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Abstract. We present the Deoxys family of authenticated encryption
schemes, which consists of Deoxys-I and Deoxys-II. Both are nonce-
based authenticated encryption schemes with associated data and have
either 128- or 256-bit keys. Deoxys-I is similar to OCB: it is single-pass but
insecure when nonces are repeated; in contrast, Deoxys-II is nonce-misuse
resistant. Deoxys-II was selected as first choice in the final portfolio of
the CAESAR competition for the defense-in-depth category.
Deoxys uses a new family of tweakable block ciphers as internal primitive,
Deoxys-TBC, which follows the TWEAKEY framework (Jean, Nikolić, and
Peyrin, ASIACRYPT 2014) and relies on the AES round function.
Our benchmarks indicate that Deoxys does not sacrifice efficiency for
security and performs very well both in software (e.g., Deoxys-I efficiency
is similar to AES-GCM) and hardware.

1 Introduction

Authenticated Encryption. Confidentiality and authenticity are the two
main security properties one wants to achieve when protecting data. These two
security goals have long been studied independently, giving rise to encryption
schemes on one hand and MAC (authentication) schemes on the other hand.
While it is known how to securely combine these two primitives [7, 52], in a
large number of practical cases this has led to catastrophic failures [1, 2, 43,63].
For this reason, the cryptographic community has striven to provide so-called
authenticated encryption schemes which simultaneously ensure confidentiality
and authenticity and are therefore less prone to misuse.

In order to foster the research efforts in this domain, the CAESAR compe-
tition4 was engaged in 2014. After four years of public scrutiny, the CAESAR
committee selected final portfolios of authenticated encryption schemes for three
use cases:
4 https://competitions.cr.yp.to/caesar-submissions.html
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• lightweight applications (resource constrained environments),
• high-performance applications,
• defense in depth.

The Deoxys Family. In this work, we propose Deoxys, a family of nonce-based
authenticated encryption schemes with associated data. It consists of Deoxys-I,
which is secure only when nonces are not repeated, and Deoxys-II which retains
security even when nonces are repeated (more precisely, it achieves the MRAE
security notion of Rogaway and Shrimpton [60]). Both can be used either with 128-
or 256-bit keys. Deoxys-II was selected as main choice for the defense-in-depth
portfolio of the CAESAR competition.

Deoxys is based on a new family of tweakable block ciphers, Deoxys-TBC,
which uses the well-studied AES round function as a building block. Unlike
tweakable block ciphers built from conventional block ciphers using a mode of
operation (such as XE/XEX [58]), Deoxys-TBC is an ad-hoc design following the
so-called TWEAKEY framework [36] which unifies the treatment of the key and the
tweak inputs of a tweakable block cipher.

We use this TBC in two different yet similar, fully parallel, and provably
secure authenticated encryption modes: for Deoxys-I, we use a mode which is
very similar to TAE [47] and ΘCB3 [44]; for Deoxys-II, we adopt SCT-2, a variant
of the SCT mode proposed in [55] and inspired by SIV [60].

Security. Deoxys-TBC offers a very good security margin. Deoxys-TBC-256
has 14 rounds and Deoxys-TBC-384 has 16 rounds. Being AES-based, Deoxys
benefits from the vast literature on the cryptanalysis of the AES. The best known
attacks on AES-based designs in the secret-key security model for similar size
of keys reach 7 to 9 rounds. In the related-key security model, AES-192 and
AES-256 are theoretically broken [11, 12]. With 14 rounds or more, the two
versions of Deoxys-TBC offer a comfortable security margin regarding this class
of attacks. Interestingly, Deoxys-TBC-256 is very similar to AES-256 for a fixed
tweak value, but the improved key schedule significantly reduces the number of
rounds required for security: Deoxys-TBC-256 only needs 12 rounds to be secure
against related-key attacks, whereas AES-256 (14 rounds) is already vulnerable
to a theoretical related-key distinguisher. Deoxys-TBC has been been analyzed
by several third parties during the CAESAR competition, which reinforces the
confidence one can have in its security. We detail this in the section dedicated to
the security analysis.

The modes of operations used in Deoxys are provably secure. For Deoxys-I, we
rely on the existing security proof for ΘCB3 [44]. The mode has “perfect” security,
meaning that when used with a uniformly random (tweakable) permutation, the
attacker’s advantage is zero for breaking confidentiality and 2−τ for breaking
authenticity, where τ is the tag length. Moreover, Deoxys-TBC being an ad-
hoc design, it is not subject to birthday-bound attacks that affect most generic
constructions such as XE/XEX [58].5 For Deoxys-II, we provide a detailed security
5 Albeit at the cost of a stronger security assumption on the primitive.
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proof of the SCT-2 mode in this paper. A notable feature of this mode is that
it provides beyond-birthday-bound security when nonces are only moderately
repeated and graceful degradation of the security bounds with the maximal
number of nonce repetitions.

Being AES-based, existing techniques for protecting AES against side-channel
attacks can be straightforwardly adapted to Deoxys-TBC.

Performances. Deoxys achieves very good performances in software. The
number of calls to the internal primitive is close to optimal (one call per block
for Deoxys-I and two calls per block for Deoxys-II, plus one extra-call for tag
computation). Being AES-based, it greatly benefits from the AES-NI instruction
set added in the latest processors. In addition, as we use fully parallelizable
modes, the cycles per byte count drops significantly. For example, Deoxys-I has
performances close to AES-GCM [48], although AES-GCM ensures only birthday-
bound security.

Deoxys does not require any pre-computation and hence is very efficient for
small messages, which is particularly important in many lightweight applications
where messages are usually a few dozens of bytes long or for Internet traffic as
packets sizes can be rather small. In contrast, sponge-based or stream cipher-
based designs like Ascon [25], ACORN [68], AEGIS [69], FIDES [10] (broken in [24])
or ALE [16] (broken in [41]) usually require a costly initialization.

In hardware, Deoxys can be implemented with a limited area overhead using
existing AES lightweight implementations, the extra area mainly consisting in
192 extra bits of memory for the mode and to store the tweak. The key can be
hardcoded for smaller area footprint.

Further Variants. In addition to the four schemes Deoxys-I/II-128/256
originally submitted to the CAESAR competition, we propose here two new
128-bit key ones called Deoxys-AE1 and Deoxys-AE2, which are more efficient
variants of respectively Deoxys-I-128 and Deoxys-II-128. These variants are
furthermore conceptually simpler and they provide more flexible parameter sets.
The idea is to use Deoxys-TBC-384 instead of Deoxys-TBC-256, while keeping
the key size at 128 bits: this provides more tweak space which can be used to
process more associated data and message bits per TBC call, allow a larger
nonce and counter in Deoxys-I-128, fully separate the counter from the nonce
in Deoxys-II-128 (for better independence).

Organization of the Paper. We start with introducing the general nota-
tion and standard security notions in Section 2. In Section 3, we provide the
specification of Deoxys, starting with Deoxys-TBC and then the operating modes
for Deoxys-I and Deoxys-II. In Section 4, we detail the security claims for
various scenarios and parameters. In Section 5, we explain some design decisions
regarding Deoxys-TBC and in Section 6 we perform some security analysis re-
garding this new TBC. In Section 7, we give the security proof for SCT-2, the
mode of operation used in Deoxys-II. Finally, we provide software and hardware
implementation performances in respectively Section 8 and Section 9.
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2 Preliminaries

2.1 General Notation

We let {0, 1}∗ denote the set of all bit strings and {0, 1}≤` denote the set of all
bit strings of length at most `. The empty string is denoted ε. The length of a
bit string X is denoted |X|. The concatenation of two bit strings X and Y is
denoted X‖Y . If X and Y are respectively n-bit and m-bit strings, n < m, then
X ⊕ Y denotes the n-bit string obtained by xoring X with the n leftmost bits of
Y . Given some parameter n, we let ozpadn (or ozpad when the parameter n is
implicit) denote the padding function defined for X 6= ε as

ozpad(X) :=
{
X if |X| = n

X‖1‖0n−|X|−1 if |X| < n.

Given a bit string X of length i or larger, the i leftmost bits of X are denoted
dXei and the i rightmost bits of X are denoted bXci. We let X ≪ a denote the
bit string X rotated by a positions to the left.

2.2 Tweakable Block Ciphers

A tweakable block cipher (TBC) with key space K, tweak space T , and domain
X is a mapping E : K×T ×X → X such that for any key K ∈ K and any tweak
T ∈ T , E(K,T, ·) is a permutation of X . We often write EK(T,X) or ETK(X) in
place of E(K,T,X). Given K ∈ K and T ∈ T , we let E−1

K (T, ·) denote the inverse
of X 7→ EK(T,X). We let TBC(K, T ,X ) denote the set of all tweakable block
ciphers with key space K, tweak space T , and domain X . A tweakable permutation
with tweak space T and domain X is a mapping P̃ : T × X → X such that for
any tweak T ∈ T , X 7→ P̃ (T,X) is a permutation of X . We often write P̃T (X) in
place of P̃ (T,X). We let TP(T ,X ) denote the set of all tweakable permutations
with tweak space T and domain X . The security of a TBC is defined as follows.

Definition 1 ((S)TPRP security). Let E ∈ TBC(K, T ,X ) and A be an adver-
sary with oracle access to a tweakable permutation with tweak space T and domain
X and possibly its inverse. The advantage of A in breaking the TPRP-security of
E is defined as

AdvTPRP
E (A) =

∣∣∣Pr
[
K ←$ K : AEK = 1

]
− Pr

[
P̃ ←$ TP(T ,X ) : AP̃ = 1

]∣∣∣ .
The advantage of A in breaking the strong TPRP-security (STPRP-security) of
E is defined as

AdvSTPRP
E (A) =

∣∣∣Pr
[
K ←$ K : AEK ,E

−1
K = 1

]
− Pr

[
P̃ ←$ TP(T ,X ) : AP̃ ,P̃

−1
= 1
] ∣∣∣.
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Let E be a TBC with tweak space of the form T ′ = I × T for some subset
I ⊂ N and some set T . We call T the effective tweak space of E. Then, for i ∈ I,
we let Ei denote the tweakable block cipher with the same key and message
spaces as E and tweak space T defined by

Ei(K,T,X) = E(K, (i, T ), X).

By the same convention as before, we sometimes write EiK(T,X) or Ei,TK (X) for
Ei(K,T,X). Clearly, when E is an ideal TBC drawn uniformly at random from
TBC(K, T ′,M), then each Ei is an independent ideal TBC drawn uniformly at
random from TBC(K, T ,M).

In practice, in all our modes, E has tweak space T ′ = {0, 1}t and we use 4-bit
prefixes (interpreted as integers) for tweak separation, so that the effective tweak
space is {0, 1}t−4.

2.3 Authenticated Encryption

A nonce-based authenticated encryption scheme with associated data (nAE
scheme for short) is a tuple Π = (K,N ,A,M, C,Enc,Dec), where K, N , A,M,
and C are non-empty sets of bit strings with K and N finite and Enc and Dec
are deterministic algorithms. The encryption algorithm Enc takes as input a
key K ∈ K, a nonce N ∈ N (also called public message number in CAESAR
terminology), associated data A ∈ A, and a message M ∈ M, and outputs a
ciphertext C ∈ C and a bit string tag ∈ {0, 1}τ for some integer τ ≥ 0 (we assume
that Enc returns ⊥ if one of the inputs is not in the intended set). The decryption
algorithm Dec takes as input a key K ∈ K, a nonce N ∈ N , associated data
A ∈ A, a ciphertext C ∈ C, and a string tag ∈ {0, 1}τ , and outputs either a
message M ∈ M, or a special symbol ⊥ indicating that decryption failed. We
require that Dec(K,N,A,Enc(K,N,A,M)) = M for all tuples (K,N,A,M) ∈
K×N ×A×M. We also require that ifM contains a bit string of length m, then
it contains all bit strings of length m, and that |Enc(K,N,A,M)| = |M | for all
(K,N,A,M) ∈ K ×N ×A×M. We write EncK(N,A,M) for Enc(K,N,A,M)
and DecK(N,A,C, tag) for Dec(K,N,A,C, tag).

Definition 2 (nAE-security). Let Π = (K,N ,A,M, C,Enc,Dec) be a nAE
scheme. The advantage of an adversary A in breaking Π is defined as

AdvnAE
Π (A) =

∣∣Pr
[
K ←$ K : AΠ.EncK , Π.DecK = 1

]
− Pr

[
ARand,Rej = 1

]∣∣ ,
where Rand is an oracle which on input (N,A,M) ∈ N × A ×M outputs a
uniformly random6 element in {0, 1}|M | × {0, 1}τ and Rej is an oracle which
always outputs ⊥. The adversary is not allowed to make a decryption query
(N,A,C, tag) if a previous encryption query (N,A,M) returned (C, tag).

The adversary is said nonce-respecting if it never repeats a nonce N ∈ N in
its queries to the encryption oracle.
6 We assume that Rand returns the same output if a query is repeated.
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3 Specification

In this section, we present the full specification of the Deoxys family of nAE
schemes. In total, we specify six schemes:

• Deoxys-I-128 and Deoxys-I-256, which are suitable only in the nonce-
respecting setting, i.e., users must never repeat a nonce in two different
encryption calls with the same key;

• Deoxys-II-128 and Deoxys-II-256, which are nonce-misuse resistant, i.e.,
security is retained even when nonces are repeated;

• Deoxys-AE1, a more efficient, flexible and cleaner variant of Deoxys-I-128;
• Deoxys-AE2, a more efficient, flexible and cleaner variant of Deoxys-II-128.

Suffix I indicates that any nonce must be used at most once, while suffix II
indicates that even if nonces repeat, a well-defined level of security is retained.

