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Abstract. A recent trend in machine learning is the implementation
of machine learning based solvers, such as the sat solver NeuroSat. The
main limitation of NeuroSat is its scaling to large problems. We conjec-
ture that this lack of scaling is due to learning an all-purpose SAT solver,
and that learning to solve specialized SAT problems instead should yield
better results. In this article, we evaluate our hypothesis by training and
testing NeuroSat on SAT problems for differential cryptanalysis on the
block cipher GIFT, and present the resulting classifier NeuroGift. We
show that on these highly structured problems, our models are able to
perform orders of magnitude better than the original NeuroSat, poten-
tially paving the way for the use of specialized solvers for cryptanalysis
problems.

1 Introduction

In recent years, machine learning techniques have become prominent for solving
a wide range of problems. Recently, a promising method to solve combinato-
rial problems using machine learning was proposed. In NeuroSat [SLB+18], the
authors propose to train a machine learning to solve combinatorial problems ex-
pressed in the SAT formalism. Since its publication in 2018, the article gained a
lot of traction, and started a very active (over 80 citations to this day) research
area on how to develop solvers based on machine learning.

In the field of cryptanalysis, SAT solvers, as well as other paradigms, such as
MILP and constraint programming, are frequently used to evaluate the security
of a primitive [MWGP11] [GMS16]. In particular, one of the most prominent
forms of cryptanalysis, differential cryptanalysis, requires solving a heavily com-
binatorial problem as a starting point to a key recovery attack. Namely, this pre-
liminary phase requires finding good differential paths, i.e., propagation patterns
from a difference between two plaintexts to a difference between two ciphertexts,
that occur with a good probability. Among other optimisation tools, SAT solvers
have been successfully used for this task [KLT15] [MP13]. However, the SAT
problems studied for cryptanalysis typically have way more variables and clauses
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than those solvable by NeuroSat (for instance, the problems studied in this arti-
cle have thousands of variables). In addition, the main limitation of NeuroSat is
its training regime : the generation of the training set requires to repeatedly call
an external solver, and becomes impractical when the number of variables goes
over a few hundreds [AMW19]. Therefore, it is not possible to directly apply
the original NeuroSat to cryptanalysis problems. On the other hand, our crypt-
analysis problems are very structured, as opposed to the random problems for
which NeuroSat is trained. Therefore, our hypothesis is that the neural network
can learn from the structure of these problems, yielding a cryptanalysis-oriented
specialised solver, rather than a general purpose SAT solver. Hence, the research
question we are interested in answering is

Can NeuroSat learn to solve highly specialized cryptanalysis problems more
efficiently than generic random problems?

In this article, we present the experiments we led to solve that question.
Training a neural network requires a training set composed of positive samples
and negative samples. In our case, the positive samples are the SAT problems
where the fixed input and output difference correspond to optimal differential
characteristics (i.e., characteristics that have the minimal number of active S-
boxes given a number of rounds), and the negative samples are SAT problems
with fixed input and output differences that do no not correspond to optimal
characteristic (i.e., for which the best possible characteristic has more active S-
boxes than the overall optimal characteristic). We therefore need to be able to
determine rapidly, for a large number of samples, the best possible characteristic
given an input and output difference. We chose to perform our experiments on
the block cipher GIFT, for which this task can be solved rapidly using Crypto-
MiniSat [SNC09] (less than 3 seconds per problem for 10 rounds).

On the problems we studied, our classifier, NeuroGift, showed remarkable
performance. It was able to solve instances with significantly more variables
than the original NeuroSat, obtain better accuracies, and generalise to bigger
instances much better. Table 1 shows a comparison between the results obtained
in the NeuroSat article and our best classifiers.

Table 1: Comparison of NeuroSat and NeuroGift
NeuroSat NeuroGift

Variables 10 ≤ n ≤ 40 699 ≤ n ≤ 1494

Training set ”Millions of pairs” 600 pairs

Best test accuracy 85% 100%

In this article, we present our experimental results, which can be summarised
by the following contributions:
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– We introduce NeuroGift, an adaptation of NeuroSat to the problem of de-
termining whether there exists an optimal differential path for GIFT-64-128,
satisfying a given input difference, output difference, and number of rounds.

– We present experiments aiming at validating that NeuroGift is actually able
to learn to solve the corresponding SAT problem, rather than exploiting side
information to do its classification.

2 Preliminaries

Since we aim to apply NeuroSAT to a specific kind of SAT problems in crypt-
analysis, we first introduce the related SAT problems. Following that, some rel-
evant information in the field of machine learning is provided. Finally, we recall
NeuroSAT, which is the network we use in this paper.

2.1 GIFT-64-128

GIFT [BPP+17] is a family of lightweight block ciphers proposed at CHES 2017.
As an improved version of PRESENT [BKL+07], it provides much-increased effi-
ciency in all domains. At the same time, the well-known weakness of PRESENT re-
garding linear hull effect is overcome. There are two versions of GIFT - GIFT-64-128
and GIFT-128-128. We only focus on GIFT-64-128 in this paper and sometimes
denote it as GIFT for short.

GIFT-64-128 is a 28-round Substitution Permutation Network (SPN) block
cipher with 64-bit block size that supports 128-bit key. The round function, which
is depicted in Figure 1, consists of standard operations such as substitution,
permutation and subkey XOR. At the beginning of each round, 16 identical 4-
bit S-boxes are applied in parallel as a non-linear substitution layer. Just after
the substitution, a linear permutation is performed to provide diffusion, and
finally, the state is XORed with the round key and the round constant. For
more information, please find [BPP+17].
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Fig. 1: Round function of GIFT-64-128.

