
Improved Cryptanalysis of the Reduced Grøstl

Compression Function, ECHO Permutation and
AES Block Cipher

Florian Mendel1, Thomas Peyrin2, Christian Rechberger1, and
Martin Schläffer1

1 IAIK, Graz University of Technology, Austria
2 Ingenico, France

{thomas.peyrin@gmail.com,martin.schlaeffer@iaik.tugraz.at}

Abstract. In this paper, we propose two new ways to mount attacks
on the SHA-3 candidates Grøstl, and ECHO, and apply these attacks also
to the AES. Our results improve upon and extend the rebound attack.
Using the new techniques, we are able to extend the number of rounds in
which available degrees of freedom can be used. As a result, we present
the first attack on 7 rounds for the Grøstl-256 output transformation3

and improve the semi-free-start collision attack on 6 rounds. Further, we
present an improved known-key distinguisher for 7 rounds of the AES
block cipher and the internal permutation used in ECHO.
Keywords: hash function, block cipher, cryptanalysis, semi-free-start
collision, known-key distinguisher

1 Introduction

Recently, a new wave of hash function proposals appeared, following a call for
submissions to the SHA-3 contest organized by NIST [26]. In order to analyze
these proposals, the toolbox which is at the cryptanalysts’ disposal needs to
be extended. Meet-in-the-middle and differential attacks are commonly used. A
recent extension of differential cryptanalysis to hash functions is the rebound
attack [22] originally applied to reduced (7.5 rounds) Whirlpool (standardized
since 2000 by ISO/IEC 10118-3:2004) and a reduced version (6 rounds) of the
SHA-3 candidate Grøstl-256 [14], which both have 10 rounds in total.

Many hash functions [1, 2, 6, 12, 14, 16, 17] use concepts or parts of the block
cipher AES [25] as basic primitives, and research on AES-related hash functions
is ongoing [15, 22, 27]. In this direction, a new attack model has been recently
introduced for block ciphers [18]. In this model, the secret key is known to
the adversary and the goal is to distinguish the block cipher from a random
permutation. In particular, reduced versions of the AES have been studied in
this setting [18,24] and recently, an attack on full AES-256 has been published [5].

3 Note that the 7-round semi-free-start collision attack on Grøstl-256 in the prepro-
ceedings version of this paper does not have enough freedom to succeed, see Sect. 6.1.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

In the rebound attack [22], two rounds of the state update transformations
are bypassed by a match-in-the-middle technique using the available degrees of
freedom in the state. The characteristic used in the attack is then constructed
by moving the “most expensive” parts into these two rounds. The “cheaper”
parts are then covered in an inside-out manner, called outbound phase. Other
work in parallel to this explores the application of the rebound idea to other
SHA-3 candidates [21, 28]. Recently, the rebound attack has been extended to
attack the full compression function of Whirlpool [20] and LANE [19] by using
the additional freedom of the key schedule (Whirlpool) or other parts of the
state (LANE).

In this work, we present improved techniques, to use the freedom available
in only a single state. The effect of both techniques we present are an extension
of the number of rounds in which degrees of freedom can be used to improve
the work from the two to four rounds. As a result, we present the best known
attacks on the reduced Grøstl-256 permutation and output transformation (up
to 7 out of 10 rounds), and also significantly improve upon the first known-key
distinguisher [18] for 7-round AES and 7 rounds of the internal permutation used
in ECHO. A summary of our results is given in Table 1.

Table 1. Summary of results for Grøstl, ECHO and AES.

target rounds
computational memory

type section
complexity requirements

Grøstl-256

6 2112 264 semi-free-start collision see [22]

6 264 264 semi-free-start collision Sect. 6.1

7 255 - permutation distinguisher Sect. 6.1

7 256 - output transf. distinguisher Sect. 6.1

ECHO
7 2896 - permutation distinguisher see [2]

7 2384 264 permutation distinguisher Sect. 6.3

AES
7 256 - known-key distinguisher see [18]

7 224 216 known-key distinguisher Sect. 6.2

2 Description of AES-based Primitives

In this paper, we show improved attack strategies for AES based cryptographic
primitives. We apply the ideas to the Grøstl and ECHO hash function, and to the
block cipher AES. In the following, we describe these functions in more detail.

2.1 AES

The block cipher Rijndael was designed by Daemen and Rijmen and standardized
by NIST in 2000 as the Advanced Encryption Standard (AES) [25]. The AES
follows the wide-trail design strategy [7, 8] and consists of a key schedule and
state update transformation. Since we do not use the key schedule in our attack,
we just describe the state update here.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

In the AES, a 4× 4 state of 16 bytes is updated using the following 4 round
transformations, with 10 rounds for AES-128 and 14 rounds for AES-256:

– the non-linear layer SubBytes (SB) applies a S-Box to each byte of the state
independently

– the cyclical permutation ShiftRows (SR) rotates the bytes of row j left by j
positions

– the linear diffusion layer MixColumns (MC) multiplies each column of the
state by a constant MDS matrix

– AddRoundKey (AK) adds the 128-bit round key Ki to the state

Note that a round key is added prior to the first round and the MixColumns
transformation is omitted in the last round of AES. For a detailed description
of the AES we refer to [25].

2.2 The Grøstl Hash Function

Grøstl was proposed by Gauravaram et al. as a candidate for the SHA-3 com-
petition [14]. It is an iterated hash function with a compression function built
from two distinct permutations P and Q. Grøstl is a wide-pipe design with
proofs for the collision and preimage resistance of the compression function [13].
A t-block message M (after padding) is hashed using the compression function
f(Hi−1,Mi) and output transformation g(Ht) as follows:

H0 = IV

Hi = f(Hi−1,Mi) = Hi−1 ⊕ P (Hi−1 ⊕Mi)⊕Q(Mi) for 1 ≤ i ≤ t
h = g(Ht) = trunc(Ht ⊕ P (Ht)),

The two permutations P and Q are constructed using the wide trail design
strategy. The design of the two permutations is very similar to AES, instantiated
with a fixed key input. Both permutations of Grøstl-256 update an 8× 8 state
of 64 bytes in 10 rounds each. The round transformations of Grøstl-256 are
briefly described here:

– AddRoundConstant (AC) adds different one-byte round constants to the
8× 8 states of P and Q

– the non-linear layer SubBytes (SB) applies the AES S-Box to each byte of
the state independently

– the cyclical permutation ShiftBytes (ShB) rotates the bytes of row j left by
j positions

– the linear diffusion layer MixBytes (MB) multiplies each column of the state
by a constant MDS matrix

2.3 The ECHO Hash Function

The ECHO hash function is a SHA-3 proposal submitted by Benadjila et al. [2]. It
is also a wide-pipe iterated hash function and uses the HAIFA [3] domain exten-
sion algorithm. Its compression function uses an internal 2048-bit permutation

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

that can be seen as a big AES manipulating 128-bit words instead of bytes. More
precisely, an appropriately padded t-block message M and a salt s are hashed
using the compression function f(Hi−1,Mi, ci, s) where ci is a bit counter:

H0 = IV

Hi = f(Hi−1,Mi, ci, s) for 1 ≤ i ≤ t
h = trunc(Ht),

The compression function of ECHO is built upon a 2048-bit permutation F ,
composed of 8 rounds (resp. 10 rounds) in the case of a 256-bit output (resp.
512-bit output). Its internal state can be modeled as a 4 × 4 matrix of 128-
bit words. The concatenation of the input chaining variable and the incoming
message block are the plaintext input of the permutation F which is tweaked
by the input counter ci and the salt s. A feed-forward of the plaintext is then
applied to the internal state V :

V = Fci,s(Hi−1||Mi)⊕ (Hi−1||Mi)

and the 512-bit output chaining variable Hi is the xor of all the 128-bit word
columns of V for a 256-bit hash digest size. In the case of a 512-bit hash value,
the 1024-bit output chaining variable Hi is the xor of the two left and the two
right 128-bit word columns of V .

A permutation round is very similar to an AES round, except that 128-bit
words are manipulated. One round is the composition of three sub-functions
BigMC ◦BigShR ◦BigSW :

– the non-linear layer BigSubWords (BigSW) applies two AES rounds to each
of the 16 128-bit words of the internal state. The round keys, always different,
are composed of the salt value and a counter value initialized by ci.

– the cyclical permutation BigShiftRows (BigShR) rotates the location in the
matrix of the 128-word of row j left by j positions

– the linear diffusion layer BigMixColumns (BigMC) multiplies each column
of the state by a constant MDS matrix

3 Basic Attack Properties

Before describing attacks for Grøstl, ECHO and AES in detail, we give an overview
of the round transformation properties used by the attacks. Since we mostly use
Grøstl to describe the attacks and the properties of MixColumns and MixBytes
are rather similar, we use MixBytes to describe their common properties in the
following. We will use differential properties of the SubBytes and MixBytes trans-
formation and exploit the diffusion property of both, ShiftBytes (ShiftRows) and
MixBytes. Together, this leads to an efficient guess-and-determine strategy for
both, differences and values at the input and output of SubBytes and MixBytes.

Since we exploit the differential properties of SubBytes and MixBytes, we
define the notation and state variables according to these two transformations.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

We denote the SubBytes layer of round i by SBi, its input state by SBin
i and

the output state by SBout
i . An equivalent notation is used for the MixBytes

transformation. The MixBytes transformation of round i is denoted by MBi,
its input state by MBin

i and the output state by MBout
i . We will use MCi for

the MixColumns transformation of ECHO and AES. Further, counting from 0, we
denote the byte in row r and column c by [r, c], i.e. SBin

i [r, c] for the input of the
S-box in round i.

3.1 Improving on the Rebound Attack

The main idea of the rebound attack [22] is to start close to the middle of a
(truncated) differential path, connect using the available degrees of freedom in
the middle and finally propagate outwards. Our attack works rather similar for
Grøstl-256, ECHO and AES, and in the following we use Grøstl-256 to describe
the attacks and discuss then, the application to ECHO and AES. Similar to the
rebound attack, we start with a truncated differential path with a full active
state in the middle of the trail. Fig. 1 shows the truncated differential path used
in both permutations P and Q of our improved attack on Grøstl-256. In the
rebound attack, the middle part of the differential trail is solved first for both
differences and values by exploiting the available degrees of freedom (inbound
phase). Then, differences and values are propagated outwards probabilistically
(outbound phase) to find semi-free-start collisions, free-start collisions, or non-
random properties of the permutations or compression function.

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

Fig. 1. The position of active bytes of the 7 round differential path for both
permutations P and Q.

In this work, we improve on the middle part of the attack where we exploit
the available degrees of freedom of the state values and differences. The idea is to
first find differences and values for the middle (4-round) part of the differential
trail, with the following number of active bytes at SubBytes:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 1

3.2 Exploiting Properties of the Round Transformations

In this section, we briefly describe which properties of the round transformations
are used for the attacks in the following sections. Note that some used properties,
especially those of MixBytes, are specific to a truncated differential path with a
minimum number of active S-boxes such as the one given in Fig. 1.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

SubBytes. In our attacks, we use some differential properties of the AES S-
box. Most of these properties can simply be verified by computing the differential
distribution tables (DDT) [4] of the S-box (or inverse S-box).

– for a given input (or output) difference of the AES S-box, the number of
possible output (or input) differences is restricted to 127.

– for a given input and output difference, the number of possible input values
is limited to either 2 or 4 values.

– for a given input and output difference, the AES S-box behaves linear due
to the fact that there are only 2 or 4 solutions per S-box (see Section 4.2 for
more details).

In the following sections, we use some differential S-box tables to efficiently
carry out the attacks. We call SδF the table that contains all input byte pairs
(a, b), such that we get the difference δ at the output of the AES S-box, i.e. such
that Sbox(a) ⊕ Sbox(b) = δ. Each table SF has 256 entries with 127 possible
input differences a⊕b of the S-box. More precisely, for any difference δ 6= 0 on the
output of the S-box, 129 input differences are not possible, 126 differences have
two candidates and 1 difference has 4 candidates. The table SδB contains all the
output byte pairs (a, b), such that we get the difference δ at the input of the S-
box, i.e. after the application of the inverse AES S-box. For a fast implementation
of the attacks, these tables are precomputed and sorted accordingly.