Each member of the family is designed by combining one tweakable block
cipher(s) and a mode of operation. First, we specify the family of tweakable block
ciphers Deoxys-TBC on which Deoxys is built in Section 3.2. Then, we specify
the modes of operations for the Deoxys-I subfamily in Section 3.3 and for the
Deoxys-II subfamily in Section 3.4. The two modes are quite similar, the main
difference being that the first one applies one pass on the message blocks for
both encryption and decryption, while the second one performs two passes for
encryption (which is necessary to obtain nonce-misuse resistance [60]) and one
pass for decryption.7

3.1 Parameters

In all the following, we use the following notation. The internal tweakable block
cipher E has key space K = {0, 1}k, tweak space T = {0, 1}t, and domain X =
{0, 1}n. The nAE scheme based on E has the same key space K = {0, 1}k, nonce
space {0, 1}|N |, AD, message, and ciphertext spaces A =M = C = {0, 1}≤n·max` ,
and tag length τ ∈ [0, n].8

The concrete parameters for Deoxys-TBC are given in Table 1, while parame-
ters for the Deoxys nAE schemes are given in Table 2.

3.2 The Tweakable Block Cipher Family Deoxys-TBC

Deoxys-TBC is a family of tweakable block ciphers with two members:

• Deoxys-TBC-256 for which the sum of the sizes of the key and the tweak is
256 bits and which is used for Deoxys-I-128 and Deoxys-II-128

7 Despite being one-pass, decryption makes two primitive calls per message blocks
as in SIV [60]. Misuse resistant schemes with rate-1 decryption have been recently
proposed [49].

8 Tags can be truncated to τ < n bits but we recommend using τ = n.
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Table 1: Parameters for the Deoxys-TBC family of tweakable block ciphers: k is
the key size, t is the tweak size, and n is the block size.

Name k + t n #rounds

Deoxys-TBC-256 256 128 14
Deoxys-TBC-384 384 128 16

Table 2: Parameters for the Deoxys family of nAE schemes: k is the key size,
|N | is the nonce size, max` is the maximal message size (in blocks of 128 bits),
τ is the recommended tag size, and the last column indicates which variant of
Deoxys-TBC is used.

Name k |N | max` τ Deoxys-TBC

Deoxys-I-128 128 64 260 128 256
Deoxys-I-256 256 64 260 128 384
Deoxys-AE1 128 128 2120 128 384

Deoxys-II-128 128 120 260 128 256
Deoxys-II-256 256 120 260 128 384
Deoxys-AE2 128 128 2120 128 384

• Deoxys-TBC-384 for which the sum of the sizes of the key and the tweak is
384 bits and which is used for Deoxys-I-256, Deoxys-II-256, Deoxys-AE1
and Deoxys-AE2.

Deoxys-TBC is an AES-like design, i.e., it is a substitution-permutation network
(SPN) that transforms the plaintext into the ciphertext through a sequence of
round functions that depend on the key and the tweak. As most AES-like designs,
the state of Deoxys-TBC is seen as 4× 4 matrix of bytes (we let c denote the size
of a cell in bits, i.e. c = 8). We let K denote the finite field GF (28) defined by
the irreducible polynomial x8 + x4 + x3 + x+ 1.

The number r of rounds is 14 for Deoxys-TBC-256 and 16 for Deoxys-TBC-384.
One round, similarly to a round in AES, consists of the following four transforma-
tions applied to the internal state in the order specified below:

• AddRoundTweakey: XOR the 128-bit round subtweakey (defined further) to
the internal state,

• SubBytes: Apply the 8-bit S-box S of AES to the 16 bytes of the internal state
(see definition in Appendix A.1),
• ShiftRows: Rotate the 4-byte i-th row left by ρ[i] positions, where ρ =

(0, 1, 2, 3).
• MixBytes: Multiply the internal state by the 4× 4 constant MDS matrix M
defined below.
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After the last round, a final AddRoundTweakey operation is performed to produce
the ciphertext.

The MDS matrix M we use is the one from the AES (coefficients are in K):

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 .

The round function f−1 for decryption applies the inverse of the four transfor-
mations in the reverse order (with subtweakeys in reverse order as well). Namely,
we perform r times the following operations:
• InvAddRoundTweakey: XOR the 128-bit round subtweakey to the internal
state,

• invMixBytes: Multiply the internal state by the 4× 4 MDS matrix M−1,
• InvShiftRows: Rotate the 4-byte i-th row right by ρ[i] positions, where ρ =

(0, 1, 2, 3),
• InvSubBytes: Apply the inverse 8-bit S-box S−1 to the 16 bytes of the internal

state (see definition in Appendix A.1).

Finally, a final InvAddRoundTweakey operation is performed to produced the
plaintext value. For the sake of completeness, we provide the inverse of the M
matrix:

M−1 =


14 11 13 9
9 14 11 13

13 9 14 11
11 13 9 14

 .

Definition of the Subtweakeys. So far, the description of the cipher has
followed the classical construction of an AES-like block cipher. The operation
AddRoundTweakey, and in particular the production of the subtweakeys, is where
Deoxys-TBC differs from the AES.

Tweakey Schedule (p = 2)

h

h LFSR2
KT

XOR RC0

TK1
0 TK2

0

STK0

f

h

h LFSR2

XOR RC1

TK1
1 TK2

1

STK1

fP = s0

h

h

. . .

. . .

XOR RC2

TK1
2 TK2

2

STK2
. . .

XOR RCr−1

TK1
r−1 TK2

r−1

STKr−1

f

h

h LFSR2

XOR RCr

TK1
r

TK2
r

STKr

sr = C

Fig. 1: Instantiation of the TWEAKEY framework for Deoxys-TBC.

We write the concatenation of the key K and the tweak T as KT , i.e., KT =
K‖T . Then, the tweakey state is divided into words of 128 bits. More precisely,
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in Deoxys-TBC-256, the size of KT is 256 bits with the first (most significant)
128 bits of KT being denoted W2, while the second W1. For Deoxys-TBC-384,
the size of KT is 384 bits, with the first (most significant) 128 bits of KT being
denoted W3, the second W2 and the third W1. Finally, we let STKi denote the
subtweakey (a 128-bit word) that is added to the state at Round i of the cipher
during the AddRoundTweakey operation. For Deoxys-TBC-256, a subtweakey is
defined as:

STKi = TK1
i ⊕ TK2

i ⊕RCi,

whereas for the case of Deoxys-TBC-384 it is defined as:

STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi.

The 128-bit words TK1
i , TK

2
i , TK

3
i are outputs produced by a tweakey sched-

ule algorithm, initialized with TK1
0 = W1 and TK2

0 = W2 for Deoxys-TBC-256
and with TK1

0 = W1, TK2
0 = W2 and TK3

0 = W3 for Deoxys-TBC-384. The
tweakey schedule algorithm is defined as

TK1
i+1 = h(TK1

i ),
TK2

i+1 = h(LFSR2(TK2
i )),

TK3
i+1 = h(LFSR3(TK3

i )),

where the byte permutation h is defined as:(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

and where we number the 16 bytes of a 128-bit tweakey word by the usual
ordering: 

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 .

The transformation can therefore be described as:
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 −→


1 5 9 13
6 10 14 2

11 15 3 7
12 0 4 8

 .

The LFSR2 and LFSR3 functions are simply the application of an LFSR to
each of the 16 bytes of a tweakey 128-bit word. More precisely, the two LFSRs
used are given in Table 3 (x0 stands for the LSB of the cell).
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Table 3: The two LFSRs used in Deoxys-TBC tweakey schedule.

LFSR2 (x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0) → (x6‖x5‖x4‖x3‖x2‖x1‖x0‖x7 ⊕ x5)

LFSR3 (x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0) → (x0 ⊕ x6‖x7‖x6‖x5‖x4‖x3‖x2‖x1)

Finally, RCi are the key schedule round constants, and are defined as:

RCi =


1 RCON[i] 0 0
2 RCON[i] 0 0
4 RCON[i] 0 0
8 RCON[i] 0 0


where RCON[i] denotes the i+ 15-th key schedule constant of the AES whose actual
values are given in Appendix B.

Cipher Instances Separation. We note that the tweak and key material are
not made explicitly distinct in Deoxys-TBC, and one might argue that since the
tweakable block cipher is always the same whatever is the amount of key or tweak
inputs, there are some obvious relations between these different cipher variants.
Only considering the primitive Deoxys-TBC, a simple distinction between the
instances could be to encode the parameter sizes into the round constants. We
however chose to not consider such related-cipher attacks [67], but instead leave
this distinction at the discretion of the protocol or mode calling the primitive.
Especially, for the two Deoxys operating modes, the separation between the
tweakable block cipher instances is naturally and safely done since the tweak
and key sizes are fixed and the placement of key and tweak material is fully
determined.

3.3 Mode of Operation for Deoxys-I

The mode of operation for Deoxys-I-128 and Deoxys-I-256 is depicted in
Fig. 2, Fig. 3a, and Fig. 3b. A specification in pseudocode is given in appendix
in Algorithm 1 (encryption) and Algorithm 2 (decryption). This mode is similar
to TAE [47] or ΘCB3 [44] (the tweakable block cipher generalization of OCB3) and
therefore directly benefits from their security proofs regarding authentication
and privacy.

The Deoxys-AE1 Variant. We remark that the authentication part of the
mode could be made more efficient by allowing more data to be processed
via the tweak input, similarly to what is done in ZMAC [34]. Indeed, instead of
using Deoxys-TBC-256 in Deoxys-I-128, one could use instead Deoxys-TBC-384
during the authentication phase, which directly permits to process 128 extra bits
of data via the larger tweak. Besides, by reclaiming the tweak space used by the

10



A1

E
2 || 0
K

0

A2

E
2 || 1
K

. . .

Ala

E
2 || la−1
K

. . . Auth

(a) Without padding.

A1

E
2 || 0
K

0

A2

E
2 || 1
K

. . .

Ala

E
2 || la−1
K

A∗10∗

E
6 || la
K

Auth. . .

(b) With padding.

Fig. 2: Handling of the associated data for Deoxys-I-128 and Deoxys-I-256:
in the case where the associated data is a multiple of the block size, no padding
is needed.

M1

E
0||N||0
K

C1

M2

E
0||N||1
K

C2

Ml

E
0||N||l−1
K

Cl

. . . . . .

Σ

E
1||N||l
K

tag

Auth
final

(a) Without padding.

M1

E
0||N||0
K

C1

M2

E
0||N||1
K

C2

Ml

E
0||N||l−1
K

Cl

. . . . . .

M∗10∗

0n

E
4||N||l
K

C∗

pad

Σ

E
5||N||l+1
K

tag

Auth
final

(b) With padding.

Fig. 3: Message processing for Deoxys-I-128 and Deoxys-I-256: in the case
where the message-length is a multiple of the block size, no padding is needed.
Note that the checksum Σ is computed with a 10∗ padding for block M∗.

constant 064, we can allow a larger counter size so that very large associated
data inputs can be handled. If Deoxys-TBC-384 is also used in the encryption
phase, then a larger nonce as well as counter size can be used to also handle very
large message inputs. We call this slightly more efficient version Deoxys-AE1. For
more flexibility, the domain separation constant has been increased from 4 bits
to 8 bits. For completeness, we give an algorithmic description in Algorithm 3
and Algorithm 4 in appendix (and depicted in Figures 10 and 11).
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3.4 Mode of Operation for Deoxys-II

The encryption algorithm for Deoxys-II-128 and Deoxys-II-256 is depicted in
Fig. 4 and Fig. 5 for the authentication part and in Fig. 6 for the encryption part.
A specification in pseudocode is given in appendix in Algorithm 5 (encryption)
and Algorithm 6 (decryption). This mode is a variant of SCT (Synthetic Counter
in Tweak) proposed in [55] that we call SCT-2. The encryption part is kept
unchanged compared with SCT, only the computation of the tag is modified in
order to provide graceful degradation of security for authentication with the
maximal number of repetitions of nonces [19] (a property that was ensured for
confidentiality by SCT, but not for authenticity).

In this SCT-2 variant described below, the nonce N has a size of 120 bits,
to include it in the tweak input of the block cipher call producing the tag. If
necessary, nonce sizes up to 128 bits can be accommodated at the expense of an
additional block cipher call. For this, one simply replaces the finalization of the
tag (Lines 21 and 29 in the following algorithms) tag′ ← EK(0001‖04‖N, tag′)
with tag′ ← EK(0001‖04‖N ′, tag′), where N ′ are the, say, 120 leftmost bits of
the encryption of N with a reserved 4-bit tweak prefix that is used nowhere else
in the mode.
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(b) With padding.

Fig. 4: Handling of the associated data for Deoxys-II-128 and Deoxys-II-256:
in the case where the associated data is a multiple of the block size, no padding
is needed.

The Deoxys-AE2 Variant. We remark that the authentication part of the
mode could be made more efficient by allowing more data to be processed via
the tweak input, similarly to what is done in ZMAC [34]. Indeed, instead of us-
ing Deoxys-TBC-256 in Deoxys-II-128, one could use instead Deoxys-TBC-384
during the authentication phase, which directly permits to process 128 extra bits
of data via the larger tweak. Besides, by reclaiming the tweak space used by the
constant 064, we can allow a larger counter size so that very large inputs can
be handled. In the encryption part, using Deoxys-TBC-384 allows to separate
completely the tag from the counter, which will improve the security bounds. For
completeness, we give an algorithmic description in Algorithm 7 and Algorithm 8
in appendix (and depicted in Figures 12, 13 and 14).
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Fig. 5: Message processing in the authentication part of Deoxys-II-128 and
Deoxys-II-256: in the case where the message-length is a multiple of the block
size, no padding is needed.
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(b) Message-length is not a multiple of the block size.