2.2 Differential Cryptanalysis

Differential cryptanalysis was first introduced by Biham and Shamir in [BS90].
It is one of the most widely used and efficient forms of cryptanalysis. Consider



4 Ling Sun, David Gerault, Adrien Benamira, and Thomas Peyrin

a function f : Fb2 → Fb2. Let x and x′ be two different inputs for the function
f with a difference ∆x := x ⊕ x′, and let y = f(x) and y′ = f(x′) , such that

∆y = y ⊕ y′. Now, we are interested in the probability p such that ∆x
f−→ ∆y.

This can be calculated as such:

P(∆x
f−→ ∆y) :=

#{x|f(x)⊕ f(x⊕∆x) = ∆y}
2b

(1)

If f is linear, then P(∆x
f−→ ∆y) can only be 0 or 1. Thus, the interest lies in

when f is non-linear. In particular, for GIFT, the non-linear component is the
S-box, which operates on consecutive nibbles (4-bit words) of the state. In order
to study the propagation of a given difference through the S-box, the classical
method is to build a Difference Distribution Table (DDT). Each entry of the
DDT is of the form (∆in, ∆out, p), where p is the probability that the difference
∆in results in the difference ∆out after an S-Box.

The first step of differential cryptanalysis is to build differential characteris-
tics, i.e., difference propagation paths through the cipher. In particular, we are
interested in maximizing the probability, over all plaintexts and differences,

PoptP,δin,δout∈P3(E(P )⊕ E(P ′) = δout|P ⊕ P ′ = δin)

Finding such an optimal path is a highly combinatorial problem. One of the
common approaches to tackle it is to use SAT solvers.

2.3 SAT Problem

The boolean satisfiability problem (SAT) focuses on the satisfiability of a given
Boolean formula. The SAT problem is satisfiable if the variables can be replaced
with the values True or False so that the formula is evaluated to be True. It
was shown that the problem is NP-complete [Coo71]. However, modern SAT
solvers based on backtracking search can solve problems of practical interest
with millions of variables and clauses [VHLP08].

For every Boolean formula, there is an equi-satisfiable formula in Conjunctive
Normal Form (CNF), expressed as the conjunction (∧) of the disjunction (∨) of
(possibly negated) variables. Every conjunct of the Boolean formula in CNF is
called a clause, and each (possibly negated) variable within a clause is called a
literal. Since most SAT solvers regard problems in CNF as standard input, we
are required to transform the question into an equivalent one in CNF when we
plan to exploit SAT solver to solve it.

2.4 SAT Problems for GIFT-64-128

The problem we are interested in is about the optimal differential characteristic
of GIFT with the minimum number of active S-boxes. An S-box is said to be
active if it has a non-zero input difference. In practice, the number of active
S-boxes provide a bound on the probability Popt, and is easier to obtain than
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the exact probability of a characteristic. We adopt the method in [SWW18] to
construct the corresponding SAT problems.

Basically, the clauses in the SAT problem can be divided into two groups. One
group is used to propagate the input difference through the internal components
of the cipher, and the other one depicts the objective function.

To trace the difference propagation of GIFT, the critical point lies in the
manipulation of the S-box, since it is the unique non-linear operation inside the
cipher. Denote x0‖x1‖x2‖x3 and y0‖y1‖y2‖y3 the input and output differences
of the S-box, respectively. An auxiliary boolean variable w is introduced for
each S-box to indicate whether the S-box is active or not. We aim to generate a
group of clauses about xi, yi and w, and all the solutions of these clauses have
a one-to-one correspondence with the elements in the following set

S =

{
x‖y‖w

∣∣∣∣ x→ y is a possible propagation,
w = x0 ∨ x1 ∨ x2 ∨ x3

}
,

where x = x0‖x1‖x2‖x3, y = y0‖y1‖y2‖y3. The idea is to add clauses, which
delete the vectors not belonging to the set S. To realise this goal, we first define
a 9-bit boolean function

f(x‖y‖w) =

{
1, if x‖y‖w ∈ S
0, else

.

According to the difference distribution table (DDT) of the S-box, we can gen-
erate the product-of-sum representation of f . Each term of the representation
stands for a clause that deletes an impossible case in F9

2 \ S. This representa-
tion can be simplified by invoking Logic Friday3 software. After that, from the
simplified representation of f , the clauses tracing the differential propagation of
the S-box are decoded. In total, we obtain 36 clauses, which can be found in
Appendix A.

Note that the active S-boxes satisfy w = 1. The sum of wi’s
∑
i

wi equals the

number of active S-boxes of the characteristic. Since we target characteristics
with the minimum number of S-boxes, the objective function is set as

∑
i

wi 6 τ ,

where τ is a predetermined threshold. This kind of constraint is called cardinal-
ity constraint which can be transformed into a SAT problem in CNF with the

sequential encoding method [Sin05]. Specifically, for the constraint
n∑
i=0

wi 6 τ ,

new dummy variables ui,j (0 6 i 6 n− 2, 0 6 j 6 τ − 1) are introduced, and the

3 http://sontrak.com/
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following clauses will return unsatisfiable when
n∑
i=0

wi is larger than τ ,



w0 ∨ u0,0 = 1
u0,j = 1
wi ∨ ui,0 = 1
ui−1,0 ∨ ui,0 = 1
wi ∨ ui−1,j−1 ∨ ui,j = 1
ui−1,j ∨ ui,j = 1
wi ∨ ui−1,τ−1 = 1
wn−1 ∨ un−2,τ−1 = 1

, (2)

where 1 6 i 6 n− 2, 1 6 j 6 τ − 1.
Denote ui’s the partial sums ui =

∑i
j=1 wj for increasing the value of i up

to the final i = n. The dummy variable ui,j denotes the j-th digit of the i-th
partial sum ui. With sequential encoding method, the constraint

∑n
i=0 wi 6 τ

is converted into Equation (2), and it is satisfiable only when the inequality
constraint holds.