ShiftBytes. The ShiftBytes (or ShiftRows) transformation moves bytes and
thus, differences to different positions but does not change their value. The good
diffusion property of ShiftRows allows us to choose certain differences and values
of the subsequent MixBytes layer independently. Assume we have one active
column in MixBytes. Then, we get after the adjacent ShiftRows application one
active byte in each new column. Hence, we can determine these single active
bytes by the subsequent MixBytes transformation independently.

MixBytes. In the case of MixBytes (or MixColumns), we use the property of
an n× n MDS matrix that, given any n bytes of input and output, the other n
bytes can be uniquely determined. Since MixBytes is linear, this also holds for
differences. In the following attacks, we use differential paths with a minimum
number of active S-boxes. Hence, also the number of differences in the MixBytes
transformation is minimal and every active MixBytes operation contains zero
differences in exactly 7 (3 for MixColumns) input/output bytes. It follows, that
choosing a single byte difference uniquely determines all other 8 (4 for MixBytes)
differences.

Hence, for a fixed position of active bytes, we get 255 possibilities for the
difference propagation of MixBytes (bundles in [9]). These cases can be precom-
puted and stored in tables. We call M i

F the table that contains all possible input
differences of MixBytes (or MixColumns), such that we get only one non-zero
byte at row i in the output. We call M i

B the same table but for the inverse of the
MixBytes (or MixColumns) transformation. Since the MixBytes transformation
is linear, the same tables can be used for values and differences.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

3.3 Known-key Distinguishers

In the following, we will describe known-key distinguisher attacks against AES
and the internal permutations used in Grøstl and ECHO. We refer to [18] for the
details of this setting. However, in this paper, our distinguishers will consist in
finding a pair of plaintext for the keyed permutation (when the key is randomly
chosen but known by the attacker) such that some plaintext and ciphertext words
contain no difference. For the distinguishing attack to be valid, the complexity
should be lower than expected in the case of a random permutation. Assume
an n-bit permutation with differences in i bytes of the plaintext and in i bytes
of the ciphertext. Then, assuming that the positions of the byte-differences are
fixed, the complexity of the generic attack is greater or equal (depending on the
values of i and n) to 2(n−8·i)/2.

4 A Linearized Match-in-the-Middle Attack

In this section, we present a method which allows us to find a state pair with
differences according to the truncated differential path of Fig. 1 with a complex-
ity of about 248. The main idea is to first search for differences according to the
4-round middle part (1→ 8→ 64→ 8→ 1) of the path. We can find such differ-
ences with a complexity of about 1 by guess and determine (see Section 4.1). In
the second phase, we try to solve for the corresponding values of the state. The
main idea is that we can do this linearly. Since the differential of each S-box is
fixed we get either 2 or 4 possible values for the AES S-box (see Section 3.2). In
these cases, the S-box behaves linearly and hence, we can find the correct values
by solving a linear system of equations (see Section 4.2). Note that we need to
repeat the solving phase with new differences if no solution was found.

4.1 Filtering for Differential Paths

In this section, we filter for candidate differences which follow the middle part
(1→ 8→ 64→ 8→ 1) of the differential path of Fig. 1 with a high probability.
Fig. 2 shows the corresponding round transformations and the differential path
in detail. In the attack, we use properties of the SubBytes (SB) and MixBytes
(MB) transformations to filter for differential paths. Hence, we are interested
in the input and output of these transformations. The first and second column
show differences at the input and output of the S-boxes (SBin

i and SBout
i), and

column three and four show differences at the input and output of the MixBytes
transformations (MBin

i and MBout
i). To determine possible input and output dif-

ferences of these two transformations, we use their corresponding lookup tables
M j
F , M j

B , SδF and SδB (see Section 3.2).

Column 1. We start with the differences of the first column (marked by “1”
in state MBin

2 and MBout
2) of the MixBytes operation of round 2 (MB2). Since

7 input byte differences are required to be zero, choosing one of the remaining

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

SBin
1 SBout

1 MBin
1 MBout

1

AC SB1 ShB MB1

SBin
2 SBout

2 MBin
2 MBout

2

AC SB2 ShB MB2

SBin
3 SBout

3 MBin
3 MBout

3

AC SB3 ShB MB3

SBin
4 SBout

4 MBin
4 MBout

4

AC SB4 ShB MB4

1
1

1
1

1
1

1
13

3
3

3
3

3
3

35
5

5
5

5
5

5
5

1
1

1
1

1
1

1
13

3
3

3
3

3
3

35
5

5
5

5
5

5
5

1
1

1
1

1
1

1
13

3
3

3
3

3
3

35
5

5
5

5
5

5
5

1

1
1
1
1
1
1
1

3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5

1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5

1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5 2

2
2

2
2

2
2

24

4
4

4
4

4
4

46
6

6
6

6
6

6
6

2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4

6
6
6
6
6
6
6
6 2

2
2
2
2
2
2
2 4

4

4
4
4
4
4
4 6

6
6

6
6
6
6
6

2

2
2
2
2
2
2
2 4

4

4
4
4
4
4
4 6

6
6

6
6
6
6
6

2

2
2
2
2
2
2
2 4

4

4
4
4
4
4
4 6

6
6

6
6
6
6
6

2
2

2
2

2
2

2
2

4
4

4
4

4
4

4
4

6
6

6

6
6

6
6

6

Fig. 2. Filtering for differential paths.

9 non-zero differences, uniquely determines all other differences of MB2. Since
the ShiftBytes and AddRoundConstant operations are linear, we get the same
differences for the bytes marked by “1” in states SBout

2 and SBin
3 . It follows that

we can choose from 255 non-zero differences for the first byte of SBin
3 , and this

choice determines all differences marked by “1” between state SBout
2 and SBin

3 .

Column 2. Next, we continue with the differences of the first column of MB3

(marked by “2” in states MBin
3 and MBout

3). Again, 7 differences of MB3 are zero
and choosing one byte determines all differences of the first column of MB3. Note
that the input of the first column of SB3 and thus, the difference of SBin

3 [0, 0],
has already been fixed in the previous step. Due to the differential behavior of
the AES S-box (see Section 3.2), we can choose from only 127 differences for the
corresponding output byte of SB3 (SBout

3 [0, 0]). Choosing one of these possible
127 differences uniquely determines all differences marked by “2” between states
SBout

3 and SBin
4 .