Fig. 6: Message processing for the encryption part of Deoxys-II-128 and
Deoxys-II-256. We let tag′ = tag ∨ 1‖0127, i.e., the MSB of tag is forced
to 1. Hence, the 4-bit prefix of the tweak input takes values in {8, . . . , 15}.

4 Security Claims

4.1 Claims

We provide our security claims for the different variants of Deoxys in Table 4
with respect to the key size k and the block size n.
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Table 4: Security claims for Deoxys. The upper table stands for the situation
where the user will never repeat the same nonce value N for the same key. The
lower table stands for the situation where such repetitions in N for the same
key are allowed. The bit security of our designs is expressed in terms of calls
to the internal tweakable block cipher, up to a small logarithmic factor. Claims
for Deoxys-AE1 and Deoxys-AE2 are the same as Deoxys-I and Deoxys-II
respectively.

Security (bits)
Goal (nonce-respecting setting) Deoxys-I Deoxys-II

Key recovery k k

Confidentiality for the plaintext n n− 1
Integrity for the plaintext n n− 1
Integrity for the associated data n n− 1
Integrity for the public message number n n− 1

Security (bits)
Goal (nonce-misuse setting) Deoxys-I Deoxys-II

Key recovery k k

Confidentiality for the plaintext none n/2
Integrity for the plaintext none n/2
Integrity for the associated data none n/2
Integrity for the public message number none n/2

We claim full n-bit security for both Deoxys-I and Deoxys-II in the nonce-
respecting setting, in contrast to other modes such as AES-GCM [48] or OCB3 [44],
which only ensure birthday-bound security. In the nonce-misuse scenario, we
claim a birthday-bound security concerning Deoxys-II.

We assume that the maximum number of AD/message pairs that are handled
with a given key is 2maxm with maxm = 64 for all variants of Deoxys. Moreover,
for all variants of Deoxys-I, we assume that the total size of the associated data
and the message do not exceed 16 · 2max` = 264 bytes. (For Deoxys-II, the total
size of the associated data and messages cannot exceed 16 · 2max` · 2maxm = 2128

bytes.)
We recommend to use a tag size τ = n. However, in case a smaller tag

size is required, the security claims will drop according to τ . We explicitly
exclude related-cipher attacks, for example when an attacker would try to find
some correlations between different versions of Deoxys (we assume that such a
separation, if needed, will be handled by the protocol using the authenticated
encryption primitive).
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4.2 Comparison of Deoxys Modes With Other Modes

Deoxys-I provides “full” security in the nonce-respecting setting; more precisely,
confidentiality is perfectly guaranteed and the forgery probability is 2−τ , inde-
pendently of the number of blocks of data in encryption/decryption queries made
by the adversary. In comparison, OCB only provides security up to the birthday
bound, more precisely up to roughly 2n/2 blocks of data since it relies on XE/XEX
(a construction of a tweakable block cipher from a standard block cipher with
security only up to the birthday bound). In Fig. 7, we represent the security of
several nonce-respecting schemes selected for the third round of the CAESAR
competition. To give an numerical example, with 232 messages of 64 KB each
(corresponding to the case σ = 244 blocks of 16 bytes on the plot), existing
security proofs ensure that the attacker against authenticity has an advantage of
at most 2−37 for OCB3, 2−41 for AES-GCM, 2−73 for AES-GCM-SIV. For the same
amount of data, the advantage becomes 2−94 for Deoxys-II, and remains 2−128

for Deoxys-I.
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OCB3

GCMAEZ
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log2(σ)

− log2(Adv)

Fig. 7: Security comparison of some nonce-based modes in the nonce-respecting
setting. The figure plots the nAE-advantage of an adversary as a function of the
total number of queried blocks σ when the message length is fixed to ` = 212

blocks.

Deoxys-II provides “full” security in the nonce-misuse setting, in the MRAE
sense of [60] (but its bound depends on the number of queries made by the
adversary). Moreover, security degrades gracefully (both for confidentiality and
authenticity) with respect to the maximal number of nonce repetitions (i.e., re-
peating nonces only a few times does not affect the security bound much, and the
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same nonce must be repeated close to 2n/2 times for an adversary to have notice-
able advantage). This is very different from OCB3 and AES-GCM for which a single
nonce reuse breaks confidentiality and allows universal forgeries. In comparison,
COLM [3] only provides the weaker notion of online nonce-misuse resistance [28],
while AEZ [33] provides nonce-misuse resistance (and even the stronger notion of
robustness, which guarantees security against release of unverified plaintext [4])
but only up to the birthday bound. Compared to AES-GCM-SIV [32], which is
also nonce-misuse resistant, Deoxys-II provides a larger security margin. For
example, when encrypting 232 messages of 64 KB each with the same nonce, the
attacker gets an advantage of about 2−41 against AES-GCM-SIV versus only 2−51

for Deoxys-II.

5 Design Rationale for Deoxys-TBC

The starting point of our design is to provide a sound ad-hoc AES-based tweakable
block cipher that has full security. Having such a primitive is beneficial for many
authenticated encryption modes that are secure beyond the birthday bound, but
lose this feature when instantiated with the current constructions that use a
permutation or a cipher as a black box and surround it with addition of words
produced by a finite field multiplications (beyond-birthday security authenticated
encryption modes that use a block cipher remain quite slow). Therefore, designing
a secure tweakable block cipher will enable us to reach full 128-bit security for
both confidentiality and authenticity.

5.1 Details for the STK Construction

Designing a secure round function for block ciphers has become a fairly easy task:
an S-box layer and a diffusion layer based on MDS code immediately provide
good security margin against differential and linear attacks even when the number
of rounds in the cipher is small. The problem when designing ciphers, however,
lies in how to choose the key schedule – for the cipher to be secure the number of
rounds has often to be very large. The complexity of this task increases manifold
if the key size is larger and if the key schedule is supposed to be simple (no
non-linear operations, and as few linear operations as possible).

We provide a solution to tackle the above two main points in the form of
the STK construction. This construction gives a simple key schedule for arbitrary
length keys and with an additional checks on related-key attacks, ensures that
the cipher is secure. The number of total rounds in the cipher is kept fairly small
because of a special trick we use in the key schedule. We split the master key
on equal key sizes, each with its own (but similar to the other) simple schedule
that produces subkeys that are added simultaneously to the state. Due to the
similarity of the schedules, and the use of simple linear layers to differentiate
them, we can control the number of difference cancellations happening in the
subkeys in a related-key attack. Thus, the security against these type of attacks
can be proven with a number of rounds that is not necessarily very high.
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In detail, we let TK-p denote the cipher where the master key is p times larger
than the state (and thus is divided into p keys). In Deoxys, we work only with
TK-2, and TK-3, but the same strategy would work when p > 3. Let us choose an
arbitrary position of a byte at the beginning of each of the p key schedules. For
instance, we fix the position (1, 1) and we investigate how the p bytes at this
position at the beginning of the p key schedules, change during the production of
the subtweakeys. What is interesting is that as all key schedules apply the same
permutation h, the initial p bytes will always be XORed at the same position in
the subtweakeys (taking into account the definition of the permutation h we can
see that the positions through the rounds change as: (1,1) in the first, (2,1) in
the second, (3,2) in the third, (4,4) in the fourth, etc). From the initial p-tuple
of byte values x = [x0

1, . . . , x
0
p], the STK key schedule (which can be seen as p

similar key schedules that differ only in the linear layers used to update them)
produces r tuples [x1

1, . . . , x
1
p], . . . , [xr1, . . . , xrp], such that xk+1

i = Lj(xki ), where
Li represents the linear layer that updates the i-th word of the schedule. All of
them are integrated to the internal state by considering the r + 1 XOR values⊕p

i=1 x
k
i , for 0 ≤ k ≤ r.

The goal was then to choose the linear layers Li such that the number of
difference cancellations in the sequence

⊕p
i=1 x

k
i is minimized. By choosing the

simple LFSRs given in Section 3 (and already used in the lightweight block
cipher SKINNY [5]), we have checked with a computer program that cancellation
of values (and differences in general as the key schedule is linear) in a chosen
byte of TK-p cannot occur more than p− 1 times over 15 consecutive subkeys. For
TK-2, this means that the cumulative difference coming from the p tweakey words
can be canceled only once by XOR for 15 consecutive subkeys. For TK-3, this
cancellation event can happen twice for 15 consecutive subkeys. We note that for
the case of Deoxys-TBC-384, the number of rounds for which we can control the
difference cancellations (15) is slightly smaller than the total number of rounds
of the cipher (16). However, this has no impact since the security proofs we will
aim only apply to a rather small number of rounds r′ < 16.

5.2 The Choice of Permutation h

The above strategy of designing the key schedule is only the first step that ensures
the schedule is not trivially insecure against related-key attacks (and that does
not require a huge number of rounds to make the cipher secure). The step that
follows is the choice of the bytes position permutation h. With a random search
we found a suitable permutation h that provides security against related-key
attacks in the relatively small number of rounds. The security of this permutation
was provided by the tools specified in Section 6.

Further we discuss the question of optimality of the found h. There are
16! ≈ 242 potential candidates for h. Despite the fact that this number may not
seem too large, running a full brute force search is entirely infeasible because the
actual per-instance security check is computationally expensive (a few minutes
per permutation). For this reason, we can run only impartial search. Instead
of a simple random search, we use more advanced search strategies based on
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meta-heuristics, which have been used for optimization of symmetric-key designs
in [53].

Meta-heuristics are used to optimize black-box objective functions iteratively
(they not necessarily find the global optimum). In our case, the input to the
objective function is permutation h, while the output is the number of active
S-boxes in the best related-key differential attack. The objective function is
computable by solving the MILP [51] that corresponds to the chosen h. Note,
we need to find h that provides good security levels simultaneously for both
Deoxys-TBC-256 and Deoxys-TBC-384. Therefore, our objective function will be
the sum of the active S-boxes for the two ciphers. As discussed in Section 6, in each
of them, the number of active S-boxes need to be at least 22. For comparison, in
the original permutation h, these numbers are 23 and 24 active S-boxes, achieved
with 9-round Deoxys-TBC-256 and 11-round Deoxys-TBC-384, respectively (thus
the value of the objective function for this h is 47). All of our results reported
further are obtained by running two types of meta-heuristics (simulated annealing
and genetic algorithm), each on a single core for several days. We state the results
for the best found permutations only.

First, we ran the search for better h permutations for 9-round Deoxys-TBC-256
and 11-round Deoxys-TBC-384. We found a few permutations that achieved 48
active S-boxes (23 +25), against the 47 in the original h. So, the security margin
of the current round-reduced ciphers can be improved – Deoxys-TBC-256 can
have one more active S-box in the best trail.

Second, we tried to reduce the current minimal number of rounds to achieve
security against related-key differential trails. More precisely, we searched for
better permutations in two scenarios: 8-round Deoxys-TBC-256 combined with 11-
round Deoxys-TBC-384, and 9-round Deoxys-TBC-256 combined with 10-round
Deoxys-TBC-384 . In the first case, our search did not produce any permutation
that has the required 22 active S-boxes for both of the ciphers (the failure occurred
because no permutation was found to have 22 active in 8-round Deoxys-TBC-256,
rather only 19). Similarly, in the second the best found permutation could not
satisfy 22 active for 10-round Deoxys-TBC-384 (only 21). Therefore, we did
not find a way to further reduce the rounds of the ciphers while maintaining
appropriate security margin.

To summarize, our extended meta-heuristcs search shows near optimality of
the current permutation h – a better permutation will only improve the security
bound of one of the block ciphers by a single active S-box against related-key
differential attacks. This improvement is only with regards to the security. On
the other hand, our original permutation h has the advantage of being very easy
to implement on some platforms (refer to the next section). Therefore, with this
in mind, we conclude that the current h strikes a good balance between security
and ease of implementation (by both criteria it is on of the top candidates).

5.3 From Block Cipher to Tweakable Block Cipher

The STK construction (with specified permutation h and linear layers Li) provides
only a secure block cipher with an arbitrary length key. However, turning this
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block cipher into a tweakable block cipher is trivial: some bits of the master key
are announced as tweak, while the remaining bits are kept as secret key bits.
As the key and the tweak are treated in the same way in our designs, we give
them the general name tweakey. From the TK-2 block cipher that in our case has
256-bit key and 128-bit block, we were able to obtain tweakable block ciphers
with 128-bit key and 128-bit tweak (called Deoxys-TBC-128). A similar transition
was made from the TK-3 block cipher (with 384-bit tweakey) to Deoxys-TBC-256.

During this transition, it is important to note that the security of the cipher
against related-key (and now related-tweak) attacks does not drop, even though
parts of the original master key become available to the attacker. The reason for
this is twofold: first, the key schedule is linear, it never has any active S-boxes;
and second, the XOR of all subkeys/subtweaks in each round to the state is
secret (as long as one of them is secret), and also the state is secret (thus the
attacker cannot reduce the number of active S-boxes by controlling the tweak).

6 Security Analysis of Deoxys-TBC

In the past two decades, the Advanced Encryption Standard (AES) and AES-type
ciphers have been the subject of extensive analysis. As a result, the security of
these ciphers against the most popular forms of cryptanalysis, the differential
and the linear attacks, is well understood in the single-key model. Important
progress in AES security analysis has been provided in the past several years, and
it involved careful study of the key schedule of AES-type ciphers. In other words,
the latest attacks rely on how the key is processed in the rounds of the ciphers.
Two such notable examples are the related-key differential attacks [11,12] and
the Meet-in-the-Middle (MITM) attacks [21,23,26,62] on AES.

