
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.1 JANUARY 2009
1

PAPER Special Section on Cryptography and Information Security

A Strict Evaluation Method on the Number of Conditions for
SHA-1 Collision Search

Jun YAJIMA †a), Member, Terutoshi IWASAKI ††∗, Yusuke NAITO†††∗∗, Yu SASAKI †††∗∗∗,
Takeshi SHIMOYAMA †, Thomas PEYRIN††††, Nonmembers, Noboru KUNIHIRO †††,

and Kazuo OHTA †††, Members

SUMMARY This paper proposes a new algorithm for evaluating the
number of chaining variable conditions(CVCs) in the selecting step of a
disturbance vector (DV) for the analysis of SHA-1 collision attack. The
algorithm is constructed by combining the following four strategies,“Strict
Differential Bit Compression”, “Di fferential Path Confirmation for Rounds
2 to 4”, “DV expansion”and“Precise Counting Rules in Every Step”that
can evaluate the number of CVCs more strictly compared with the previous
approach.
key words: Hash Function, Collision Attack, SHA-1, Disturbance Vector

1. Introduction

SHA-1 has been a widely used scheme since it was issued
by NIST as a Federal Information Processing Standard in
1995 [1]. Recently, many researches have discussed colli-
sion search attacks on SHA-1 [2]–[6].

In 2005, Wang et.al. succeeded in attacking the full
80 step SHA-1 with 269 complexity [4]. They have adopted
the multi-block collision technique introduced by [2], [7],
and adjusted the differential path known by then in the first
round (step 1 to step 16) to another possible differential path.
In the attack, they used local collisions. Local collision (LC
in short) is collision within 6-steps differential path which
is independently introduced by Chabaud and Joux [8] and
Wang et al.[9]. In order to find appropriate combination
of LCs for SHA-1, the disturbance vector (DV) (introduced
in [8], [9]) is used. After that, the attack complexity was
reduced to 261 ∼ 262 by improving message modification
techniques in [5], [6].

Roughly speaking, collision search [4] consists of the
following two phases; preparing phase and searching colli-
sion phase.
Preparing Phase

Manuscript received March 21, 2008.
†The author is with FUJITSU LABORATORIES LTD.,

Kawasaki-shi, 211-8588 Japan.
††The author is with Chuo University, Bunkyo-ku, 112-8551

Japan.
†††The University of Electro-Communications, Chofu-shi, 182-

8585 Japan
††††Versailles Saint-Quentin-en-Yvelines University, France, and

Advanced Industrial Science and Technology(AIST), Chiyoda-ku
101-0021 Japan.

∗Presently, the author is with Nomura Research Institute, Ltd.
∗∗Presently, the author is with Information Technology R & D

Center, Mitsubishi Electric Corporation.
∗∗∗Presently, the author is with NTT Information Sharing Plat-

form Laboratories, NTT Corporation.
a) E-mail: jyajima@labs.fujitsu.com

Stage(1) Select a Disturbance Vector(DV) and obtain the
message differentials∆M = M′ − M.

Stage(2) Locate differential paths which are the differences
between two sequences of chaining variables yielded
by the calculation ofH(M) andH(M′). And derive the
sufficient conditions of chaining variables for the result
of H(M) = H(M′).

Stage(3) Determine message modifications (MM) using in
Stage(4) so thatM satisfies all the chaining variable
conditions (CVCs) and message conditions efficiently.
And evaluate the complexity of collision search.

Searching Collision Phase

Stage(4) SearchM using MM which satisfies all the chain-
ing variable conditions (CVCs) and message condi-
tions

The complexity of the above collision search attack is deter-
mined by the number of CVCs in the differential path which
are not satisfied by Message modification(MM).

By the recent researches, the stages (1)-(4) in the above
attack procedure were improved. On (2), an automated path
search algorithm of differential paths was discussed in [10]–
[12]. On (3), extending the applicable steps of MM from
step 21 [4] to step 25 in [6] reduced the complexity of the
collision search of SHA-1 from 269 to 261. And also [3],
[13], [14] have an effect on the reduction of complexity of
the collision search of SHA-1. On (1), only Wang’s method
described in [4] has been proposed. After many researches,
De Cannìere et al. found a colliding message pair against
reduced SHA-1 with 70 steps[15]. And recently, they have
started the collision search project on their web page[16].