For the constraint
n∑
i=0

wi = τ , we only need to notice

n∑
i=0

wi = τ ⇔
n∑
i=0

wi 6 τ and

n∑
i=0

wi 6 n− τ.

That is, the equality constraint can be replaced with two sets of clauses, which
are obtained by slightly adjusting the parameters in (2).

2.5 NeuroSAT

NeuroSAT [SLB+18] is designed as a neural classifier to predict the satisfiability
of a SAT problem. In this section, we give an overview of NeuroSAT. For a
more complete explanation and examples, please refer to [SLB+18]. The SAT
problems are encoded as undirected graphs, and NeuroSAT operates on graphs
as a Message Passing Neural Network (MPNN) [GSR+17]. Denote P a SAT
problem with n literals composed of m clauses. The graph GP of P consists of
2n + m nodes. Each element of the n pairs of complementary literals (xi and
xi) is represented as a node. Besides, one node is distributed for each of the m
clauses. The edge between the literal xi and the clause cj exists if and only if cj
is related to xi. To clarify the relationship between xi and xi, a different type of
line is allocated between the corresponding nodes. We define the characteristic
function φ(P ) of P as

φ(P ) =

{
1, if P is satisfiable,
0, otherwise.

NeuroSAT acts as an approximation of the function φ(P ).
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In the message passing phase, the graph is embedded in a d-dimensional
space. Each node has an embedding at each time step, and NeuroSAT iteratively
updates this vector space embedding by passing messages back and forth along
the edges of the graph. Denote L(t) a 2n×d matrix where the i-th row stands for
the embedding of the i-th literal li at the time step t. Let C(t) be an m×d matrix,
and its j-th row represents the embedding of the j-th clause cj at the time step
t. The elements of L(0) and C(0) are initialised with a normal distribution. Let
M be a 2n ×m matrix, which maintains the messages about the edges in the
graph. M(i, j) = 1 if the literal li occurs in the clause cj , otherwise, M(i, j) = 0.
For encompassing the negation invariance of the SAT problem into the model,
an operation F is introduced. F is parameterised by a matrix L ∈ R2n×d, which
contains the embeddings of all literals. The function of F is to swap the row
corresponding to the embedding of xi with the row of xi. An iteration consists
of two stages:

1. each clause receives messages from all its neighbour literals and updates its
embedding, accordingly;

2. each literal refines its embedding according to the messages from its neigh-
bour clauses as well as its complementary literal.

These operations are implemented by two vanilla neural networks (Lmsg, Cmsg)
and two LSTMs [HS97] (Lu, Cu). Formally, a single iteration can be expressed
as (

C(t+1), C
(t+1)
h

)
← Cu

(
C(t)

∥∥MT · Lmsg

(
L(t)

)
, C

(t)
h

)
,(

L(t+1), L
(t+1)
h

)
← Lu

(
L(t)

∥∥F (L(t))
∥∥M ·Cmsg

(
C(t+1)

)
, L

(t)
h

)
,

where L
(t)
h ∈ R2n×d and C

(t)
h ∈ Rm×d are the hidden states of Lu and Cu,

respectively. Please refer to Figure 2 for the framework of the iteration.
After T iterations, in the readout phase, a real number y(T ) is computed as

L
(T )
∗ ← Lvote

(
L(T )

)
,

y(T ) ← mean
(
L
(T )
∗
)
,

where Lvote is a 3-layer neural network, L
(T )
∗ is a 2n-dimensional vector. Denote

the prediction of NeuroSAT for the problem P as NeuroSAT(P ). NeuroSAT(P )
depends on the value of y(T ),

NeuroSAT(P ) =

{
1, if y(T ) > 0,
0, otherwise.

NeuroSAT is trained to minimise the sigmoid cross entropy between y(T ) and
the correct label φ(P ).

The training set of NeuroSAT is composed of pairs of random SAT problems
on n variables. One problem in the pair is satisfiable, and the other one is un-
satisfiable. The two samples differ by negating only a single literal occurring in
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(t+1)

h
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M

Fig. 2: An iteration of NeuroSAT.

one clause. All the pairs satisfying these properties constitute the set SR(n). In
[SLB+18], the authors trained NeuroSAT with samples randomly drawn from

SR(U(10, 40)) =
40⋃

n=10
SR(n) and tested it on SR(40). On average, the accuracy

of NeuroSAT reaches 85%. When the network is generalised to SR(200), Neu-
roSAT can solve about 25% of them by running for more iterations of message
passing [SLB+18].

3 NeuroGIFT

It was pointed in the paper [SLB+18] that the performance of the network on
problems with more variables (e.g., SR(200)) is not very good. However, in
cryptanalysis, we are faced with problems with more than 200 variables. Table 2
lists the parameters of SAT problems for GIFT regarding different lengths. Our
SAT problems for GIFT, from 2 rounds onwards, already have more than 200
variables. Therefore, in this section, we analyse the feasibility of training Neu-
roSAT on GIFT-related SAT problems. Then, the construction of the training
set is introduced.

