

v2

.

.

.



• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1


·



v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1


=



v1

v2

.

.

.

vd−3



• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1


·



v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1


=



v1

v2

.

.

.

vd−3

vd−2



• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1


·



v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1


=



v1

v2

.

.

.

vd−3

vd−2

vd−1



• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1


·



v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1


=



v1

v2

.

.

.

vd−3

vd−2

vd−1

v′0



• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Tweaking AES for hardware: AES-HW

The smallest AES implementation requires 2400 GE with 263 GE
dedicated to the MixColumns layer (the matrix A is MDS).

A =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 A−1 =


14 11 13 9
9 14 11 13

13 9 14 11
11 13 9 14



A tweaked AES-HW implementation requires 2210 GE with 74 GE
dedicated to the MixColumnsSerial layer (the matrix (B)4 is MDS):

(B)4 =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4


4

=


1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

 B−1 =


2 1 4 1
1 0 0 0
0 1 0 0
0 0 1 0





Introduction Block Ciphers and Hash Functions General Design Strategy Hardware Friendly Diffusion Matrices

Thank you for your attention !


	Introduction
	Block Ciphers and Hash Functions
	General Design Strategy
	Block Ciphers
	Hash Functions

	Hardware Friendly Diffusion Matrices