In the preparing phase on collision attack, the following
properties are important

i Less #{total CVCs in step 17-80}
ii Many #{satisfiable CVCs by MM in step 17-80}

iii Can find a differential path
iv Much message freedom for the collision search process

In this paper, we focus on the stage(1) in the preparing
phase. At the stage (1), #{total CVCs in step 17-80} (i)
should be evaluated from an analyzing DV. This number af-
fects directly the total complexity of collision search. We
found that the previous evaluation method on (i) have used
rough evaluation. In order to find much effective DVs, we
propose a strict evaluation method on (i) by improving the

2
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.1 JANUARY 2009

previous method. we will point out some possibilities for
improving Wang et al.’s counting rules, described in [4],
and we will propose a new evaluating algorithm, which con-
sists of“Strict Di fferential Bit Compression”, “Di fferential
Path Confirmation for Rounds 2 to 4”, “DV expansion”and
“Precise Counting Rules in Every Step”. Then we imple-
ment the algorithm and estimate #CVCs for an analyzing
DV corresponding to the step number of SHA-1.

2. Description of SHA-1

SHA-1[1] input is an arbitrary length messageM, and out-
put is 160-bit dataH(M). The message is padded to realize a
multiple of 512 bits. Padded messageM is divided into sev-
eral messagesMi each 512 bits long (M = (M1||M2||...||Mn)).
These divided messages are input to the compression func-
tion. The structure of the compression function is as fol-
lows. In this paper, we call the calculation in a single run
of the compression function “1 block”, and we omit the de-
scription of “mod 232”. The compression function has 80
steps. Steps 1-20, 21-40, 41-60, and 61-80 are called the
first, second, third and fourth rounds, respectively.

Step 1 Divide the input messageM j into 32 bit messages
m0,m1, ...,m15.

Step 2 Calculatem16 to m79 by mi = (mi−3 ⊕mi−8 ⊕mi−14⊕
mi−16)≪ 1.

Step 3 Calculate chaining variablesai ,bi , ci ,di ,ei in stepi
by the following procedures fori = 1,2, ..., 80
ai = (ai−1 ≪ 5) + f (bi−1, ci−1,di−1) + ei−1 + mi−1 +

ki−1,bi = ai−1, ci = bi−1≪ 30,di = ci−1,ei = di−1

Step 4 (a0 + a80,b0 + b80, c0 + c80,d0 + d80,e0 + e80) is the
output of the compression function.

a0,b0, c0,d0,e0 andki are defined in [1]. After the first
block,a0,b0, c0,d0,e0 are the output values of the compres-
sion function in the previous block. Functionf (b, c,d) is a
Boolean function defined in each round, (b∧ c) ∨ (¬b∧ d)
for the first round,b ⊕ c ⊕ d for the second and the fourth
rounds and (b∧ c) ⊕ (c∧ d) ⊕ (d∧ b) for the third round.

3. Collision Search for SHA-1

3.1 Overview of a Collision Attack of SHA-1

Collision search procedure takes the following approach by
two phases[4].
Preparing Phase

Stage(1) Select a Disturbance Vector(DV) and obtain the
message differentials∆M = M′ − M.

Stage(2) Locate differential paths which are the differences
between two sequences of chaining variables yielded
by the calculation ofH(M) andH(M′). And derive the
sufficient conditions of chaining variables for the result
of H(M) = H(M′).

Stage(3) Determine message modifications (MM) using in
Stage(4) so thatM satisfies all the chaining variable

conditions (CVCs) and message conditions efficiently.
And evaluate the complexity of collision search.