Table 2: Parameters of SAT problems for GIFT.
Round 1 2 3 4 5 6 7 8 9 10

#{Variables} 159 286 445 699 1017 1494 2067 2736 3358 4044

#{Clauses} 748 1433 2182 3120 4186 5569 7144 8911 10585 12387

#{Nodes} 1066 2005 3072 4518 6220 8557 11278 14383 17301 20475
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3.1 Motivations

Constricted domain of definition If there is no limitation on the system memory,
the training set of NeuroSAT can be randomly drawn from SR(U(1,∞)), which
contains all possible SAT problems in theory. The ultimate goal of NeuroSAT
is to approximate φ(P ) by transforming P into graphs. Note that there is a
one-to-one correspondence between SR(U(1,∞)) and the set G of all graphs.
NeuroSAT is trained to identify various features of all graphs. However, when
we invoke SAT solvers to realise the automatic search of characteristics used in
cryptanalysis, the SAT problems we are interested in constitute only a small sub-
class of all possible SAT problems. That is to say, we do not require a powerful
classifier as NeuroSAT. What we need in this case is a relatively weaker classifier,
which only works well on a small sub-class of SR(U(1,∞)). It is easier to train
a customised classifier on a restricted domain, intuitively, since the features of
the graphs in the sub-class are not as versatile as those in G. Enlightened by this
observation, we manage to apply NeuroSAT to identify the optimal differential
characteristic of GIFT. We name this customised classifier as NeuroGIFT.

Similar structures in graphs Although NeuroSAT is trained with small-scale SAT
problems, the authors attempt to extend its scope of application and employ it
to solve bigger problems in the test phase. The performance of the network in the
generalised case is not very good. A possible explanation is that the diversity of
graphs is affected by the number of nodes in the graphs. Thus, in the generalised
case, there may exist some features that NeuroSAT never saw during the train-
ing phase, and NeuroSAT does not know how to make decisions with these novel
features. In cryptanalysis, when we consider the search of differential character-
istics for iterative ciphers, the clauses for one round of difference propagation
are iterated several times. Thus, the graphs of SAT problems regarding different
lengths may share a similar structure. We illustrate the graphs of SAT problems
from 5 rounds to 8 rounds of GIFT in Figure 3. From Figure 3, we can identify
an apparent iterative property. The outer layers of these figures are similar, and
the graphs corresponding to the long characteristics contain more internal layers
than those related to short characteristics. This figure is to be compared with
Figure 5, which shows that the graphs for lower number of rounds appear to be
disconnected. In contrast, for 5 to 8 rounds, the graph is connected. We consider
the possibility to apply a network trained with SAT problems no more than r
rounds to predict the satisfiability of SAT problems longer than r rounds. The
intuition is that if NeuroGIFT could learn the rule of iteration in the graphs,
the generalisation would be more accessible than the case in NeuroSAT.

3.2 Construction of Training Set

In NeuroSAT, the information on the graph is involved in the matrix M . Thus,
for NeuroSAT, identifying the graph is equivalent to recognising the matrix. The
construction of SR(U(1,∞)) ensures that M may take any pattern in theory.
Nevertheless, since we restrict ourselves to the specific kind of SAT problems
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(a) 5-round SAT problem. (b) 6-round SAT problem.

(c) 7-round SAT problem. (d) 8-round SAT problem.

Fig. 3: Graphs of our SAT problems with different numbers of rounds.

in NeuroGIFT, the pattern of M is almost fixed. In the case of GIFT, only the
input/output differences and the number of rounds constitute the variations of
M . To guarantee the generality of the model, we must generate the samples,
carefully.

Similarly to the case of NeuroSAT, the training set of NeuroGIFT is com-
posed of pairs of SAT problems - one is SAT sample, and the other one is UNSAT
sample. Let kr denote the number of active S-boxes in the optimal differential
characteristic for r rounds. In all our SAT formulations, we add a constraint
stating that the number of active s-boxes must be kr. In our SAT samples, the
variables of the SAT problem corresponding to the input and output difference
are fixed to values δin, δout such that there exists a differential characteristic
with kr active S-boxes starting with δin and ending with δout. In our UNSAT sam-
ples, the corresponding variables are set to δin, δout, such that there exists no
differential trail with kr active s-boxes starting with δin and ending with δout.

To generate the SAT samples in the training set, we first generate the input
and output differences of all optimal characteristics for the corresponding number
of rounds with the SAT solver Cryptominisat54. Then, we randomly pick one pair
of input and output differences and set them as the input and output differences
of one SAT sample. In this manner, the SAT samples are created one by one.

4 https://github.com/msoos/cryptominisat
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The selection of the UNSAT sample is technical and will affect the quality of
the final classifier. First, note that the complementary set of the set O consist-
ing all optimal characteristics contains all possible characteristics overriding the
condition of the minimum number of active S-boxes as well as all impossible
characteristics, i.e., we have

U\O = P ∪ I,

where U is the set of all characteristics, P denotes the set of all possible char-
acteristics overriding the condition of the minimum number of active S-boxes
and I stands for the set composed of all impossible characteristics. A natural
way to draw the input and output differences of the UNSAT samples is to set
them as random numbers. Because every bit of a random number has an equal
chance of being a zero or a one, the Hamming weight of the random number in
nibble is usually high5. However, the input and output differences of an optimal
characteristic usually have relatively low Hamming weights. This distinction on
the Hamming weight results in that the characteristics with random input and
output differences only cover the cases in I and a subset of P. A shortcoming
of employing this kind of UNSAT samples is that NeuroSAT cannot learn com-
prehensive information in the underlying space of the training set. Just deciding
by observing the Hamming weights of the input/output differences enables it to
acquire high success probability in the training phase. Whereas it barely makes
right predictions when we feed it with UNSAT samples having low Hamming
weights in the input/output differences during the test phase.