Our TWEAKEY framework allows a dual view of the whole constructions. The
first is as described previously, i.e. in each round a subkey and a subtweak are
added to the state. In the second view, however, one can treat the XOR of
the subkey and the subtweak as one single subkey called subtweakey, which is
produced from a more complex key schedule (composition of the original key
schedule and tweak schedule). This way the security analysis of TWEAKEY reduces
to the security analysis of a block cipher with more complex key schedule, and
where one part of the key is secret, and the second is public.

We view the Deoxys tweakey schedule as an improvement over the AES key
schedule: not only it is much simpler and more efficient, but it also provides
stronger security guarantees against related-key differential cryptanalysis for
example. Since its original publication in [36,37], Deoxys-TBC sustained several
third-party cryptanalysis efforts. We summarize here our own analysis and also
these third-party advances.

6.1 Differential Cryptanalysis

Designing a SPN cipher resistant against single-key differential attacks is fairly
simple and can be done by carefully choosing the diffusion layer (ensuring that
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its branch number is high enough). For example, in the case of AES, because
its diffusion matrix has a branching number of 5, one can prove at least 25
differentially active S-boxes for four rounds of AES in the single-key model.
Assuming that each of the active S-boxes can reach the maximal differential
probability of the AES S-box pmax = 2−6, one directly deduce that four rounds
already provide sufficient protection against simple differential cryptanalysis in
the single-key model.

Since our tweakable block cipher Deoxys-TBC is directly built on the AES round
function and since the number of active S-boxes is independent of the key schedule
in the single-key model, the very same analysis can be applied to Deoxys-TBC.
Thus, four rounds of Deoxys-TBC already provide sufficient protection against
simple differential cryptanalysis in the single-key model.

While the single-key case is straightforward, it is much harder to guarantee
resistance against related-key differential attacks and the STK construction is
an elegant way to tackle this problem. There exists search algorithms and
tools [13, 14, 27, 29, 51, 62] that given a key schedule can return the upper bound
on the probability of the best related-key differential characteristics, and in the
case when such a bound is low, practically provide and prove the resistance
against related-key differential attacks. The STK construction greatly facilitates
the applicability of these tools and we used precisely these algorithms in our
security analysis against related-key attacks.

These search tools have been designed to look for related-key characteristics,
however, we allow the adversary to operate in a stronger setting of related-key
and possibly related-tweak (or both at the same time) attacks. Nonetheless,
we can accommodate and modify the tools to search for such characteristics.
Although the modification can be done easily, the feasibility (expressed in the time
complexity required the search algorithm to finish) is the real problem. To cope
with this, we use several different tools, each chosen to provide the probability
bounds in the shortest time. More precisely, we alternate between the search
algorithm based on Matsui’s approach [13], split approach [14], and extended
split approach [27]. We omit the details on how these search algorithms operate
due to their complexity, and further, provide only the final results produced by
the tools. We give in the first line of Table 5 these results for our two tweakable
block ciphers Deoxys-TBC-256 and Deoxys-TBC-384.

Our bounds have later been improved using MILP search tools [17] (see the
second line of Table 5). Most of these bounds are not tight and one can expect
even more active S-boxes in practice. The third line provides bounds on the
number of active S-boxes using a reasonable assumption based on the amount of
freedom degrees available to the attacker. Indeed, in order to reach the bounds
of the second line, only pure structural constraints have been taken into account,
while extra linear constraints might come in play for AES-like ciphers [29] and
make impossible most differential paths minimizing the number of active S-boxes.
Thus, a reasoning on the freedom degrees available allows to assume that the
linear system of extra constraints might not have solutions, and thus render
differential paths simply impossible. One can view these third-line bounds as an
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Table 5: Original and new lower bounds on the number of active S-boxes for
Deoxys-TBC-256 and Deoxys-TBC-384. Linear incompatibility bounds require
an extra assumption based on the freedom degree of the attacker.

Deoxys-TBC-256

#rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14

original [37] 0 0 1 5 9 12 16 17 - 22 - - - -
simple model [17] 0 0 1 5 9 12 16 19 23 26 29 32 35 38
linear inc. [17] 0 0 1 5 10 14 18 22 27 31 35 40 44 48

Deoxys-TBC-384

#rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

original [37] 0 0 0 1 4 8 - - - - - 22 - - - -
simple model [17] 0 0 0 1 4 8 10 14 18 21 24 28 31 35 37 45
linear inc. [17] 0 0 0 1 5 9 13 18 22 27 31 35 40 44 48 52

indication of the actual minimum number of active S-boxes one attacker could
hope for.

We assume that each of the active S-boxes can reach the maximal differential
probability of the AES S-box pmax = 2−6. Using at least r = 9 rounds for
Deoxys-TBC-256, the number of active S-boxes is lower-bounded by 23, meaning
that the probability of the associated differential characteristic is upper-bounded
by 2−6×23 = 2−138. Thus, such characteristics cannot be exploited due to the
state size of 128 bits (the attacker cannot construct more than 2128 plaintext
pairs to start the attack). A similar reasoning with linear constraints bounds
indicates that r = 8 might actually be sufficient.

Using at least r = 11 rounds for Deoxys-TBC-384, the number of active
S-boxes is lower-bounded by 24, meaning that the probability of the associated
differential characteristic is upper-bounded by 2−6×24 = 2−144 and such charac-
teristics cannot be exploited due to the state size of 128 bits. A similar reasoning
with linear constraints bounds indicates that r = 9 might actually be sufficient.

Thus, Deoxys-TBC-256 and Deoxys-TBC-384 have a security margin of at
least five and seven rounds respectively and thus are highly resistant against
related-key related-tweak attacks.

6.2 Linear Cryptanalysis

Similarly to the differential cryptanalysis case, the security guarantees of AES
with regards to linear cryptanalysis in the single-key model directly translate to
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Deoxys-TBC. Therefore, we can easily prove that four rounds of Deoxys-TBC-256
or Deoxys-TBC-384 already provide sufficient protection against simple linear
cryptanalysis in the single-key model.

Moreover, since there is no cancellation of linearly active S-boxes in the
related-key model [42], the analysis of single-key directly translates to the related-
key model as well. Therefore, four rounds already provide sufficient protection
against simple linear cryptanalysis also in the related-key model.

One might argue that the linearity of the Deoxys-TBC-256 or Deoxys-TBC-384
tweakey schedule will help linear cryptanalysis. However, we emphasize that most
analysis of AES with regards to linear cryptanalysis have been done assuming that
the subkeys are independent. In addition, unlike for AES, the tweakey schedule of
Deoxys-TBC-256 or Deoxys-TBC-384 has been chosen to maximize the number
of active S-boxes and the key bytes diffusion. This will very likely render its
cryptanalysis even harder for an attacker.

6.3 Boomerang Attacks and Variants

A boomerang attack [65] regards the target cipher as a composition of two
sub-ciphers E0 and E1: the first sub-cipher is supposed to have a differential
α → β, and the second one to have a differential γ → δ, with probabilities p
and q, respectively. The basic boomerang attack requires an adaptive chosen
plaintext/ciphertext scenario, and plaintext pairs result in a right quartet with
probability p2q2. A variant working in a chosen-plaintext scenario, so-called
amplified boomerang attack, can produce a right quartet with probability p2q22−n
[38]. Further, it was pointed out in [8, 9] that any value of β and γ is allowed
as long as β 6= γ. As a result, the probability of the right quartet is increased
to 2−np̂2q̂2, where p̂ =

√
ΣiPr2(α −→ βi) and q̂ =

√
ΣjPr2(γj −→ δ), and this

variant is called rectangle attack.
As one can observe in Table 5, for Deoxys-TBC-256 or Deoxys-TBC-384 the

amount of minimum active S-boxes does not grow immediately in the related-key
model and thus boomerang attacks and variants seem to be a good candidate
to attack them. Indeed, in a boomerang attack, the attacker will look for a
potentially short but highly probable differential path for the primitive analysed.
The shortness of the path will be compensated by the fact it will be used only
for roughly half of the rounds attacked, while the high probability will ensure
that the final boomerang differential characteristic will have reasonable success
probability.

A first attempt was performed on Deoxys-TBC-256 an Deoxys-TBC-384
in [17], where (very costly) related-key boomerang characteristics were pro-
duced for up to 11 rounds of Deoxys-TBC-256 and 13 rounds of Deoxys-TBC-384,
see Table 6.

These related-key characteristics have then been turned into related-key
rectangle attacks (simple distinguisher or key recovery) on reduced versions of
Deoxys-TBC-256 and Deoxys-TBC-384 (see Table 7). The authors even consid-
ered beyond-full codebook scenario, which can make sense for tweakable block
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Table 6: Related-key boomerang characteristics on Deoxys-TBC-256 and
Deoxys-TBC-384 [17]. Notation p̂ and q̂ depicts here improved probabilities
due to boomerang switching techniques. The number of rounds corresponds to
R1 (top differential characteristic) R2 (bottom differential characteristic).

Deoxys-TBC-256 Deoxys-TBC-384

#rounds (R1, R2) pq p̂2q̂2 #rounds (R1, R2) pq p̂2q̂2

8 (4, 4) 2−36 2−72 10 (5, 5) 2−24 2−42

9 (5, 4) 2−61 2−122 11 (6, 5) 2−60 2−120

10 (5, 5) 2−106 2−212 12 (6, 6) 2−98 2−196

11 (6, 5) 2−136 2−265 13 (7, 6) 2−134 2−268

ciphers in extreme scenario as the tweak input can provide more data to the
attacker than just the cipher domain size. Overall, 10 and 12 rounds could
be reached for Deoxys-TBC-256 and Deoxys-TBC-384 respectively when used
with a 128-bit and 256-bit key respectively, or 11 and 14 rounds respectively by
increasing the key size in the tweakey state.

Interestingly, the authors analysed the case where the tweakable block ciphers
are placed inside the mode and only reduced-round Deoxys-I could be attacked
(9 rounds for Deoxys-I-128 and 12 rounds for Deoxys-I-256, see Table 7). It
seems that these related-key boomerang attacks are much harder to translate
into threats for the Deoxys-II mode.

These results were slightly improved in [18], where the authors introduced
a new metric tool, the Boomerang Connectivity Table (BCT), to analyze more
systematically and more precisely the possible interactions between the top and
bottom differential characteristics in a boomerang attack. More precisely, existing
boomerang distinguishers [17] on 8, 9 and 10 rounds of Deoxys-TBC-384 with
probability 2−6, 2−18, 2−42 respectively were each improved by a factor 20.6.
Another improvement came from [66] where a factor 21.6 was gained on the
9-round boomerang distinguisher probability for Deoxys-TBC-256.

In [61], by optimizing attack procedures, the authors managed to reduce the
complexities of 8- and 9-round related-tweakey boomerang distinguishers against
Deoxys-TBC-256 to 228 and 298 computations, respectively, whereas the previous
attacks require 274 and 2124 respectively. These distinguishers were extended to
9- and 10-round boomerang key-recovery attacks with complexity 2112 and 2170.

6.4 Meet-in-the-Middle Attacks

Additionally, we scrutinized the resistance of our design with regards to the
advanced meet-in-the-middle attack on AES conducted in [23]. Indeed, this attack
strongly relies on the AES key schedule to propagate linear equations in the
MITM strategy to spare some guesses in both the offline and online phases. As
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Table 7: Related-key rectangle attack results from [17, 61] on reduced-round
versions of Deoxys-TBC-256 and Deoxys-TBC-384 (top table), as well as on
reduced-round versions of the AEAD schemes Deoxys-I-128 and Deoxys-I-256
(bottom table).

Deoxys Internal Primitives
number tweak key time data memory attack ref.
of rounds size size type

Deoxys-TBC-256

8/14 128 128 274 274 - distinguisher [17]
128 128 228 228 227 distinguisher [61]

9/14

128 128 2124 2124 - distinguisher [17]
128 128 298 298 217 distinguisher [61]
128 128 2118 2117 2117 key-recovery [17]
128 128 2112 298 217 key-recovery [61]

10/14

t < 52 k > 204 2204 2127.58 2127.58 key-recovery [17]
t < 86 k > 170 2170 2170 217 key-recovery [61]
t < 86 k > 170 2170 298 298 key-recovery [61]
128 128 2109.1 298.4 288 key-recovery [70]

11/14 t < 4 k > 252 2249.9 2122.1 2128.2 key-recovery [70]

Deoxys-TBC-384

10/16 128 256 244 244 - distinguisher [17]
128 256 222 222 217 distinguisher [61]

11/16 128 256 2122 2122 - distinguisher [17]
128 256 2100 2100 217 distinguisher [61]

12/16

128 256 2127 2127 2125 key-recovery [17]
128 256 2148 2148 217 key-recovery [61]
128 256 2148 2100 2100 key-recovery [61]
256 128 298 298 264 key-recovery [70]
128 256 2208 2115 2113 key-recovery [70]

13/16
t < 114 k > 270 2270 2127 2144 key-recovery [17]
128 256 2191.3 2125 2136 key-recovery [70]
128 256 2186.7 2125.2 2136 key-recovery [71]

14/16 t < 98 k > 286 2286.2 2127 2136 key-recovery [70]
t < 102 k > 282 2282.7 2125.2 2136 key-recovery [71]

Deoxys AE Schemes

Deoxys-I-128
9/14 - 128 2118 2117 2117 RK rectangle [17]
10/14 - 128 2114.2 2114.2 2112.2 RK rectangle [70]

Deoxys-I-256
12/16 - 256 2236 2126 2124 RK rectangle [17]
12/16 - 256 2208 2115 2113 RK rectangle [70]
13/16 - 256 2186.7 2125.2 2136 RK rectangle [71]

the design we propose introduces a new tweakey schedule, we have analyzed how
it interacts with the AES round function.