Column 3. Then, we continue with the second column of MB2 (marked by “3”
in states MBin

2 and MBout
3). Again, 7 bytes of the input differences are required to

be zero. Additionally, one output difference of SB3 (SBout
3 [1, 1]) has already been

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

fixed due to Column 2. Again, we can only choose from 127 possible input
differences for SB3 (SBin

3 [1, 1]) and get 127 possible differences for the bytes
marked by “3” between SBin

3 and SBout
2 .

Column 4-5. We proceed with the second column of MB3, marked by “4” in
states MBin

3 and MBout
3 . Note that the input bytes of two S-boxes (SBin

3 [0, 1] and
SBin

3 [7, 0]) have already been fixed due to Column 1 and Column 3. These two
input differences restrict the number of possible differences for the output of SB3

(bytes marked by “4”) to about 256/22 = 64 values. We continue with the third
column of MB2 (marked by “5”). Two output differences of the corresponding S-
box SB3 have already been fixed and thus, we can choose from about 64 possible
differences for the input bytes marked by “5” in SBin

3 as well.

Column 6-16. This procedure continues for all 8 columns of each of the two
MixBytes transformations MB2 and MB3. The approximate number of possible
S-box differences for SBin

3 and SBout
3 are halved for each additional MixBytes

column and are shown in Table 2.

MB1 and MB4. Until now, we have determined differences for the states SBout
2 ,

SBin
3 , SBout

3 and SBin
4 . Since all differences in SBout

2 and SBin
4 have already been

determined, we have only about 255/28 ∼ 1 difference left for SBin
2 and SBout

4 .
Note that choosing the difference for one byte determines all other differences
as well due to the restrictions by MixBytes.

Note that we can find one possible differential characteristic with a complex-
ity of about one, since we filter though each MixBytes and S-box transformation
only once. The total number of possible differential paths can be determined by
considering the number of choices we have at the input and output of S-box SB3,
the input of S-box SB2 and the output SB4. The approximate number of choices
are listed in Table 2 and by multiplying these numbers we can get up to ∼ 264

possible differential paths or starting points for the next phase.

Table 2. The approximate number of possible choices for the differences at the
input and output of the 3 S-boxes SB2, SB3 and SB4.

SBin
2 SBin

3 SBout
3 SBout

4

1 255 127 1
127 64
64 32
32 16
16 8
8 4
4 2
2 1

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

4.2 Solving for Conforming State Pairs

After we have found a differential path we need to search for a valid pair of the
state. Since the differential of each active S-box is fixed there are only either 2 or
4 input pairs possible. In both cases, the S-box behaves linearly [10] and hence,
we can easily solve the resulting linear system of equations. In the following
description we assume that we have only 2 possible input pairs for each active
S-box (note that in this case, all S-boxes behave linearly).

Consider the diagonal of SBout
3 respectively the first column of MBin

3 (denoted
by “2” in Fig. 2). For each S-box we have 2 possible inputs ki and k′i for 0 ≤ i < 8
such that the differential path holds. In other words, we have 28 possible inputs
for the diagonal of SBout

3 . Let x ∈ {0, 1}8 then the possible values for the diagonal
of SBout

3 are given by:
k ⊕ x · (k ⊕ k′)

where k = [k0, . . . , k7] and k′ = [k′0, . . . , k
′
7].

Next, we compute the first byte of SBin
4 by going forward ShiftBytes, MixBytes

and AddRoundConstant.

SBin
4 [0, 0] = (k⊕ x · (k⊕ k′)) · L

where L denotes composition of ShiftBytes, MixBytes and AddRoundConstant.
Since these transformations are all linear L is a linear transformation as well.

Since we have 2 possible values a and a′ for SBin
4 [0, 0] such that the differential

trail holds, the following equation has to be fulfilled.

(k ⊕ x · (k ⊕ k′)) · L = a⊕ y · (a⊕ a′)

where y ∈ {0, 1}.
By doing the same for the other diagonals (corresponding to columns 2-8 of

MBin
3) we get a system of 64 equations in 64+8=72 variables which has to be

fulfilled to guarantee that the differential trail holds in the forward direction.
In a similar way we also get a system of 64 linear equations in 72 variables by
going backward from SBin

3 to SBout
2 . However, since the values of SBin

3 and SBout
3

are related, we get in total a system of 128 equations in 80 variables when we
combine them. In other words, to find a valid pair, we have to backtrack and
try about 248 differential paths and thus, solve the linear system of equations
248 times. Since we can start with up to 264 differential paths, we can only find
about 264−48 = 216 pairs after the linear solving step.

Note that the attack works similar if one has 4 possible input pairs for the
S-box. By choosing the differences in the previous step (Section 4.1) in a way,
to maximize the number of differentials with 4 possible pairs for the S-box,
the overall complexity can be reduced slightly (by about 22 to 25). The total
complexity of the attack is given by the number of times we need to solve the
resulting linear system of equations (we assume here that this corresponds to
about one compression function call).

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

4.3 Application to AES

The same technique applies to the block cipher AES as well. In this case, we
start with a differential path with the following sequence of active S-boxes:

1→ 4→ 16→ 4→ 1

Hence, we get 64 conditions (equations) for the S-box layers of round 2, 3 and
4. Since we have 64 equations in 24 variables, we need to repeat the attack
264−24 = 240 times to find a valid pair. Note that in the case of AES, we get a
better complexity if we first fix the differential path for rounds 1-3 (1 → 4 →
16 → 4) and then, solve for the pair. In this case, we get only 32 conditions
and the complexity to solve for a pair is about 212. Since we need to repeat the
attack only 224 times to fulfill the last MixColumns operation we get a total
complexity of only 236 in this case.

5 A Start-From-the-Middle Technique

In this section, we describe another attack that uses the available freedom degrees
in the middle. The truncated differential path considered here will be the same
than in the previous section or in the rebound attack [22]: in the case of Grøstl,
we use the one from Fig. 1. More precisely, the attack will first focus on a 3-round
part of the middle of the path, the following sequence of active bytes:

1 r1−→ 8 r2−→ 64 r3−→ 8

We can find a conforming state pair according to this path with only a few
operations by choosing “good” differences in advance and exploiting the available
degrees of freedom. We start at the last MixBytes transformation of the 3-round
trail (MB3 in Fig. 2) and compute backwards. The attack can be divided into
three main phases:

1. In Phase 1, we start with 1-byte differences at the output of each MixBytes
column MB3 (MBout

3) and compute backwards to the input of SB3 (SBin
3).