To overcome this shortage, we should make sure that the UNSAT samples will
adequately cover all cases in the set U\O. We utilise the following procedures to
generate the r-round UNSAT samples.

1. Suppose that the optimal r-round characteristic has kr active S-boxes. We
call Cryptominisat5 to output characteristics with kr + 1, kr + 2, . . ., 16 · r
active S-boxes as many as possible6 and store these solutions into Filekr+1,
Filekr+2, . . . , File16·r, respectively.

2. Every time we are required to generate a UNSAT sample, we randomly select
an integer seed s at random and compute the value c = s mod (16r + 1).
If kr < c 6 16r, we sample a pair of input and output differences from
the Filec and set them as the input and output differences of the UNSAT

sample. Otherwise, the UNSAT sample is given with random input and output
differences.

In this way, we guarantee that the UNSAT samples are almost uniformly dis-
tributed over the set U\O. In the training phase, the network may ‘see’ different
kinds of counterexamples, which include not only the characteristics with con-
tradictions but also characteristics with a different number of active S-boxes. It

5 The probability that any nibble of a random number equals 0x0 is 1/16.
6 Since the solver has limited computation power, we cannot obtain all solutions.

However, with the observation on the outputs, we think these solutions are enough
to ensure the versatile of the sample space.
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tries to learn the features in these graphs, and evaluate its learning outcome in
the test phase.

Note that we do not take into account the differential effect: there may exist
differentials for which the best differential characteristic has a relatively low
probability, but that over all possible differential characteristics, have a high
probability. However, we verify (using CryptoMiniSat), for each of our UNSAT
samples, that the best corresponding differential characteristic is not optimal.

We present the three versions of the corresponding classifier, NeuroGift.

3.3 Three Versions of NeuroGIFT

Our experiments resulted in three versions of NeuroGift :

– NeuroGift-V1 is the baseline model. The samples are generated as described
in Sect. 3.2.

– NeuroGift-trunc is designed to verify whether NeuroGift-V1 actually learns
the resolution of the SAT problems. Hence, the variables corresponding to
the objective function are removed from the SAT problems.

– NeuroGift-V2 is our best classifier. We keep the input and output differences
in the SAT and UNSAT samples of one pair have same number of non-zero 4-
bit nibbles. By forcing the SAT and UNSAT samples to be more similar, we
hope to force NeuroSat to learn the actual resulution of the formula.

3.4 Parameter Setting

After each epoch of training, we evaluate the performance of the classifier on the
training set. Let T denote a classification as positive, F denote a classification as
negative, and let X ∈ {T, F}, Y ∈ {T, F} respectively represent the prediction
made by the classifier, and the ground truth. For instance, TT denotes num-
ber of samples the classifier correctly classified as positive, whereas TF denotes
the number of samples classified as positive while actually being negative. The
success probability (or accuracy) PS of the classifier is

PS =
TT + FF

TT + TF + FT + FF
.

This quantity expresses the fraction of the samples that are correctly classified.
There are many tunable parameters for NeuroSat, which affect the performance
of the network. It is observed that different parameters have different levels of
influence on the model. We list those with non-negligible influences.

– The type of learning rate decay - There are three ways to modify the learning
rate during the training phase, which are no decay, polynomial decay and
exponential decay. Usually, we are suggested to anneal the learning rate
over time in training deep networks, since it may help us avoid wasting
computation bouncing around chaotically with little improvement for a long
time. However, when to decay the learning rate and how to decay it are
somewhat difficult to determine because NeuroSAT is a very complicated
network. So, we take a no decay style in all experiments.
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– Learning rate α - Adjusting the learning rate is a little technical. A high
learning rate will make the system unstable, while it takes the model quite
a long time to converge under a low learning rate.

– `2 weight - This term, which enables us to implement `2 regularisation, is
used in the objective function. The intention of exploiting `2 regularisation
is to escape overfitting and enhance the generalisation ability of the model.

– Clip value - It is used to clip the gradient, and this countermeasure allows
us to ensure the gradient within a reasonable scale. With this method, we
can effectively prevent the occurrence of gradient explosion, which is often
encountered in training a deep network.

The memory complexity of NeuroSAT is related to the number of iterations
T and the number of nodes in one batch. Increasing the number of iteration
T , which is the depth of the deep network, improves the performance of Neu-
roSAT, potentially. Increasing the number of nodes in the batch will accelerate
the training phase. In NeuroGIFT, we must allocate more nodes in the batch
since the problems under consideration involve much more variables and clauses
than those in NeuroSAT. Thus, the value of T remains unchanged in our case,
that is, T = 26.

4 Experimental Results

All our experiments are performed with classifiers trained on problems between
1 and 6 rounds. In additional experiments, we evaluate the generalisation ability
of these classifiers on problems from 7 to 9 rounds. We give the final accuracy
of our classifiers with the following setting: The training and test set composed
of 4 to 6 rounds samples. More specifically, we train the networks on 600 pairs
of problems, composed of 200 4-round problems, 200 5-round problems, and 200
6-round problems. The test set is composed of 100 4-round problems, 100 5-
round problems, and 100 6-round problems. We use a learning rate of 2× 10−5,
`2 weight of 10−7 and clip value: 0.5.