For a given tweak value, Deoxys-TBC behaves as the AES with a new schedule
with partially known values (the subtweakeys) XORed between each round,
without additional input values. This tweakey schedule is fully linear as it first
applies a byte permutation and then an LFSR on some bytes of the state. In that
context, a first analysis shows that the meet-in-the-middle technique from [23]
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can attack up to 8 rounds, where the AES key schedule for 128-bit keys stops the
attack at 7 rounds.

Several years after our first analysis, it seems our estimations were accurate:
in [46], the authors applied using meet-in-the-middle attacks managed to reach
8 rounds of Deoxys-TBC-256 with 2113 time/data complexity and 297 memory,
and 10 rounds of Deoxys-TBC-384 with 2228 time, 2113 data and 2226 memory
complexity.

6.5 Impossible Differential Attacks

In [50], the authors proposed impossible differential attacks against reduced-round
Deoxys-TBC-256. For a very high complexity (2118 computational and data, 2114

memory), the authors managed to attack up to 9 rounds of Deoxys-TBC-256 in
the related-tweak related-key model. Using the same strategy, they could attack 8
rounds in the related-tweak model (2116.5 computational and data, 248 memory).

6.6 Other Attacks

As mentioned earlier in the chapter, the security bound of Deoxys-TBC-256 or
Deoxys-TBC-384 against most of the other attacks matches the bounds of AES,
i.e. all the attacks that do not exploit the key schedule will have the same success
on Deoxys-TBC-256 or Deoxys-TBC-384 as on AES. This gives us a security
reduction from AES, however, we note that as our ciphers have more rounds, for
these particular attacks their security margin is higher than AES.

Besides the above types of attacks, we encourage to investigate attack vectors
that rely on some additional property of the key schedule of Deoxys-TBC-256
or Deoxys-TBC-384. We emphasize that other attack techniques like slide [15],
rotational [40] and the internal differential attacks [54] are prevented by the usage
of the constants in the key schedule, as done in the AES.

As previously described, since by design there is no distinction between
key and tweak material for Deoxys-TBC-256 or Deoxys-TBC-384 (rather the
key+tweak inputs are treated as one tweakey input), trivial so-called related-
cipher attacks [67] would apply between Deoxys-TBC-256 and Deoxys-TBC-384.
As the practical threat coming from this type of attack framework is very limited
and can be completely avoided at the operating mode level, we decided not to
put different constants RCi in order to prevent the attack. Moreover, we recall
that for the two Deoxys operating modes, the separation between the tweakable
block cipher instances is naturally and safely done since the tweak and key sizes
are fixed and the placement of key and tweak material is fully determined.

Finally, we note that a possible increment in the number of attacked rounds
might happen in the scenario of open-key distinguishers (even though we have not
been able to improve the known attacks [22, 31, 35] using this extra tweak input).
However, we emphasize that we do not claim any resistance of Deoxys-TBC-256
nor Deoxys-TBC-384 in this attack model.
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Table 8: Proved bounds on the minimal number of differential active S-boxes
for AES-256 and for Deoxys-TBC-256. Model SK denotes the single-key scenario
and model RTK denotes the related-tweakey scenario where differences can be
inserted in the tweakey state.

Cipher Model Rounds
1 2 3 4 5 6 7 8

Deoxys-TBC-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTK 0 0 1 5 9 12 16 19

AES-256 SK 1 5 9 25 26 30 34 50
(14 rounds) RTK 0 0 1 3 5 5 5 10

6.7 Comparing Deoxys-TBC with AES

The Deoxys-TBC-256 and Deoxys-TBC-384 tweakable block ciphers are directly
built upon the AES round function, but their key schedule has been updated. We
see this new key schedule as a direct improvement over the AES key schedule. We
recall that AES-192 and AES-256 have been shown to be weak against related-key
attacks [11,12], thus indicating that their respecting key schedule is not strong
enough against certain type of attacks.

We compare in Table 8 the minimum number of differentially active S-boxes
of AES-256 and Deoxys-TBC-256 in the related-key model (we compare these two
primitives as they have the same tweakey size). One can see that Deoxys-TBC-256
tweakey schedule guarantees many more active S-boxes than AES-256 (and thus
an expected higher resistance against related-key attacks), while being much
more efficient. Note that the bounds for Deoxys-TBC-256 are not tight and can
probably be further improved.

We finally emphasize that Deoxys-TBC-256 is used in the 128-bit key mode
of Deoxys, and thus attacks requiring more than 2128 computations are not a
concern (in contrary to AES-256). This further increases the security margin
Deoxys-TBC-256 provides when compared to AES-256.

7 Security Proof of SCT-2

In this section, we give a self-contained security proof of the SCT-2 mode. The
SCT-2 mode relies on the NSIV generic composition method (introduced in [55])
applied to two building blocks, a nonce-based keyed function called NaT (intro-
duced in [19]) and a combined nonce and IV-based encryption scheme called
CTRT (introduced in [55]).
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7.1 Definitions and Security Notions

Given two sets X and Y , the set of all functions from X to Y is denoted Func(X ,Y).
A function F ∈ Func(X ,Y) is said regular if all Y ∈ Y have the same number of
preimages by F (this obviously requires |X | to be a multiple of |Y|).

Let ε > 0, and let H : Kh ×X → Y be a keyed function for three non-empty
sets Kh, X , and Y with Kh finite. H is said to be ε-almost universal (ε-AU) if
for any distinct X and X ′ ∈ X ,

Pr [Kh ←$ Kh : HKh
(X) = HKh

(X ′)] ≤ ε.

SCT-2 follows the NSIV generic composition method, which relies on two
building blocks, a nonce-based pseudorandom MAC (nPRM) and a nivE scheme,
which we define below.

nPRM Schemes. A nonce-based keyed function is a function F : K×N×D → Y ,
where K is the key space, N the nonce space, D the domain and Y the range. We
introduce a new security notion called nonce-based pseudorandom MAC (nPRM)
which conveniently combines the PRF and MAC security notions and simplifies
the security analysis of the NSIV composition method.

Definition 3 (nPRM-security). Let F : K ×N ×D → Y be a nonce-based
keyed function, and let us write FK(N,D) for F (K,N,D). Let A be an adversary
with oracle access to two oracles, the first oracle being a function from N ×D
to Y, the second oracle with inputs in N ×D × Y and outputs in {>,⊥}. The
advantage of A against the nPRM-security of F is defined as

AdvnPRM
F (A) =

∣∣Pr
[
K ←$ K : AFK ,VerK = 1

]
− Pr

[
ρ←$ Func(N ×D,Y) : Aρ,Rej = 1

] ∣∣,
where VerK is an oracle which takes as input a triple (N,D, tag) ∈ N ×D×Y and
returns > if FK(N,D) = tag and ⊥ otherwise and Rej is an oracle which always
returns ⊥. The adversary is not allowed to ask a verification query (N,D, tag) if
a previous query (N,D) to FK returned tag.

Note that a nonce-based keyed function might be a PRF against an adversary
repeating any nonce at most µ times but fail to be an nPRM against an adversary
repeating any nonce at most µ times in its left-oracle queries. Think for example
of a function F which depends only on the nonce: even if it is a PRF against
nonce-respecting adversaries, it is not a secure nPRM against a nonce-respecting
adversary: simply query the left oracle on some (N,D) and then the second
oracle on (N,D′) for D′ 6= D; it will return > in the (FK ,VerK) world and ⊥ in
the (ρ,Rej) world.

nivE Schemes. Most existing encryption schemes are either nonce-based [59]
or IV-based [6], i.e., they employ an externally provided value which either
should not repeat (nonce), or should be selected uniformly at random (IV). (See
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also [52].) The notion of combined nonce- and IV-based encryption scheme (nivE
for short) was introduced in [55].

Syntactically, a nivE scheme is a tuple Π = (K,N , IV,M, C,Enc,Dec) where
K, N , IV ,M, and C are non-empty sets of bit strings with K, N , and IV finite
and Enc and Dec are deterministic algorithms. The encryption algorithm Enc
takes as input a key K ∈ K, a nonce N ∈ N , an initial value IV ∈ IV, and a
message M ∈M, and outputs a ciphertext C ∈ C (we assume that Enc returns
⊥ if one of the inputs is not in the intended set). The decryption algorithm Dec
takes as input a key K ∈ K, a nonce N ∈ N , an initial value IV ∈ IV, and a
ciphertext C ∈ C, and outputs either a message M ∈M, or a special symbol ⊥.
We require that

Dec(K,N, IV,Enc(K,N, IV,M)) = M

for all tuples (K,N, IV,M) ∈ K × N × IV ×M. We also require that if M
contains a bit string of length m, then it contains all bit strings of length m, and
that |Enc(K,N, IV,M)| = |M | for all (K,N, IV,M) ∈ K ×N × IV ×M.

We let Enc$ denote the probabilistic algorithm which on input (K,N,M) ∈
K × N ×M internally generates a uniformly random IV ←$ IV, computes
C = Enc(K,N, IV,M), and outputs (IV, C) ∈ IV ×C. We write EncK(N, IV,M)
for Enc(K,N, IV,M) and Enc$

K(N,M) for Enc$(K,N,M). The security of a nivE
scheme is defined as follows.

Definition 4 (nivE-security). Let Π = (K,N , IV,M, C,Enc,Dec) be a nivE
scheme. The advantage of an adversary A against the nivE-security of Π is
defined as

AdvnivE
Π (A) =

∣∣∣Pr
[
K ←$ K : AΠ.Enc$

K = 1
]
− Pr

[
ARand = 1

]∣∣∣ ,
where Rand is an oracle which on input (N,M) ∈ N ×M outputs a uniformly
random pair (IV, C)←$ IV × {0, 1}|M |.

Adversary Characteristics. In all this section, given some implicit parameter
n, a (q, µ, `, σ, t)-adversary against a nonce-based scheme is an adversary:

• which makes at most q oracle queries; when the adversary has access to two
oracles (i.e., when attacking the nPRM-security of a keyed function or a nAE
scheme), this means q queries in total to both oracles;

• which uses any nonce at most µ times throughout its queries (µ = 1 for a
nonce-respecting adversary); when the adversary has access to two oracles,
this only applies to queries to its first oracle (function or encryption oracle);

• such that the length of any of its queries (nonce excluded) is at most ` blocks
of n bits; for a keyed function with domain D = A×M or a nAE scheme,
this means that both the AD length and the message length of any query is
at most ` blocks of n bits;

• such that the total length of all its queries (nonce excluded) is at most σ
blocks of n bits; for a keyed function with domain D = A ×M or a nAE
scheme, this means the sum of the AD and the message length over all queries;

• which runs in time at most t.
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FK1 tag

Conv IV

C

Π.EncK2

MN A

1 algorithm NSIV[F,Π].EncK1,K2 (N,A,M)
2 tag := FK1 (N,A,M)
3 IV := Conv(tag)
4 C := Π.EncK2 (N, IV,M)
5 return (C, tag)
6

7 algorithm NSIV[F,Π].DecK1,K2 (N,A,C, tag)
8 IV := Conv(tag)
9 M := Π.DecK2 (N, IV,C)

10 tag′ := FK1 (N,A,M)
11 if tag′ = tag then return M else return ⊥

Fig. 8: The NSIV construction, defining a nAE scheme from a nonce-based
keyed function F : K1 × N × D → Y where D = A ×M and a nivE scheme
Π = (K2,N , IV,M, C,Enc,Dec). Function Conv is a regular function from Y to
IV.

7.2 The NSIV Composition Method

We first describe a generic composition method named NSIV, which defines a
nAE scheme from a nonce-based keyed function and a nivE scheme. The NSIV
construction results from a small (but important from a security viewpoint)
modification to the (generic) SIV construction [60]. While in SIV the encryption
part is purely IV-based, NSIV relies on a combined nonce- and IV-based encryption
(nivE) scheme, the nonce being used as input both to the keyed function and the
nivE scheme. This is the only difference with SIV, where the nonce is only given
as input to the keyed function.

More formally, let F be a nonce-based keyed function with key space K1,
nonce space N , domain D = A × M, and range Y = {0, 1}τ , and Π =
(K2,N , IV,M, C,Enc,Dec) be a nivE scheme. Fix a regular function Conv :
Y → IV. We define the nAE scheme NSIV[F,Π] = (K,N ,A,M, C,Enc,Dec)
with key-space K = K1 ×K2 as specified in Fig. 8.
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The security of NSIV[F,Π] is given by Theorem 1 below. We let tΠ(σ) denote
an upper bound on the time needed for computing Π.Enc or Π.Dec on inputs of
total message length at most σ blocks of n bits, and we assume that computing
Conv(tag) or sampling uniformly from Conv−1(IV ) takes negligible time for any
tag ∈ Y and IV ∈ IV.

Theorem 1 (Security of NSIV). Let F : K1 × N × D → Y, where D =
A × M, be a nonce-based keyed function, Π = (K2,N , IV,M, C,Enc,Dec)
be a nivE scheme, and Conv : Y → IV be a regular function. Let A be a
(q, µ, `, σ, t)-adversary against NSIV[F,Π]. Then, letting t′ = t+tΠ(σ), there exists
a (q, µ, `, σ, t′)-adversary B against the nPRM-security of F and a (q, µ, `, σ, t′)-
adversary B′ against the nivE-security of Π such that

AdvnAE
NSIV[F,Π](A) ≤ AdvnPRM

F (B) + AdvnivE
Π (B′).