Each column of MixBytes MB3 can be computed independently. Then, we
maintain as much freedom as possible in the input difference of SB3 (SBin

3)
by using the precomputed differential tables of the S-box.

2. In Phase 2, we have enough degrees of freedom to choose the differences for
SBin

3 such that each of the eight MB2 MixBytes transitions from 8 to 1 active
byte in backward direction is satisfied.

3. In Phase 3, we get more degrees of freedom since both (a, b) and (b, a) are
valid solutions for each byte of SBin

2 . Hence, we can randomize each active
byte of SBin

2 and get enough pairs such that the last single MixBytes trans-
formation MB1 can be fulfilled as well.

At this point, all available degrees of freedom have been used and we rely on
a probabilistic behavior for the remaining transitions in backward and forward
direction.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

5.1 Application to Grøstl-256

Phase 1. We randomly select non-zero differences for the eight active bytes of
SBin

4 , i.e. for SBin
4 [i, i] with i ranging from 0 to 7. Those differences will remain

unchanged when computing backward to MBout
3 . Since the MixBytes transfor-

mation is linear, we apply its inverse (Phase 1.A in Fig. 3) to MBout
3 and deter-

ministically get 64 byte differences for MBin
3 and thus, for SBout

3 . We denote by
δ[i, j] the byte difference of SBout

3 [i, j]. For each output difference δ[i, j] in SB3,
we compute all valid byte pairs SBin

3 [i, j] such that the S-box differential holds
(Phase 1.B in Fig. 3). As discussed in Section 3.2 we can choose from 127 pos-
sible input differences for SBin

3 [i, j] using the S-box differential table. For each
of these XOR difference, we get two possible pairs (a, b) and (b, a). Hence, for
each byte of SBin

3 , we get a list (denoted by capital letters in Fig. 3) of 254 valid
candidate pairs which are sorted by input difference and stored in table Sδ[i,j]F .
Note that any choice of these pairs will conform to the expected differential path
from SBin

3 up to SBin
4 .

SBin
3 SBout

3 MBin
3 MBout

3

AC SB3 ShB MB3

A B C D E F G H
I J K L M N O P

X Y Z

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

3
3

3
3

3
3

3
3

1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3

4
5

6
7

8

1
2

3
4

5
6

7
8

Phase 1.B Phase 1.A

Fig. 3. Phase 1 of the attack.

Phase 2. We now take care of the differential path from SBin
3 to SBin

2 . Since we
can choose a candidate pair for each byte SBin

3 independently, we will process
independently for each column of MB2 as well. More precisely, for each column
j of SBin

3 (or MBout
2), we will use the inverse MixBytes table M j

B to choose each
byte difference of SBin

3 , such that they result in only one active byte at the
input of MB2 (MBin

2). For each of the 255 differences of M j
B , we check if some

candidate pairs of SBin
3 (computed during Phase 1 and stored in Sδ[i,j]F) can fit the

8-byte difference of MBout
2 (see Fig. 4). Since for each byte of SBin

3 we can choose
from 127 possible output differences of the S-box, the probability of success is
127/255 ' 1/2.

Thus, for an entire column of MB2 we get a probability of (127/255)8 ' 2−8

such that one valid candidate pair can be found. Since we can start with 255 input
differences for each column of MB2, we can find one solution for a column with
probability 1− (1− (127/255)8)255 ' 0, 62. We continue for all eight columns of
SBin

3 . The probability of success is about (0, 62)8 ' 2−5,5 and we have to restart
at Phase 1 about 25.5 = 46 times to find a solution. At the end of Phase 2, we

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

SBin
2 SBout

2 MBin
2 MBout

2

AC SB2 ShB MB2

1
8
7
6
5
4
3
2

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

3
3

3
3

3
3

3
3

8
7
6
5
4

1
1
1
1
1
1
1
1 2

2
2
2
2
2
2
2

3
3

3
3
3
3
3
3 4

5
6

7
8

1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3

4
5

6
7

8

Phase 2

Phase 3

Fig. 4. Phase 2 and Phase 3 of the attack.

get a set of byte pairs for SBin
3 , which conforms to the differential path from SBin

2

up to SBin
4 .

Note that these two first phases are doing essentially the same work as the
rebound attack [22], but need fewer operations to complete (on average the
rebound attack takes about one operations per valid candidate, but this whole
step required 264 operations). Here, we need to repeat the process 25.5 times
to find a solution, but compute only a few table lookups per iteration. Thus,
we consider that we can find one solution for the truncated differential path
1→ 8→ 64→ 8 with about one computation of Grøstl-256 on average.

Phase 3. It seems that at this phase, the differences in SBin
2 and SBout

4 can
not be chosen anymore. However, an observation allows us to actually get some
control over the differences in SBin

2 . We denote by S a 64-byte solution of SBin
3

(found at the end of Phase 2) and by (a, b)[i,j] the byte pair of row i and column
j in S. In Fig. 4, we can see that the active bytes of SBin

2 are located in the
first column. By looking at this figure, it is easy to check that the differences of
the active bytes located at row j of SBin

2 depend only on the byte pairs of the
j-th column of MBout

2 (or SBin
3). We know that (a, b)[0,j], ..., (a, b)[7,j] are valid

solutions for this column, and switching a and b in any of the pairs actually
maintains the validity of those candidates (the differences values of each byte
will remain the same in MB2 and MB3).

Thus, one solution for each column of SBin
3 provides us in fact 28 valid can-

didates4. Each of these solutions will lead to a random difference on the cor-
responding active byte SBin

2 [j, 0], independently of all other differences in SB2.
Now, if we can hit any of the elements of M0

B for MB1 from the newly available
differences in SBin

2 , we directly get a solution for the differential path from SBout
1

to SBout
4 . Since we have 255 elements in M0

B , we expect about 27 solutions on
average (28 solutions, but half of them may be repeating, see footnote 4).