4.1 NeuroGift-V1

Our first set of experiments directly applies the training method described in
the previous section, and correspond to the classifier NeuroGift-V1.

In preliminary experiments, we use SAT problems varying from 1-round to
6-round to train and evaluate the model. We observe that, while the test results
are good for problems from 1 to 3 rounds, they become heavily biased for the
4 to 6-rounds samples. For the 6-round samples, the network almost regards all
SAT samples as UNSAT samples.

Our hypothesis is that the low-round samples have a negative effect on the
accuracy of the resulting classifier. Indeed, the structure of the NeuroSat graph
for these samples is different from the general structure for more rounds. This
different structure is illustrated by Figure 5 (1- and 2-round graphs) and Figure 3
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Fig. 4: Confidence of the NeuroGift-V1 trained with pairs from 1 to 6 rounds, in
blue for the SAT samples, and in red for the UNSAT samples.

(5- to 8-round graphs). In particular, the graphs for shorter problems appear to
be disconnected, as opposed to the graphs for larger problems (4 and more
rounds). We conjecture that these disconnected graphs may lead the network to
learn biased solving strategies.

(a) 1-round SAT problem. (b) 2-round SAT problem.

Fig. 5: Graphs corresponding to SAT problems with short lengths.

To verify our conjecture, we use a training set composed of problems varying
from 4-round to 6-round to train the network. We evaluate the classifier on a
test set with 60 pairs varying from 4-round problems to 6-round problems, and
the levels of confidence of the network for these problems are shown in Figure 6.
Note that this training set and the one used to train the classifier in Figure 6
have the same amount of samples, but the scale of the vertical axis is enlarged.

It therefore appears that, for the basic classifier NeuroGift-V1, the training
set with problems on 4 to 6 rounds grants better results.



NeuroGIFT : Using a Machine Learning Based Sat Solver for Cryptanalysis 15

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−15

−10

−5

0

5

10

15

2 4 6 8 10 12 14 16 18 20

Pairs of 4−round problems

C
on

fid
en

ce

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−15

−10

−5

0

5

10

15

2 4 6 8 10 12 14 16 18 20

Pairs of 5−round problems

C
on

fid
en

ce

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−15

−10

−5

0

5

10

15

2 4 6 8 10 12 14 16 18 20

Pairs of 6−round problems

C
on

fid
en

ce

Fig. 6: Confidence of the model on the shrunken test set.

The final test accuracy, in the setting described at the beginning of the sec-
tion, of the NeuroGift-V1 classifier, is 97%. From this classifier, we attempt to
extract a satisfiable assignment from the SAT samples, following the methodol-
ogy presented in the NeuroSat article. However, we were not able to extract a
solution, leading us to wonder whether our model actually learns to solve the
SAT problem. The corresponding experiments are presented in the next section.

4.2 NeuroGift-trunc

One of our attempts at extracting a solution is illustrated on Figure 7, through

the vectors L
(T )
∗ ’s related to different T ’s (1 6 T 6 30). The positive values are

represented in red while the negative values are displayed in blue. The darker
the colour, the larger the absolute value of the number.

An unexpected phenomenon can be observed : the variables within the black
frame, which are exactly the set of variables used to count the number of active
SBoxes, seems to be irrelevant to the decision of the classifier. The same pattern
can be observed for SAT and UNSAT samples.

Thus, we design NeuroGift-trunc to test whether NeuroGift-V1 really needs
this part from the SAT problems. This version is different from NeuroGift-V1 in
the construction of the samples. The setting of input and output differences for
the SAT and UNSAT samples is the same as the case of NeuroGIFT-V1. However,
for all samples, we delete the auxiliary variables and clauses corresponding to the
objective function. Thus, SAT problem now encodes the question of whether the
characteristic with the input and output differences is possible or not, whereas
the labels are still related to the objective function.

The final accuracy of this model is 99%: NeuroGift-trunc performs even bet-
ter than NeuroGift-V1. This is very counter-intuitive, as the UNSAT samples
are not strictly unsatisfiable: the model does not really describe what a satis-
fiable sample is anymore. However, NeuroGift-trunc is able to predict the cor-
responding artificial labels. We conjecture that the very structure of the input
and output difference may give enough information for the classifier to succeed
solely based on the corresponding litterals. We therefore design a new model,
NeuroGift-trunc, where the training set is more carefully designed to eliminate
this structure.
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T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

T = 11 T = 12 T = 13 T = 14 T = 15 T = 16 T = 17 T = 18 T = 19 T = 20

T = 21 T = 22 T = 23 T = 24 T = 25 T = 26 T = 27 T = 28 T = 29 T = 30

(a) UNSAT sample.

T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

T = 11 T = 12 T = 13 T = 14 T = 15 T = 16 T = 17 T = 18 T = 19 T = 20

T = 21 T = 22 T = 23 T = 24 T = 25 T = 26 T = 27 T = 28 T = 29 T = 30

(b) SAT sample.

Fig. 7: Propagation of the vector L
(T )
∗ .

NeuroGift-V2 In general, differential characteristics with an optimal number
of active SBoxes are such that their input and output difference have a given
structure. Typically, the number of non-zero nibbles in these differences is low.
While our experiments, decribed in Appendix B, did not provide definitive ev-
idence that NeuroGift-V1 makes decisions by counting the number of non-zero
nibbles of the input/output differences, we still wonder its performance after
removing this feature from the training set. In particular, making the number of
non-zero nibbles similar for the SAT and UNSAT samples may force the classi-
fier to learn more specialized resolution features. The resulting classifier is called
NeuroGift-V2. The innovation lies in the construction of the UNSAT samples. In
one pair of samples, we ensure that the Hamming weights of the input/output
differences of the UNSAT and SAT sample are equal, which is accomplished by the
following steps.