Proof. Let Π̃ = NSIV[F,Π] and let A be a (q, µ, `, σ, t)-adversary against Π̃. Let

W1 = (Π̃.EncK1,K2 , Π̃.DecK1,K2),
W3 = (Rand,Rej)

denote the two worlds that A must tell apart, where Rand(N,A,M) returns a
uniformly random element in {0, 1}|M | × Y and Rej always returns ⊥. Then

AdvnAE
NSIV[F,Π](A) =

∣∣Pr
[
AW1 = 1

]
− Pr

[
AW3 = 1

]∣∣ . (1)

We introduce an intermediate worldW2 where in the encryption oracle we replace
FK1 by a uniformly random function ρ : N ×D → Y and the decryption oracle
always returns ⊥. Formally, letting Π̃ ′ = NSIV[Func(N ×D,Y), Π], we define

W2 = (Π̃ ′.Encρ,K2 ,Rej).

We first consider A’s advantage in distinguishing W1 from W2. Consider the
adversary B against the nPRM-security of F working as follows. Let (G,V ) ∈
{(FK1 ,VerK1), (ρ,Rej)} be the pair of oracles to which B has access. Adversary
B picks a random key K2 ←$ K2 and runs A. When A makes an encryption
query (N,A,M), B queries tag := G(N,A,M), computes IV := Conv(tag) and
C := Π.EncK2(N, IV,M), and returns (C, tag). When A makes a decryption
query (N,A,C, tag), B computes IV := Conv(tag) and M := Π.DecK2(N, IV,C),
and queries V ((N,A,M), tag); if V returns > then B returns M , otherwise it
returns ⊥. When A halts and outputs some bit, B outputs the same bit. One can
check that when (G,V ) = (FK1 ,VerK1) then B perfectly simulates W1, whereas
when (G,V ) = (ρ,Rej) then B perfectly simulates W2. Hence,∣∣Pr

[
AW1 = 1

]
− Pr

[
AW2 = 1

]∣∣ ≤ AdvnPRM
F (B). (2)

Moreover, it is easy to see that B is a (q, µ, `, σ, t′)-adversary.
We then consider A’s advantage in distinguishing W2 from W3. Consider

the adversary B′ against the nivE-security of Π working as follows. Let G ∈
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1 algorithm CTRT[E].EncK(N, IV,M)
2 ` := |M |/n
3 parse M as M1‖ · · · ‖M`, with |M1| = . . . = |M`−1| = n and 1 ≤ |M`| ≤ n
4 for i = 1 to ` do
5 Ci := Mi ⊕ E1,IV

K (N)
6 IV := Inc(IV )
7 return C1‖C2‖ · · · ‖C`

Fig. 9: Definition of the CTRT mode, using a TBC E ∈ TBC(K, T ′,X ) with
T ′ = {1} × T and X = {0, 1}n.

{Π.Enc$
K2
,Rand′} be the oracle to which B′ has access, where Rand′(N,M)

returns a random string of length |Π.Enc$
K2

(N,M)|. Adversary B′ runs A. When
A asks an encryption query (N,A,M), B′ queries G(N,M), thereby obtaining
an answer (IV, C). It samples uniformly at random tag in the set of preimages
Conv−1(IV ) and returns (C, tag) to A. When A asks a decryption query, B′ simply
answers ⊥. When A halts and outputs some bit, B′ outputs the same bit. Note
that independently of whether G is Π.Enc$

K2
or Rand′, the first element IV in its

answers is uniformly random, and hence tag is uniformly random as well since
Conv is regular. It follows that B′ perfectly simulates W2 when G = Π.Enc$

K2
,

and perfectly simulates W3 when G = Rand′. Hence,∣∣Pr
[
AW2 = 1

]
− Pr

[
AW3 = 1

]∣∣ ≤ AdvnivE
Π (B′). (3)

Moreover, it is easy to see that B′ is a (q, µ, `, σ, t′)-adversary.
Combining Eqs. (1), (2), and (3) concludes the proof. ut

7.3 Security of the nivE Scheme CTRT

We now define the CTRT (CounTeR in Tweak) mode, turning a tweakable block
cipher into a nivE scheme. Let K and T be finite non-empty sets, and let
E ∈ TBC(K, T ′,X ) be a tweakable block cipher with key space K, tweak space9
T ′ = {1} × T , and domain X = {0, 1}n. Let Inc be a cyclic permutation of T .
We construct from E a nivE scheme CTRT[E] with key space K, nonce space
N = X = {0, 1}n, IV space IV = T , and message spaceM = {0, 1}∗ as defined
in Fig. 9.

The security of CTRT is given by Theorem 2 below which was proved in [55].
Here tCTRT(σ) is an upper bound on the time needed for computing CTRT[E].EncK
on inputs of total message length at most σ blocks of n bits when calls to EK
cost unit time.
9 Tweak separation is only required in order to combine CTRT with a PRF also based
on E through NSIV.
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Theorem 2 (Security of CTRT). Let E ∈ TBC(K, T ′,X ) with X = {0, 1}n
and T ′ = {1}×T . Let A be a (q, µ, `, σ, t)-adversary against CTRT[E] with ` ≤ |T |.
Then there exists an adversary B against the TPRP-security of E, making at
most σ oracle queries and running in time at most t+ tCTRT(σ), such that

AdvnivE
CTRT[E](A) ≤ AdvTPRP

E (B) + 2(µ− 1)σ
|T |

+ σ2

2|X ||T | .

7.4 Security of the Nonce-Based Keyed Function

At a high-level, the nonce-based keyed function used in SCT-2 follows the UHF-
then-PRF paradigm: the AD and the message are hashed with a (TBC-based)
universal hash function and a (TBC-based) PRF is applied to the output. The
difference here is that the PRF also takes a nonce as the tweak input to the
TBC. This high-level construction was proposed in [19] under the name NaT
(Nonce-as-Tweak).

More formally, given a TBC E with key space K, tweak space T , and domain
X = {0, 1}n and a keyed hash function H with key space Kh, domain D, and
range {0, 1}n, let NaT[E,H] be the nonce-based keyed function with key space
K ×Kh, nonce space T , and domain D defined as

NaT[E,H]K,Kh
(N,D) = ENK (HKh

(D)).

The following theorem was proved in [19].10

Theorem 3. Let K, T , and Kh be finite non-empty sets and D be a non-empty
set. Let E : K × T × {0, 1}n → {0, 1}n be a tweakable block cipher and H :
Kh × D → {0, 1}n be an ε-AU hash function. Let µ, q, and t be integers such
that q ≤ 2n and µ ≤ min{q, 2n − 1}. Then for any adversary A against the
nPRM-security of NaT[E,H] making at most q queries in total to its oracles,
repeating any nonce at most µ times in its queries to the first oracle, and running
in time at most t, there exists a (q, t′)-adversary A′ against the TPRP-security
of E, where t′ = t+ qtH and tH is an upper bound on the time to compute H on
any message, such that

AdvnPRM
NaT[E,H](A) ≤ AdvTPRP

E (A′) + (3µ− 2)qε+ q

2n − µ.

It remains to upper bound the collision probability of the universal hash
function used in SCT-2. Assume that the tweakable block cipher E is replaced by
a uniformly random tweakable permutation P̃ . Let (A,M) be an AD/message
pair and write A = A1‖ · · · ‖A`a‖A∗ and M = M1‖ · · · ‖M`m

‖M∗, where |Ai| =
[Mj | = n and |A∗| < n and |M∗| < n. Then, according to Algorithm 5, the value
10 The statement of the theorem in [19] mentions MAC-security, but the proof actually

shows the stronger nPRM notion. Besides, queries to the first and second oracle are
counted separately in [19]; we upper bound both of them by q.
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tag is computed by encrypting with P̃ 1,04‖N the output of the universal hash
function (with key P̃ ) defined as H

P̃
(A,M) = Had

P̃
(A)⊕Hmes

P̃
(M), where

Had
P̃

(A) :=


0 if A = ε⊕`a

i=1 P̃
2,i−1(Ai) if A 6= ε and A∗ = ε(⊕`a

i=1 P̃
2,i−1(Ai)

)
⊕ P̃ 6,`a(ozpad(A∗)) if A∗ 6= ε

and

Hmes
P̃

(M) :=


0 if M = ε⊕`m

i=1 P̃
0,i−1(Mi) if M 6= ε and M∗ = ε(⊕`m

i=1 P̃
0,i−1(Mi)

)
⊕ P̃ 4,`m(ozpad(M∗)) if M∗ 6= ε.

We show that for any two distinct inputs (A,M) and (A′,M ′),

H
P̃

(A,M) = H
P̃

(A′,M ′) (4)

with probability at most 2−n over the random draw of P̃ . Assume that A 6= A′

(the reasoning is similar if A = A′ and M 6= M ′). Let A = A1‖ · · · ‖A`a‖A∗ and
A′ = A′1‖ · · · ‖A′`′a‖A

′
∗ and assume wlog that `a ≥ `′a. We distinguish the following

cases:

• `a > `′a: then (4) is equivalent to P̃ 2,`a−1(A`a) = Z, where Z is independent
from P̃ 2,`a−1, hence the probability is exactly 2−n;

• `a = `′a and A∗ 6= A′∗: then (4) is equivalent to either P̃ 6,`a(ozpad(A∗)) =
Z (if A′∗ = ε), P̃ 6,`a(ozpad(A′∗)) = Z (if A∗ = ε), or P̃ 6,`a(ozpad(A∗)) ⊕
P̃ 6,`a(ozpad(A′∗)) = Z, where Z is independent from the left hand-side; hence
this happens with probability 0 or 2−n depending on whether Z = 0 or
Z 6= 0;

• `a = `′a and A∗ = A′∗: then there is necessarily an index i ≤ `a such that
Ai 6= A′i and (4) is equivalent to P̃ 2,i−1(Ai) ⊕ P̃ 2,i−1(A′i) = Z, where Z
is independent from P̃ 2,i−1; hence this happens with probability 0 or 2−n
depending on whether Z = 0 or Z 6= 0.

From this observation and Theorem 3, we deduce the following result regarding
the keyed function used in SCT-2 defined as

FK(N,A,M) := E
1,04‖N
K (HEK

(A,M)). (5)

We let tF (σ) denote an upper bound on the time needed to compute F on inputs
of total (AD + message) length at most σ blocks of n bits when calls to EK cost
unit time.

Theorem 4. Let E ∈ TBC(K, T ′,X ) with X = {0, 1}n and T ′ := {0, 1}4 × T .
Let A be a (q, µ, `, σ, t)-adversary against the nPRM-security of F defined as in
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(5). Then there exists an adversary B against the TPRP-security of E, making
at most σ + q oracle queries and running in time at most t+ tF (σ), such that

AdvnPRM
F (A) ≤ AdvTPRP

E (B) + (3µ− 2)q
2n + q

2n − µ.

Proof (sketch). We first replace EK with a uniformly random tweakable per-
mutation P̃ . Then Theorem 3 applies as tweak separation ensures that the
inner universal hash function and the outer tweakable permutation call are
independently keyed.

7.5 Security of SCT-2

Observing that SCT-2[E] is exactly NSIV[F [E], Π[E]] with F [E] as defined in
(5) and Π[E] = CTRT[E], we finally obtain the following result by combining
Theorem 1, Theorem 2, and Theorem 4.

Theorem 5. Let E ∈ TBC(K, T ′,X ) with X = {0, 1}n and T ′ := {0, 1}4 ×
{0, 1}t−4. Let A be a (q, µ, `, σ, t)-adversary against the nAE-security of SCT-2[E].
Then there exists an adversary B against the TPRP-security of E, making at
most σ + q oracle queries and running in time at most t+ tSCT−2(σ), such that

AdvnAE
SCT-2[E](A) ≤ AdvTPRP

E (B) + 2(µ− 1)σ
2t−4 + σ2

2n+t−3 + (3µ− 2)q
2n + q

2n − µ.

Proof (sketch). We first replace EK with a uniformly random tweakable permu-
tation P̃ in SCT-2, then apply Theorem 1 to NSIV[F [P̃ ], CTRT[P̃ ]], and finally
apply Theorem 2 to NSIV[P̃ ] and Theorem 4 to F [P̃ ].

8 Software Performances

As Deoxys is based on the AES, it allows very efficient software implementations
on the processors that support AES-NI. In addition, the modes allow complete
parallelization of the AES-NI calls. The actual overhead compared to AES mostly
comes from the increased number of rounds and slightly from the tweak schedule.
The key schedule plays role only for very short messages, but even then, it is
quite efficient and much faster than the key schedule of AES. Note that the key
schedule uses lightweight LFSR to update the subkey bytes, but not the tweak
schedule. This was made on purpose, as the subkeys are computed once, while the
subtweaks change in each call to the block cipher. For a fixed key, the overhead
of the tweak schedule is one XOR and one permutation of 16 bytes, and arguably
it is one of the most efficient tweak schedules in the framework of TWEAKEY.

The Deoxys website11 provides a reference implementation for all Deoxys
versions, a table-based implementation, a bitslice implementation, as well as two
different AES-NI implementations.
11 https://sites.google.com/view/deoxyscipher
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Our benchmarks are available in Table 9 for nonce-respecting primitives
and in Table 10 for nonce-misuse resistant primitives. We measured encryption
for several message/associated data size combinations. We used the three Intel
processor families Intel Ivy Bridge, Intel Haswell and Intel Skylake, all on Linux
with gcc v9.2, with AES-NI enabled and Turbo Boost disabled to obtain the
benchmarks. The reported speed was taken as an average over multiple executions
of the code with the same fixed message length. In all measurements, the loading
of the bytes from the memory and storing them back to memory are included.
The key schedule is also computed for each encryption.

For complete and consistent benchmark comparisons with other authenticated
encryption schemes, we refer the interested reader to SUPERCOP available on-
line.12 For comparison, we also provide benchmarks for AES-GCM and AES-GCM-SIV
respectively with a 128-bit key.