4 We have 28 different combinations by switching a and b for each column. However,
we must take in account that some repeating combinations are counted here (given
a combination, inverting everything will obviously lead to exactly the same behavior
in the differential path). Thus, instead of having 64 bits degrees of freedom left (8
for each column) we intrinsically loose one of them and get 63 degrees of freedom.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

We did not succeed to control the differences in SBout
4 as well. Thus, if the

differences are uniformly distributed, the success probability for the 8 to 1 active
byte transition from the MixBytes layer MB4 is equal to 2−8×7 = 2−56.

5.2 Application to AES

Again, also this technique can be applied to the AES block cipher. We use the
same differential path as in Fig. 1, except that we manipulate a 4× 4 state and
that no MixColumns transformation is applied in the last round:

4→ 1→ 4→ 16→ 4→ 1→ 4→ 4

Phase 1. This step is analog to the Grøstl-256 case.

Phase 2. This step is similar to the case of Grøstl-256. However, the probability
computation changes when looking for a match between MBout

2 and SBin
3 . For each

column, we now get a probability of (127/255)4 ' 2−4 such that at least one
valid candidate pair can be found. Since we have 255 differences in M i

B , we will
immediately find one solution for each starting difference SBin

4 of the attack. In
fact, we expect up to about 24 solutions for each column.

Phase 3. Again, we try to control the differences in SBin
2 . We use the same

technique as for Grøstl-256: for each active byte at row i in SBin
2 , we can ran-

domize its difference by randomizing the solutions on the column i in SBin
3 . By

switching a and b, we directly get 24 solutions per column. Moreover, we also
have to consider the fact that for the AES case, we already had 24 solutions per
column. Thus, we get in total about 28 solutions per column (see footnote 4).
Each of those solutions will lead to a random difference on the corresponding
active byte of SBin

2 , independently of the other active bytes of SBin
2 . Now, if we

can hit any of the elements of M0
B using the available differences in SBin

2 , we get
a solution for the differential path between SBout

1 and SBout
4 . Since we have 255

elements in M0
B , the whole attack will find about 27 solutions on average (28

solutions, but half of them may be fully repeating ones, see footnote 4).

Extending the Path. Propagating from SBin
4 to SBin

5 according to the trun-
cated differential path has a success probability of 2−3·8 = 2−24. Thus, we can
find a pair corresponding to the path from SBin

1 to SBin
5 with about 224 round

computations on average.

6 Results

In the previous two sections, we have proposed two new techniques to find dif-
ferences and values for a 4-round truncated differential path with 1 → 8 →
64 → 8 → 1 active bytes for Grøstl-256. In the following, we apply these re-
sults to the permutation, compression function and output transformation of
Grøstl-256, the AES block cipher and the ECHO permutation.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

6.1 Grøstl-256

Both proposed techniques can be used to improve the complexity of the 6-round
semi-free-start collision attack of [22]. However, due to the limited degrees of
freedom, a semi-free-start collision attack on 7 rounds of the Grøstl-256 com-
pression function is not possible.

6 Rounds. Both proposed techniques (described in Sect. 4 and Sect. 5) can be
used to find a valid pair for the 6 round trail of P and Q, given in [22]:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64

Using the linearized match-in-the-middle attack, we can omit the conditions
on SB4. Hence, the number of equations is reduced to 64 and we expect to
find a solution (in fact 28 solutions) for already the first differential path. The
complexity to find a match for the 8 active bytes (64 bits) at the input, and at
the output prior to the (linear) MixBytes transformation is 232 each. Hence, the
total complexity to find a semi-free-start collision for 6 rounds of Grøstl-256 is
about 264 in time and memory.

Using the start-from-the-middle technique, we can construct a differential
path with active bytes 8 → 1 → 8 → 64 → 8 → 8 → 64) with only a few
operations. As a proof of concept, we give in Appendix A a valid input pair
for the permutations P and Q on 6-rounds of Grøstl-256 which conforms to
this truncated differential path. We get a final complexity of 264 operations and
memory for a semi-free-start collision on Grøstl-256 reduced to 6 rounds.

7 Rounds. Again, both techniques can be used to find a valid pair conforming
to the 4-round part in the middle of Fig. 1 (1 → 8 → 64 → 8 → 1) with
a relatively low complexity (248 and 256). This path can be extended by one
round in backward and two rounds in forward direction to give a differential
path of the form:

8→ 1→ 8→ 64→ 8→ 1→ 8→ 64,

However, using both techniques we can only find 216 pairs conforming to
this truncated differential path and one can convince himself with a counting
argument: In the middle of the differential path where all bytes of the state
are active, one can start with approximatively 2512 · 2512 = 21024 different pairs.
However, only a portion 2−56 will follow a MixBytes transition 8→ 1, and only a
portion 2−56·8 = 2−448 will follow a MixBytes transition 64→ 8 (because we have
a probability of 2−56 for each column). Since we have two 64→ 8 and two 8→ 1
transitions and consider them to be independent, only 21024−448·2−56·2 = 216

valid pairs will remain for the 4-round path in the middle (1→ 8→ 64→ 8→ 1)
and thus, also for the 7-round path.

Note that due to this lack of freedom a semi-free-start collision using this
truncated differential path is not possible. For a collision at the end of 7 rounds,

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

we need about 264 pairs for each, P and Q. Otherwise, a birthday attack on 128
bits (8 active bytes at the input, 8 active bytes prior to MixBytes at the output)
is not feasible. By using different positions of active bytes in round 2 and 6, but
the same column for P and Q, we can construct about 26 · 26 · 23 · 23 = 218

different truncated paths. By far not enough for a collision attack. However, one
could think of a free-start near-collision attack on 7 rounds of Grøstl-256 but
this property gets destroyed by the output transformation.