1. We randomly sample a pair of input and output differences corresponding
to an r-round optimal characteristic. Then, the Hamming weight hin of the
input difference and the Hamming weight hout of the output difference are
computed, respectively.
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2. Two sets of integers {pin0 , pin1 , . . . , pinhin−1} and {pout0 , pout1 , . . . , pouthout−1} sat-
isfying the following conditions are generated:

– pini and poutj are random positive integers no more than 16;

– pini 6= pinj for all 0 6 i < j 6 hin − 1;
– pouti 6= poutj for all 0 6 i < j 6 hout − 1.

pini ’s and poutj ’s point out the non-zero nibble positions in the input and
output differences of the UNSAT sample.

3. The positions of the input (resp. output) difference lie in the set {pin0 , pin1 , . . . , pinhin−1}
(resp. {pout0 , pout1 , . . . , pouthout−1}) are set with random non-zero 4-bit values.
Moreover, the remaining positions are fixed as 0x0.

With this method, we eliminate the effect of the Hamming weight on the training
set.

On the same test set as the other 2 variants, NeuroGift-V2 achieves 100%
accuracy. However, we were still not able to extract a solution from the variable
embeddings.

4.3 Generalisation to More Rounds

The results of the three models are consistent, and the best test accuracies we
obtained are respectively 97%, 100% and 99%. For comparison, the results of
the original NeuroSat article are given in Table 1. These results are encouraging,
and seem to give a positive answer to our main question, which was to deter-
mine whether NeuroSat could perform better on sets of problems sharing similar
structures, rather than random problems.

In essence, with only 600 pairs, our models were able to reach as much as
100% accuracy, whereas the best NeuroSat instance presented in the original ar-
ticle only reached 85% accuracy, despite being trained on millions of pairs, and
studying problems with over 15 times less variables. For applications in cryptog-
raphy, the ability of a neural network to make predictions for more rounds than
it was trained for is very important. In particular, while solving the problem for a
few rounds might be easy, it generally becomes exponentially harder as the num-
ber of rounds increases. Therefore, when applying the techniques of NeuroGift to
other ciphers, we will not necessarily be able to generate an appropriate training
set for a high number of rounds efficiently.

In order to evaluate the generalisation abilities of NeuroGift, we pick our
best model (NeuroGift-V2), and tune its parameters for better results. After
performing control experiments, the setting that resulted in the best generalisa-
tion was the following. We train the model on 500 pairs of problems from 1 to
5 rounds (100 of each), with learning rate 10−5, l2 weight : 10−9, and clip value
: 0.5. Under this setting, we evaluated the generalisation of NeuroGift-V2 on a
different test set for each number of rounds, from 6 to 10. The resulting test
accuracies are given in Table 3.

The generalisation accuracy remains very close to 100%, even for 10 rounds
problems, even though 10-rounds problems have 4 times more variables (4044)
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Rounds 6 7 8 9 10

Accuracy 100% 100% 99% 99% 98%

Table 3: Generalisation ability of NeuroGIFT-V2.

compared to the 5-rounds samples seen in training. As a comparison, in the orig-
inal NeuroSat article, the accuracy dropped to approximately 40% in a similar
setting (going from at most 40 variables to 160), even though the number of
message passing iterations was increased from 26 to 1000. In contrast, we re-
stricted ourselves to 26 iterations. In additional experiments, we observed that
NeuroGift-V1 and NeuroGift-trunc did not generalise as well as NeuroGift-V2.
In particular, the accuracy of NeuroGift-trunc drops to below 90% for 9 rounds.
This could be an indication that NeuroGift-V2 actually learns something closer
to the actual resolution of the SAT problem, even though we were not able to
completely confirm it.

5 Conclusion

Related Work and Extentions. Following the publication of NeuroSat, a wide
range of articles proposing extentions were published. We believe the most
promising one for our application is the PDP framework. The PDP framework
[AMW19], which is an extension of the the CircuitSAT framework [AMW18],
belongs to the deep learning SAT solver family as NeuroSAT [SLB+18]. But
whereas NeuroSAT is a supervised framework, the work of Amizadeh et al. takes
the advantage of the probabilistic inference formulation in order to propose an
unsupervised setting. In fact, they introduce a differential expression of the en-
ergy function that they want to minimize. With this formulation of the problem,
the work in [AMW19] outperforms the NeuroSAT model. Moreover, the work
allows three different times for learning (Propagation Decimation and Predic-
tion) which leads to an hybrid model. In fact, the three stages are modular: they
can be a fully a neural embedding block or they can be replace by a traditional
non trainable block (like the Survey-propagation guided decimation algorithm
[MMM09] as propagator block for example). However, despite a highly paral-
lelizable model, the training and the inference is quite long (in comparison to
NeuroSAT) when the number of variable of the SAT problem growth. This is
certainly due to the combination of the fact that the model has twice more
embedding than NeuroSAT and the unsupervised setting. Finally, the second
shortcoming of the model is that it is not clear how the model can label an
UNSAT problem.