Table 9: Encryption benchmarks for Deoxys-I-128, Deoxys-I-256 and
Deoxys-AE1, with comparison with AES-GCM-128, expressed in cycles per byte
on AES-NI enabled platforms (with Turbo Boost disabled) for increasing num-
bers of processed bytes. The key schedule is computed at each call. Bench-
marks for AES-GCM-128 were drawn from SUPERCOP results page (https:
//bench.cr.yp.to/results-caesar.html).

Deoxys-I-128 (with key schedule)

AD bytes 0 0 0 64 576 1.5k 64 576 1.5k 0 65k 65k
M bytes 64 576 1.5k 0 0 0 64 576 1.5k 65k 0 65k

Intel Ivy Bridge 3.93 2.13 1.55 5.16 2.36 1.55 3.13 2.12 1.55 1.33 1.31 1.31
Intel Haswell 4.14 1.60 1.19 4.59 1.74 1.19 3.03 1.46 1.11 0.98 0.97 0.97
Intel Skylake 3.06 1.32 1.04 3.38 1.36 1.07 2.05 1.28 0.99 0.89 0.88 0.88

Deoxys-I-256 (with key schedule)

AD bytes 0 0 0 64 576 1.5k 64 576 1.5k 0 65k 65k
M bytes 64 576 1.5k 0 0 0 64 576 1.5k 65k 0 65k

Intel Ivy Bridge 5.20 2.57 1.82 7.04 2.70 1.86 3.76 2.49 1.83 1.54 1.53 1.53
Intel Haswell 5.60 1.99 1.43 7.05 2.12 1.37 3.91 1.73 1.27 1.10 1.07 1.08
Intel Skylake 4.15 1.65 1.22 4.79 1.67 1.26 2.63 1.49 1.15 1.02 1.01 1.01

AES-GCM-128 (with key schedule)

AD bytes 0 0 0 64 576 1.5k 64 576 1.5k 0 65k 65k
M bytes 64 576 1.5k 0 0 0 64 576 1.5k 65k 0 65k

Intel Ivy Bridge - - - - - - 12.56 - 2.72 3.23 1.80 2.51
Intel Haswell - - - - - - 13.22 - 1.23 1.05 0.42 0.74
Intel Skylake - - - - - - 10.88 - 0.92 0.66 0.36 0.51

12 https://bench.cr.yp.to/ebaead.html
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Table 10: Encryption benchmarks for Deoxys-II-128, Deoxys-II-256 and
Deoxys-AE2, with comparison with AES-GCM-128, expressed in cycles per byte
on AES-NI enabled platforms (with Turbo Boost disabled) for increasing numbers
of processed bytes. The key schedule is computed at each call. Implementa-
tions for AES-GCM-SIV were taken from https://github.com/Shay-Gueron/
AES-GCM-SIV (“Performance” ones) and benchmarked on our computers.

Deoxys-II-128 (with key schedule)

AD bytes 0 0 0 64 576 1.5k 64 576 1.5k 0 65k 65k
M bytes 64 576 1.5k 0 0 0 64 576 1.5k 65k 0 65k

Intel Ivy Bridge 8.16 4.16 3.04 6.36 2.31 1.57 5.07 3.11 2.36 2.63 1.32 1.97
Intel Haswell 7.45 2.84 2.17 5.80 1.63 1.13 4.66 2.06 1.58 1.92 0.94 1.43
Intel Skylake 5.80 2.45 1.97 4.56 1.44 1.05 3.45 1.81 1.45 1.77 0.88 1.32

Deoxys-II-256 (with key schedule)

AD bytes 0 0 0 64 576 1.5k 64 576 1.5k 0 65k 65k
M bytes 64 576 1.5k 0 0 0 64 576 1.5k 65k 0 65k

Intel Ivy Bridge 9.87 4.77 3.45 7.91 2.70 1.79 6.13 3.58 2.74 3.02 1.50 2.27
Intel Haswell 9.55 3.40 2.49 7.69 2.06 1.35 5.83 2.43 1.81 2.18 1.07 1.62
Intel Skylake 7.22 2.92 2.28 6.02 1.75 1.23 4.23 2.12 1.67 2.02 1.01 1.51

AES-GCM-SIV-128 (with key schedule)

AD bytes 0 0 0 64 576 1.5k 64 576 1.5k 0 65k 65k
M bytes 64 576 1.5k 0 0 0 64 576 1.5k 65k 0 65k

Intel Ivy Bridge - - - - - - - - - - - -
Intel Haswell 10.64 2.56 1.65 9.33 1.83 1.01 6.49 1.59 1.10 1.18 0.55 0.86
Intel Skylake 10.09 2.44 1.55 9.23 1.63 0.82 6.20 1.50 0.95 1.08 0.35 0.71

AES-GCM-SIV-256 (with key schedule)

AD bytes 0 0 0 64 576 1.5k 64 576 1.5k 0 65k 65k
M bytes 64 576 1.5k 0 0 0 64 576 1.5k 65k 0 65k

Intel Ivy Bridge - - - - - - - - - - - -
Intel Haswell 12.66 3.03 1.97 10.95 2.01 1.08 7.50 1.82 1.26 1.43 0.55 0.99
Intel Skylake 12.96 3.54 1.96 11.47 2.16 1.10 7.17 1.78 1.24 1.36 0.35 0.85

We can see that our nonce-respecting mode Deoxys-I performs well, with
a throughput similar to AES-GCM. We recall that Deoxys-I provides beyond-
birthday bound security, in contrary to AES-GCM. We also observe that our
nonce-respecting mode is very efficient for small messages, as no preprocessing
step is required to start the cipher calls. The cycle per byte count is already very
close to minimal at 1.5k byte size inputs.

Our nonce-misuse resistant mode Deoxys-II also performs very well: the
efficiency for associated data input being the same as Deoxys-I, while the
efficiency for message input being about twice slower than Deoxys-I (since
twice more calls to the internal TBC are required). It is generally slower than
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AES-GCM-SIV for very long messages. However, we recall that the Internet Mix is
generally composed of mostly very small (smaller than 100-byte) packets, then
some medium size (around 500-byte) packets and finally a low proportion of
maximum-size (maximum Ethernet packet payload size is 1536 bytes). Deoxys-II
actually performs faster than AES-GCM-SIV for small messages, about the same
for medium messages and slower for long messages.

Although the above benchmarks rely on the AES-NI instruction set, the
simplicity of the Deoxys-TBC tweak schedule guarantees that the speed ratio
compared to AES will remain the same even if we used a simple table look-up
implementation of AES. In fact, the overhead of the tweak schedule compared to
AES will be very small, and the speed of Deoxys-TBC will be very close to the
speed of AES. As AES performs rather well on most platforms, we expect the same
profile for Deoxys-TBC.

9 Hardware Performances
9.1 ASIC implementations
We first report preliminary ASIC implementations from Axel Poschmann and
Marc Stöttinger [56]. Xlinx ISE DesignSuite 13.3 and Synopsys DesignCompiler
E-2010.12-SP2 were used for functional simulation and synthesis of the designs
to the Virtual Silicon (VST) standard cell library UMCL18G212T3 [64], which
is based on the UMC L180 0.18µm 1P6M logic process with a typical voltage of
1.8 V. For synthesis and for power estimation the compiler was advised to keep
the hierarchy and use a clock frequency of 100 KHz.

Different variants of Deoxys in VHDL have been implemented and their post-
synthesis performance simulated. Two architectures were designed: one is fully
serialized, i.e. performing operations on one cell per clock cycle, and aims for
the smallest area possible; the second one is a round-based implementation, thus
performing one round in one clock cycle, resulting in a significant speed-up. Only
the encryption and authentication parts have been implemented (no decryption
capability).

The following tables give hardware performance results independently for
the internal tweakable block ciphers and when they are plugged in the modes.
Table 11 gives hardware performances of Deoxys-TBC-256 and Deoxys-TBC-384,
while Table 12 considers the higher level where the primitives are plugged into
the two modes I and II previously described depending on some test cases
(Table 13).

Later, in [20], [39] and [45] new ASIC implementations of Deoxys-I and
Deoxys-II were reported, all fully CAESAR API compliant, with comparisons
with other CAESAR candidates. They were synthesized on TSMC 65nm technol-
ogy, see Table 14.

9.2 FPGA implementations
We report in Table 15 several third-party FPGA implementations of Deoxys.
First, a round-based FPGA implementations from the GMU research team [30],
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Table 11: Overview of the ASIC performances of the underlying tweakable block
ciphers (UMC L180 0.18µm 1P6M).

Internal Primitive Architecture Clk Area [GE]

Deoxys-TBC-256
Round 14 8,005
Serial 338 2,860

Deoxys-TBC-384
Round 16 9,362
Serial 384 3,575

Table 12: Overview of the ASIC performances for the two modes I and II for
the two tweakable block cipher versions (UMC L180 0.18µm 1P6M). The various
test cases definitions are given in Table 13. ∗ denotes slightly modified API.

Mode TBC Arch. Clock Cycles for Test Case Area [GE]
I II III IV V VI VII

I
Deoxys-TBC-256

Round 22 60 79 62 82 81 120 12,496
Round∗ 19 57 76 59 79 78 117 11,936

Deoxys-TBC-384
Round 24 66 87 68 90 89 132 13,872
Round∗ 21 63 84 65 87 86 129 13,326

II
Deoxys-TBC-256

Round 58 96 115 137 176 156 214 12,744
Round∗ 55 93 112 134 173 153 211 12,068

Deoxys-TBC-384
Round 64 106 127 151 194 172 236 14,107
Round∗ 61 103 124 148 191 169 233 13,422

Table 13: Test cases and length (in bytes) of Associated Data, Message, Key,
and Nonce.

Test Case AD Message Key Nonce

I 0 0 16 8
II 32 0 16 8
III 33 0 16 8
IV 0 32 16 8
V 0 33 16 8
VI 16 32 16 8
VII 17 33 16 8

which are available on the ATHENA website.13 These implementations are
CAESAR Hardware API-compliant implementations (thus with both encryption
13 https://cryptography.gmu.edu/athena
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Table 14: Overview of the ASIC performances of the Deoxys authenticated
encryption primitives (TSMC 65nm).

Primitive Ref. Area [kGE] Max Freq.
[MHz]

Throughput
[Mbps]

Deoxys-I-128

[20] 53.37 549 4,684
[39] 59.53 847 7,227
[45] 68.68 532 4,540
[45] 62.79 448 (min freq.) 3,830

Deoxys-II-128
[45] 53.37 549 2,430
[45] 45.52 448 (min freq.) 1,980

and decryption capabilities). Then, in [39] and [45] were reported improved FPGA
implementations of Deoxys-I, with comparisons with other CAESAR candidates.
Again, one can see that Deoxys has naturally the same hardware profile as AES.
We refer the reader to the cited papers for more details on the implementation
details.

Table 15: Overview of the FPGA performances of the Deoxys authenticated
encryption primitives (Virtex 6). Implementations that are not CAESAR API
compliant are marked with a †.

Primitive Ref. Slices Max Freq.
[MHz]

Throughput
[Mbps]

Deoxys-I-128

[20] † 956 285 2,432
[20] † 946 285 2,432
[39] † 805 225 1,920
[39] † 861 454 3,874

Deoxys-I-128 [57] † 920 161 1,030
(encryption only) [39] † 566 416 3,549
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A AES S-box and constants

A.1 AES S-box and its inverse

We define here the AES S-box S and its inverse S−1, as an array where the value
of S(x) can be found at the position x in the array.
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Table 16: The AES S-box S. The retrieve the value of S(x), convert x to its
hexadecimal representation, and use its four leftmost bits x and four rightmost
bits y as coordinates in the table. For example S(0x25) = 0x3F.

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 yA yB yC yD yE yF
0x 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1x CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2x B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3x 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4x 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5x 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6x D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7x 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8x CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9x 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
Ax E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
Bx E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
Cx BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
Dx 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
Ex E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
Fx 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 17: The AES inverse S-box S−1. The retrieve the value of S(x), convert
x to its hexadecimal representation, and use its four leftmost bits x and four
rightmost bits y as coordinates in the table. For example S(0x3F) = 0x25.

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 yA yB yC yD yE yF
0x 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1x 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2x 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3x 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4x 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5x 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6x 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7x D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8x 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9x 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
Ax 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
Bx FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
Cx 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
Dx 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
Ex A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
Fx 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D
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B RCON constants

Table 18 below gives the values of constants RCON used in the tweakey scheduling
algorithm of the Deoxys.

Table 18: The RCON constants used in the key scheduling algorithm.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
RCON[i] 2f 5e bc 63 c6 97 35 6a d4 b3 7d fa ef c5 91 39 72
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C Algorithmic Descriptions of the Deoxys Variants

C.1 Deoxys-I

Algorithm 1: The encryption algorithm Deoxys-I.Enc(K,N,A,M).
In the tweak inputs, the value N is encoded on log2(maxm) = 64 bits,
the integer values i, j, `a and `m are encoded on log2(max`) = 60 bits.

1 /* Associated data */
2 A1‖ . . . ‖A`a‖A∗ ← A where each |Ai| = 128 and |A∗| < 128
3 Auth← 0128

4 for i = 0 to `a − 1 do
5 Auth← Auth⊕ EK(0010‖064‖i, Ai+1)
6 end
7 if A∗ 6= ε then
8 Auth← Auth⊕ EK(0110‖064‖`a, ozpad(A∗))
9 end

10

11 /* Message */
12 M1‖ . . . ‖M`m‖M∗ ←M where each |Mj | = 128 and |M∗| < 128
13 Checksum← 0128

14 for j = 0 to `m − 1 do
15 Checksum← Checksum⊕Mj+1
16 Cj ← EK(0000‖N‖j,Mj+1)
17 end
18 if M∗ = ε then
19 Final← EK(0001‖N‖`m,Checksum)
20 C∗ ← ε

21 else
22 Checksum← Checksum⊕ ozpad(M∗)
23 Pad← EK(0100‖N‖`m, 0128)
24 C∗ ←M∗ ⊕ dPade|M∗|
25 Final← EK(0101‖N‖`m + 1,Checksum)
26 end
27

28 /* Tag generation */
29 tag← Final⊕Auth
30 return (C1‖ . . . ‖C`m‖C∗, tag)
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Algorithm 2: The decryption algorithm Deoxys-I.Dec(K,N,A,C, tag).