Therefore, we can only get a distinguisher for the permutation or output
transformation of Grøstl-256 reduced to 6.5 rounds (without the final MixBytes
transformation). The complexity is 248 instead of 2224 for a random 512-bit
permutation or 2112 for a random 256-bit function. We can get a distinguisher
for the full 7 rounds by applying the subspace distinguisher proposed in [19].
Note that the input and the output differences of the 6.5 round attack form
a vector space of dimension 64 at the input and output. Since the Mixbytes
transformation is linear also the output differences after 7 rounds form a vector
space of dimension 64. Hence, we can apply the subspace distinguisher with
parameters N = 512, n = 64, t = 128 (generic complexity: 2115.4) to distinguish
7 rounds of the permutation P and Q. To construct a vector space of size t = 128,
we need to repeat our attack on the comression function 27 times. Hence, the
total complexity for the subspace distinguisher of the permutation is about 255

permutation calls with negligible memory.
Similarily, we can use the subspace distinguisher to distinguish the output

transformation of Grøstl-256 as well. Note that the 8 active bytes of the input
are added to the output by the feed-forward. However, due to the truncation
at the end the output differences will still form a vector space of dimension 64.
Since Grøstl-256 truncates columns and MixBytes works on columns, we keep
only half of the vector space. Hence, we can apply a subspace distinguisher with
parameters N = 256, n = 64, t = 256 (generic complexity: 275.9) and need to
repeat our attack 28 times to get a vector space of size t = 256. Hence, the total
complexity for the subspace distinguisher on 7 rounds of the Grøstl-256 output
transformation is about 256 output transformation calls and negligible memory.

6.2 AES Block Cipher

Both proposed techniques apply to the block cipher AES in the known-key dis-
tinguisher setting as well. The resulting 7-round differential path for AES is
computed by simply extending the 4-round path in both forward and backward
direction to give the following sequence of active bytes:

4→ 1→ 4→ 16→ 4→ 1→ 4→ 4

Note that the last MixColumns operation is omitted in the AES. Since we aim
for 4 active bytes in both, plaintext and ciphertext, we would expect to find
such a pair with about 248 computations for a random permutation. Note that
an equivalent generic attack needs to find a pair with only 4 active bytes at
the input and output as well. Hence, the best generic method is to start with 4

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

active bytes at the input and search for a near-collision on 12 non-active bytes
at the output with complexity 2(12·8)/2 = 248.

Using the linearized match-in-the-middle attack, we get a known-key dis-
tinguisher for 7-rounds of AES with a complexity of about 236 and negligible
memory. However, the start-from-the-middle technique allows us to further im-
prove the complexity for the known-key distinguisher to about 224 in time and
negligible memory for 7-rounds of AES. Additionally, one may think of other
applications of these attack such as near-collisions on a compression function
built upon the 7-round reduced AES in Davies-Meyer mode [6,23], or a collision
attack on the compression function for 5 rounds.

6.3 Internal Permutation of ECHO

It is possible to apply the start-from-the-middle technique to other AES-based
hash functions, such as ECHO [2] whose internal 2048-bit permutation can been
seen as a big AES processing 128-bit words instead of bytes. This directly gives
us an improved distinguisher on 7 rounds whose complexity is 23·128 = 2384

operations (compared to the previous one with complexity 2896) and memory
requirements are 2256. However, we can improve the memory requirements by
storing a differential lookup table for the AES super box [9] with size 232 · 232 =
264, instead of a differential lookup table for two full AES rounds with size
2128 · 2128 = 2256. This is possible due to the fact that one can combine the last
MixColumns transformation of the AES with the subsequent BigMixColumns
transformation of ECHO, since both transformations are linear. Note that this
attack only allows to distinguish 7 rounds of the ECHO internal permutation
from a random 2048-bit permutation, but does not apply to the compression
function due to the word compression at its output.

7 Conclusion and Future Work

In this paper, we have proposed two new ways to mount attacks on the SHA-3
candidates Grøstl and ECHO, and the block cipher AES. Our results improve
upon and extend the rebound attack. Both techniques are an extension of the
number of rounds in which degrees of freedom can be used to improve from two
to four rounds. As a result, we present the best known attacks on constructions
where (reduced variants of) permutations are used. We improve on the attack
on the reduced Grøstl-256 compression function (up to 6 out of 10 rounds), and
present a distinguisher for 7-rounds of the Grøstl-256 permutation and output
transformation. Further, we improve upon the distinguisher for 7-rounds of the
internal permutation of ECHO and the known-key distinguisher for 7-rounds of the
block cipher AES. Nevertheless, a comfortable security margin for these SHA-3
candidates remain. Not only because both proposals have a higher number of
rounds, but also because in an attack on the hash function much less degrees
of freedom are available (compared to an attack on the compression function or
permutation).

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

On the other hand, the new techniques of this paper have been optimized for
this setting and do not directly apply to other settings where more degrees of
freedom are available. Sources for such degrees of freedom are salt, counter, or
key inputs. While the analysis typically gets more complicated if more freedom
is available, much better attacks can be expected. As an example we refer to
a recent extension of the rebound attack on the full 10-round Whirlpool com-
pression function [19]. Note that Whirlpool is a block cipher based construction
which offers additional degrees of freedom through its conservative key schedule.
Some SHA-3 candidates use block-cipher based compression functions with key-
schedules less conservative than Whirlpool. Hence, more degrees of freedom are
available to an attacker and better results may be expected along those lines.

In general, the rebound attack and its extensions as described in this pa-
per, work with any differential or truncated differential. However, the diffusion
properties of AES based hash functions allow a very simple construction of good
truncated differential paths, which facilitates the analysis. Nevertheless, future
work will include the application of the rebound idea on other hash construc-
tions, even though this may require sophisticated tools to obtain good results,
as was the case for e. g. SHA-1 [11].

Acknowledgments

We would like to thank Joan Daemen for the idea on the linearized match-in-
the-middle attack, and Henri Gilbert, Mario Lamberger, Vincent Rijmen and
the anonymous referees for useful comments and discussions. The work in this
paper has been supported in part by the European Commission under contract
ICT-2007-216646 (ECRYPT II) and by the IAP Programme P6/26 BCRYPT of
the Belgian State (Belgian Science Policy).

References

1. Paulo S. L. M. Barreto and Vincent Rijmen. The Whirlpool Hashing Function.
Submitted to NESSIE, September 2000. Revised May 2003. Available online at
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (2008/12/11).

2. Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin,
Matt Robshaw, and Yannick Seurin. SHA-3 Proposal: ECHO. Submission to NIST,
2008. Available online at http://crypto.rd.francetelecom.com/echo/.

3. Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions -
HAIFA. Cryptology ePrint Archive, Report 2007/278, 2007. http://eprint.

iacr.org.
4. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.

J. Cryptology, 4(1):3–72, 1991.
5. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-

Key Attack on the Full AES-256. In Shai Halevi, editor, CRYPTO, LNCS.
Springer, 2009. To appear.

6. Bram Cohen and Ben Laurie. AES-hash, 2001. Available online
at http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/

aes-hash/aeshash.pdf.

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://crypto.rd.francetelecom.com/echo/
http://eprint.iacr.org
http://eprint.iacr.org
 http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aesh ash.pdf
 http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aesh ash.pdf

7. Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In Bahram
Honary, editor, IMA Int. Conf., volume 2260 of LNCS, pages 222–238. Springer,
2001.

8. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Information Security
and Cryptography. Springer, 2002. ISBN 3-540-42580-2.

9. Joan Daemen and Vincent Rijmen. Understanding Two-Round Differentials in
AES. In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of LNCS,
pages 78–94. Springer, 2006.

10. Joan Daemen and Vincent Rijmen. Plateau characteristics. IET Information
Security, 1(1):11–17, March 2007.

11. Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteris-
tics: General Results and Applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of LNCS, pages 1–20. Springer, 2006.

12. Ewan Fleischmann, Christian Forler, and Michael Gorski. The Twister Hash Func-
tion Family. Submission to NIST, 2008.

13. Pierre-Alain Fouque, Jacques Stern, and Sébastien Zimmer. Cryptanalysis of
Tweaked Versions of SMASH and Reparation. In SAC, LNCS. Springer, 2008.
To appear.

14. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a SHA-3
candidate. Submission to NIST, 2008. Available online at http://www.groestl.

info.
15. Dmitry Khovratovich. Cryptanalysis of hash functions with structures. In

Michael J. Jacobson, Vincent Rijmen, and Rei Safavi-Naini, editors, SAC, LNCS.
Springer, 2009. To appear.

16. Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic. The Hash Function Chee-
tah: Specification and Supporting Documentation. Submission to NIST, 2008.

17. Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl
Hash Functions. In Alex Biryukov, editor, FSE, volume 4593 of LNCS, pages
39–57. Springer, 2007.

18. Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block
Ciphers. In K. Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages 315–
324. Springer, 2007.

19. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schläffer. Rebound Distinguishers: Results on the Full Whirlpool Compres-
sion Function. In Mitsuru Matsui, editor, ASIACRYPT, LNCS. Springer, 2009.
To appear.

20. Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolić, Yu Sasaki, and Martin
Schläffer. Rebound Attack on the Full LANE Compression Function. In Mitsuru
Matsui, editor, ASIACRYPT, LNCS. Springer, 2009. To appear.

21. Florian Mendel, Christian Rechberger, and Martin Schläffer. Cryptanalysis of
Twister. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien
Vergnaud, editors, ACNS, volume 5536 of LNCS, pages 342–353, 2009.

22. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren Steffen Thom-
sen. The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr
Dunkelman, editor, FSE, volume 5665 of LNCS, pages 260–276. Springer, 2009.

23. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

24. Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse. Distinguishers for
Ciphers and Known Key Attack against Rijndael with Large Blocks. In Bart

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

http://www.groestl.info
http://www.groestl.info

Preneel, editor, AFRICACRYPT, volume 5580 of LNCS, pages 60–76. Springer,
2009.

25. National Institute of Standards and Technology. FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce, November 2001.

26. National Institute of Standards and Technology. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-
3) Family. Federal Register, 27(212):62212–62220, November 2007. Avail-
able: http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(2008/10/17).
27. Thomas Peyrin. Cryptanalysis of Grindahl. In Kaoru Kurosawa, editor, ASI-

ACRYPT, volume 4833 of LNCS, pages 551–567. Springer, 2007.
28. Shuang Wu, Dengguo Feng, and Wenling Wu. Cryptanalysis of the LANE Hash

Function. In Michael J. Jacobson, Vincent Rijmen, and Rei Safavi-Naini, editors,
SAC, LNCS. Springer, 2009. To appear.

A Message and Chaining Variable Example for the
6-Round Differential Path of Grøstl-256

We give here in hexadecimal display a chaining variable and message pair exam-
ple ([H1,M1],[H2,M2]) that verifies the 6-round differential path for Grøstl-256.

H1 = fdab6faf65da3531e5a7f611baba937d
b18648152738a5fe4bd38ca5a8b050e7
3d734623aed6f7a35e3fb3d72eba5e60
1712a3d23d76fe79ccbba10461dddee0

M1 = 66b16a712984a23ca99283090e5818c7
c7f46fcd74c54b7a9950a4bfcb2861b1
1f90846a04c92172af57a58ad9b747a3
a26dca926c18f410ad0f40f52800d27b

H2 = 21ab6faf65da3531e51bf611baba937d
b186c5152738a5fe4bd38c88a8b050e7
3d734623ecd6f7a35e3fb3d72e6c5e60
1712a3d23d767779ccbba10461ddde66

M2 = f8b16a712984a23ca9ef83090e5818c7
c7f434cd74c54b7a9950a40fcb2861b1
1f90846a29c92172af57a58ad95547a3
a26dca926c18d710ad0f40f52800d27f

Appeared in M.J. Jacobson Jr, V. Rijmen and R. Safavi-Naini (Eds.): SAC 2009, LNCS
5867, pp. 16–35.

c© Springer-Verlag Berlin Heidelberg 2009

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

	Introduction
	Description of AES-based Primitives
	AES
	The Grøstl Hash Function
	The ECHO Hash Function

	Basic Attack Properties
	Improving on the Rebound Attack
	Exploiting Properties of the Round Transformations
	Known-key Distinguishers

	A Linearized Match-in-the-Middle Attack
	Filtering for Differential Paths
	Solving for Conforming State Pairs
	Application to AES

	A Start-From-the-Middle Technique
	Application to Grøstl-256
	Application to AES

	Results
	Grøstl-256
	AES Block Cipher
	Internal Permutation of ECHO

	Conclusion and Future Work
	Message and Chaining Variable Example for the 6-Round Differential Path of Grøstl-256