Discussion of our Results The use of specialized solvers based on machine learn-
ing, rather than classical solvers, seems to be a promising research direction.
The reason why boils down to the distinction between genericity and speciality:
a solver that only aims at solving cryptanalysis problem does not need to be



NeuroGIFT : Using a Machine Learning Based Sat Solver for Cryptanalysis 19

good at unrelated problems, and may therefore perfom better on very specific
problems. The main limitation to the use of such solvers, if the scaling issues
are solved, will be their approximate nature. A solver such as NeuroGift gives a
likelyhood for the presence of a characteristic with k active S-boxes, as opposed
to a traditional solver that would give an exact answer. While an approximation
is, in itself, useful (after all, using the best differential characteristic is, in itself,
an approximation to the resistance of a cipher against differential attacks), we
believe further research should consider integrating machine learning solvers as
heuristics to drive the search of classical solvers. This approach has proven ef-
ficient for generic SAT solving [SB19]. We believe combining machine learning
based approaches with state-of-the-art solvers will enable progress on problems
that are still difficult for classical solvers, such as cryptanalysis problems on hash
functions.

Conclusion. In this article, we present models for the resolution of differential
cryptanalysis problems with NeuroSat. We show that, when trained on a re-
stricted set of problems, rather than the set of all SAT problems, the resulting
classifier NeuroGift scales to significantly more variables than the original Neu-
roSat. However, more experiments are required to confirm that NeuroGift is able
to determine the values of the variables, rather than just classifying based on
some hidden structure in the input and output differences. In particular, future
works includes the design of a model where the structure of the UNSAT samples
is even closer to that of the SAT sample, in order to force NeuroGift to learn the
actual resolution. For instance, we could set the input and output differences of
the UNSAT samples to those of two different SAT samples.

While the results presented in this paper are encouraging, they do not adress
a fundamental limitation of NeuroSat : the size of the generated graph. For 10
rounds, the graph already has over 20000 nodes. As a comparison, on our orig-
inal benchmarking GPU (GTX 970), we were not able to generate the graph
for more than 7 rounds (11278 nodes) without exhausting the graphic card’s
memory. Therefore, for a broader application of these methods on harder crypt-
analysis problems, a solution must be found to restrict the size of the graph. The
experiments performed with NeuroGift-trunc seem to be a promising option :
for 10 rounds, the size of the graph is only 7616 nodes. On the other hand, the
generalisation capabilities of NeuroGift-trunc are not on par with NeuroGift-V2,
so further improvements are needed. A potentially promising alternative left for
future work would be to merge NeuroGift-V2 and NeuroGift-trunc into a single
model, with the training set constraints of NeuroGift-V2, and the truncation of
the objective function from NeuroGift-trunc. Our hope is that the results pre-
sented in this paper lay the groundwork for a larger scale application of machine
learning based solvers to cryptanalysis problems. From these first experimen-
tal results, future research directions include studying primitives and number of
rounds which are more challenging to for classical dedicated solvers.
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Appendix

A Clauses for the S-box of GIFT

The 36 clauses are provided as follows



x0 ∨ x1 ∨ x2 ∨ x3 ∨ y2 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y1 ∨ y2 = 1
x0 ∨ x1 ∨ x2 ∨ y0 ∨ y1 ∨ y2 = 1
x1 ∨ x2 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x1 ∨ x2 ∨ x3 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y1 ∨ y2 ∨ y3 = 1
y0 ∨ w = 1
y1 ∨ w = 1
y2 ∨ w = 1
y3 ∨ w = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y2 = 1
x1 ∨ x2 ∨ x3 ∨ y2 ∨ y3 = 1
x1 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x2 ∨ x3 ∨ y2 ∨ y3 = 1
x0 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y3 = 1
x1 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x1 ∨ x2 ∨ x3 ∨ y2 ∨ y3 = 1
x1 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x1 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ w = 1
x0 ∨ y0 ∨ y1 ∨ y2 ∨ w = 1
x1 ∨ y0 ∨ y1 ∨ y3 ∨ w = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y1 ∨ y3 = 1
x0 ∨ x1 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x2 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y0 ∨ y1 ∨ y3 = 1
x1 ∨ x2 ∨ x3 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y0 ∨ y1 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y0 ∨ y1 ∨ y3 = 1

.



NeuroGIFT : Using a Machine Learning Based Sat Solver for Cryptanalysis 23

B Impact of the Samples with Low Hamming Weight

In order to evaluate the impact of samples where the difference has low hamming
weight, we plot the confidence of the network after each message passing iteration
during the test phase of NeuroGift-V1, while keeping track of the structure of the
input and output difference. Figure 8 illustrates the confidence of the network
for 6-rounds samples. We can observe that the curves for all SAT samples of the
same length are similar. But the curves of the UNSAT samples are different. We
think that two parameters result in the difference. One reason is the Hamming
weight of the input/output differences. Another one is the differential effect. We
analyse the 60 pairs of samples in the test set. The Hamming weight of the UNSAT
samples are provided in the figures. The samples with the same Hamming weight
are illstrated with same color. It can be found that the curves with same color are
similar. An interesting example is the UNSAT sample of the 20-th pair of 6-round
samples, this is the unique sample that is wrongfully classified by the network.
Firstly, the Hamming weight of the input/output differences of this sample is 4,
which is even smaller than the value of the optimal trail. Another fact is that
the corresponding differential only have one trail with 16 active S-boxes. Since
NeuroGift-V1 is designed to identify the topology structure of the figure, the
dominant trail property causes the network to make the wrong decision.
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Fig. 8: Confidence for 6-round Samples. The horizontal axis corresponds to the
number of iterations, and the vertical axis is the value of y(T ). The circles show
a characteristic feature of the UNSAT samples.