In the tweak inputs, the value N is encoded on log2(maxm) = 64 bits,
the integer values i, j, `a and `m are encoded on log2(max`) = 60 bits.

1 /* Associated data */
2 A1‖ . . . ‖A`a‖A∗ ← A where each |Ai| = 128 and |A∗| < 128
3 Auth← 0128

4 for i = 0 to `a − 1 do
5 Auth← Auth⊕ EK(0010‖064‖i, Ai+1)
6 end
7 if A∗ 6= ε then
8 Auth← Auth⊕ EK(0110‖064‖`a, ozpad(A∗))
9 end

10

11 /* Ciphertext */
12 C1‖ . . . ‖C`m‖C∗ ← C where each |Cj | = 128 and |C∗| < 128
13 Checksum← 0128

14 for j = 0 to `m − 1 do
15 Mj+1 ← DK(0000‖N‖j, Cj+1)
16 Checksum← Checksum⊕Mj+1

17 end
18 if C∗ = ε then
19 Final← EK(0001‖N‖`m,Checksum)
20 M∗ ← ε

21 else
22 Pad← EK(0100‖N‖`m, 0128)
23 M∗ ← C∗ ⊕ dPade|C∗|
24 Checksum← Checksum⊕ ozpad(M∗)
25 Final← EK(0101‖N‖`m + 1,Checksum)
26 end
27

28 /* Tag verification */
29 tag′ ← Final⊕Auth
30 if tag′ = tag then return (M1‖ . . . ‖M`m‖M∗)
31 else return ⊥
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C.2 Deoxys-AE1

E
2 || 0
K

A1

/ n

/ t− c

0n

E
2 || 1
K

A2

/n . . .

. . . E
2 || `a−1
K

A`a

Auth

(a) Without padding.

E
2 || 0
K

A1

/ n

/ t− c

0n

E
2 || 1
K

A2

/n . . .

. . . E
2 || `a−1
K

A`a

E
6 || `a
K

A∗10∗

Auth

(b) With padding.

Fig. 10: Handling of the associated data for Deoxys-AE1: in the case where the
associated data is a multiple of the block size, no padding is needed.
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Fig. 11: Message processing for Deoxys-AE1: in the case where the message-
length is a multiple of the block size, no padding is needed. Note that the
checksum Σ is computed with a 10∗ padding for block M∗.
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Algorithm 3: The encryption algorithm Deoxys-AE1.Enc(K,N,A,M).
In the tweak inputs, the value N is encoded on 128 bits, the integer
values i, j, `a and `m are encoded on 120 bits.
1 /* Associated data */
2 A1‖ . . . ‖A`a‖A∗ ← A where each |Ai| = 256 and |A∗| < 256
3 Auth← 0128

4 for i = 0 to `a − 1 do
5 Auth← Auth⊕ EK(Ai+1[0..127]‖00000010‖i, Ai+1[128..255])
6 end
7 if A∗ 6= ε then
8 Apad ← ozpad256(A∗)
9 Auth← Auth⊕ EK(Apad[0..127]‖00000110‖`a, Apad[128..255])

10 end
11

12 /* Message */
13 M1‖ . . . ‖M`m‖M∗ ←M where each |Mj | = 128 and |M∗| < 128
14 Checksum← 0128

15 for j = 0 to `m − 1 do
16 Checksum← Checksum⊕Mj+1
17 Cj+1 ← EK(N‖00000000‖j,Mj+1)
18 end
19 if M∗ = ε then
20 Final← EK(N‖00000001‖`m,Checksum)
21 C∗ ← ε

22 else
23 Checksum← Checksum⊕ ozpad128(M∗)
24 Pad← EK(N‖00000100‖`m, 0128)
25 C∗ ←M∗ ⊕ dPade|M∗|
26 Final← EK(N‖00000101‖`m + 1,Checksum)
27 end
28

29 /* Tag generation */
30 tag← Final⊕Auth
31 return (C1‖ . . . ‖C`m‖C∗, tag)
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Algorithm 4: The decryption algorithm
Deoxys-AE1.Dec(K,N,A,C, tag).
In the tweak inputs, the value N is encoded on 128 bits, the integer
values i, j, `a and `m are encoded on 120 bits.
1 /* Associated data */
2 A1‖ . . . ‖A`a‖A∗ ← A where each |Ai| = 256 and |A∗| < 256
3 Auth← 0128

4 for i = 0 to `a − 1 do
5 Auth← Auth⊕ EK(Ai+1[0..127]‖00000010‖i, Ai+1[128..255])
6 end
7 if A∗ 6= ε then
8 Apad ← ozpad256(A∗)
9 Auth← Auth⊕ EK(Apad[0..127]‖00000110‖`a, Apad[128..255])

10 end
11

12 /* Ciphertext */
13 C1‖ . . . ‖C`m‖C∗ ← C where each |Cj | = 128 and |C∗| < 128
14 Checksum← 0128

15 for j = 0 to `m − 1 do
16 Mj+1 ← DK(N‖00000000‖j, Cj+1)
17 Checksum← Checksum⊕Mj+1

18 end
19 if C∗ = ε then
20 Final← EK(N‖00000001‖`m,Checksum)
21 M∗ ← ε

22 else
23 Pad← EK(N‖00000100‖`m, 0128)
24 M∗ ← C∗ ⊕ dPade|C∗|
25 Checksum← Checksum⊕ ozpad128(M∗)
26 Final← EK(N‖00000101‖`m + 1,Checksum)
27 end
28

29 /* Tag verification */
30 tag′ ← Final⊕Auth
31 if tag′ = tag then return (M1‖ . . . ‖M`m‖M∗)
32 else return ⊥
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C.3 Deoxys-II

Algorithm 5: The encryption algorithm Deoxys-II.Enc(K,N,A,M).
In the tweak inputs, the integer values i, j, `m and `a are encoded on
log2(max`) = 60 bits. Recall that the nonce N contains 120 bits.

1 /* Associated data */
2 A1‖ . . . ‖A`a‖A∗ ← A where each |Ai| = 128 and |A∗| < 128
3 Auth← 0128

4 for i = 0 to `a − 1 do
5 Auth← Auth⊕ EK(0010‖064‖i, Ai+1)
6 end
7 if A∗ 6= ε then
8 Auth← Auth⊕ EK(0110‖064‖`a, ozpad(A∗))
9 end

10

11 /* Message authentication */
12 M1‖ . . . ‖Mlenm‖M∗ ←M where each |Mj | = 128 and |M∗| < 128
13 for j = 0 to `m − 1 do
14 Auth← Auth⊕ EK(0000‖064‖j,Mj+1)
15 end
16 if M∗ 6= ε then
17 Auth← Auth⊕ EK(0100‖064‖`m, ozpad(M∗))
18 end
19

20 /* Tag generation */
21 tag← EK(0001‖04‖N,Auth)
22

23 /* Message encryption */
24 for j = 0 to `m − 1 do
25 Cj+1 ←Mj+1 ⊕ EK((tag ∨ (1‖0127))⊕ (068‖j), 08 ‖N)
26 end
27 if M∗ 6= ε then
28 C∗ ←M∗ ⊕

⌈
EK((tag ∨ (1‖0127))⊕ (068‖`m), 08 ‖N)

⌉
|M∗|

29 end
30

31 return (C1‖ . . . ‖C`m‖C∗, tag)
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Algorithm 6: The decryption algorithm
Deoxys-II.Dec(K,N,A,C, tag).
In the tweak inputs, the integer values i, j, `m and `a are encoded on
log2(max`) = 60 bits. Recall that the nonce N contains 120 bits.

1 /* Message decryption */
2 C1‖ . . . ‖C`m‖C∗ ← C where each |Cj | = 128 and |C∗| < 128
3 for j = 0 to `m − 1 do
4 Mj+1 ← Cj+1 ⊕ EK((tag ∨ (1‖0127))⊕ (068‖j), 08 ‖N)
5 end
6 if C∗ 6= ε then
7 M∗ ← C∗ ⊕

⌈
EK((tag ∨ (1‖0127))⊕ (068‖`m), 08 ‖N)

⌉
|C∗|

8 end
9

10 /* Associated data */
11 A1‖ . . . ‖A`a‖A∗ ← A where each |Ai| = 128 and |A∗| < 128
12 Auth← 0128

13 for i = 0 to `a − 1 do
14 Auth← Auth⊕ EK(0010‖064‖i, Ai+1)
15 end
16 if A∗ 6= ε then
17 Auth← Auth⊕ EK(0110‖064‖`a, ozpad(A∗))
18 end
19

20 /* Message authentication */
21 for j = 0 to `m − 1 do
22 Auth← Auth⊕ EK(0000‖064‖j,Mj+1)
23 end
24 if M∗ 6= ε then
25 Auth← Auth⊕ EK(0100‖064‖`m, ozpad(M∗))
26 end
27

28 /* Tag verification */
29 tag′ ← EK(0001‖04‖N, auth)
30 if tag′ = tag then return (M1‖ . . . ‖M`m‖M∗)
31 else return ⊥
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C.4 Deoxys-AE2
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Fig. 12: Handling of the associated data for Deoxys-AE2: in the case where the
associated data is a multiple of the block size, no padding is needed.
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Fig. 13: Message processing in the authentication part of Deoxys-AE2: in the
case where the message-length is a multiple of the block size, no padding is
needed.
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Algorithm 7: The encryption algorithm Deoxys-AE2.Enc(K,N,A,M).
In the tweak inputs, the value N is encoded on 128 bits, the integer
values i, j, `a, `m and `′m are encoded on 120 bits.
1 /* Associated data */
2 A1‖ . . . ‖A`a‖A∗ ← A where each |Ai| = 256 and |A∗| < 256
3 Auth← 0128

4 for i = 0 to `a − 1 do
5 Auth← Auth⊕ EK(Ai+1[0..127]‖00000010‖i, Ai+1[128..255])
6 end
7 if A∗ 6= ε then
8 Apad ← ozpad256(A∗)
9 Auth← Auth⊕ EK(Apad[0..127]‖00000110‖`a, Apad[128..255])

10 end
11

12 /* Message authentication */
13 M1‖ . . . ‖M`m‖M∗ ←M where each |Mj | = 256 and |M∗| < 256
14 for j = 0 to `m − 1 do
15 Auth← Auth⊕ EK(Mj+1[0..127]‖00000000‖j,Mj+1[128..255])
16 end
17 if M∗ 6= ε then
18 Mpad ← ozpad256(M∗)
19 Auth← Auth⊕ EK(Mpad[0..127]‖00000100‖`m,Mpad[128..255])
20 end
21

22 /* Tag generation */
23 tag← EK(N‖00000001‖0120,Auth)
24

25 /* Message encryption */
26 M1‖ . . . ‖M`′m‖M∗ ←M where each |Mj | = 128 and |M∗| < 128
27 for j = 0 to `′m − 1 do
28 Cj+1 ←Mj+1 ⊕ EK(tag‖00000011‖j,N)
29 end
30 if M∗ 6= ε then
31 C∗ ←M∗ ⊕ dEK(tag‖00000111‖`′m, N)e|M∗|
32 end
33

34 return (C1‖ . . . ‖C`′m‖C∗, tag)
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Algorithm 8: The decryption algorithm
Deoxys-AE2.Dec(K,N,A,C, tag). In the tweak inputs, the value
N is encoded on 128 bits, the integer values i, j, `a, `m and `′m are
encoded on 120 bits.

1 /* Message decryption */
2 C1‖ . . . ‖C`′m‖C∗ ← C where each |Cj | = 128 and |C∗| < 128
3 for j = 0 to `′m − 1 do
4 Mj+1 ← Cj+1 ⊕ EK(tag‖00000011‖j,N)
5 end
6 if C∗ 6= ε then
7 M∗ ← C∗ ⊕ dEK(tag‖00000111‖`′m, N)e|C∗|
8 end
9

10 /* Associated data */
11 A1‖ . . . ‖A`a‖A∗ ← A where each |Ai| = 256 and |A∗| < 256
12 Auth← 0128

13 for i = 0 to `a − 1 do
14 Auth← Auth⊕ EK(Ai+1[0..127]‖00000010‖i, Ai+1[128..255])
15 end
16 if A∗ 6= ε then
17 Apad ← ozpad256(A∗)
18 Auth← Auth⊕ EK(Apad[0..127]‖00000110‖`a, Apad[128..255])
19 end
20

21 /* Message authentication */
22 M ←M1|| . . . ||M`′m ||M∗
23 M1‖ . . . ‖M`m‖M∗ ←M where each |Mj | = 256 and |M∗| < 256
24 for j = 0 to `m − 1 do
25 Auth← Auth⊕ EK(Mj+1[0..127]‖00000000‖j,Mj+1[128..255])
26 end
27 if M∗ 6= ε then
28 Mpad ← ozpad256(M∗)
29 Auth← Auth⊕ EK(Mpad[0..127]‖00000100‖`m,Mpad[128..255])
30 end
31

32 /* Tag verification */
33 tag′ ← EK(N‖00000001‖0120,Auth)
34 if tag′ = tag then return M
35 else return ⊥
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