Searching Collision Phase

Stage(4) SearchM using MM which satisfies all the chain-
ing variable conditions (CVCs) and message condi-
tions

In the proparing phase, we have to set some bitwise
conditions on messagesmi and chaining variablesai , bi , ci ,
di , ei . These conditions on messages and on chaining vari-
ables are calledmessage condition(MC in short) andchain-
ing variable condition(CVC in short), respectively. The
number of CVC (#CVC in short) impacts the complexity of
the collision search of SHA-1.

For CVCs up to step 16, the technique ofbasic mes-
sage modification(BMM in short) can be applied, so we
can ignore these conditions. With some additional effort,
we can modify the messages so that conditions after step 16
also hold. This technique is calledadvanced message mod-
ification (AMM in short). Roughly speaking, if the number
of CVCs that will not be applicable for neither BMM nor
AMM is n, then the complexity of collision search can be
estimated by 2n by using a naive collision search procedure.

In present, Wang et al. have finished (3) in the above
procedure. And they have pointed out that the complexity
needed for find a collision is 269 in [4]. In [6], they reduced
the complexity from 269 to 261 ∼ 262 by changing a DV.
However, no one still find a colliding message pair because
the complexity is too much for present computers.

Though their works are known as the best results for
finding a collision, the stages (1)-(4) have not been de-
scribed in detail in [4]. Many researchers are trying to clar-
ify the detail and trying to improve each step. On (2), an
automated path search algorithm of differential paths was
discussed in [10]–[12]. On (3), message modifications were
discussed in [3], [13], [14]. On (4), reduced 70-step SHA-1
was analyzed in [15]. And they found a collision of reduced
SHA-1. On (1), only Wang’s method has been described in
[4] for 80-step full SHA-1.

3.2 Complexity for Finding a Collision of
SHA-1

The complexity needed for find a collision is determined by
the following equations.

Complexity ≈ 2#{essentialCVCs}

#{essentialCVCs} = #{total CVCs in step 17-80}
− #{satisfiable CVCs by MM in step 17-80}
In order to find a colliding message pair, the following

properties are also important.

i Less #{total CVCs in step 17-80}
Mainly depend on the stage (1) (in the procedure de-
scribed in the previous subsection.)

ii Many #{satisfiable CVCs by MM in step 17-80}
Mainly depend on the stages (1), (2) and (3).

YAJIMA et al.: A STRICT EVALUATION METHOD ON THE NUMBER OF CONDITIONS FOR SHA-1 COLLISION SEARCH
3

Can find a
D iffe r e nt ial P at h

M u c h m e s s ag e
fr e e do m

L e s s # CV Cs
fo r r o u nd 2 -4

M any S at is fiab l e
CV Cs o f al l

Fig. 1 Trade-off between the properties for collision search

iii Can find a differential path
Mainly depend on the stages (1) and (2).

iv Much message freedom for the collision search process
Mainly depend on the stages (1), (2) and (3).

These properties are in the trade-off relations†. How-
ever, at stage (1) in the attack procedure, it is very difficult to
select the most effective disturbance vector by considering

all the above properties. The reasons are described be-
low.

• Each property depends on the results of the stages
(1),(2) and (3). So some properties can be evaluated
after the stage (3) only.

• The stage (2) consumes computer power a lot. So we
cannot execute (2) many times.

• The execution order of the stages (1)-(4) is optimized.
Changing the order may cause bad effect to collision
attack.

By these reasons, Wang et al. only evaluate #{total
CVCs in step 17-80} in the above equations at stage (1).
And after stage (3), they consider all properties. However,
they have used a rough evaluation method that evaluates
#{total CVCs in step 17-80} from a DV analyzed at stage
(1). Therefore, much effecttive DVs may not be found yet.
In this paper, we focus on the evaluation algorithm of #{total
CVCs in step 17-80} from a DV, and propose more strict
evaluation method.

4. Previous Works on Researching Disturbance Vector

4.1 Local Collision and Disturbance Vector

It is known that collisions within 6-step that can start at any
step i can be constructed on SHA-1, and real collision at-
tacks succeeded based on this collisions. This kind of colli-
sions is calledlocal collision (LC in short). An example of
local collision is shown in Table 1.

Sequences of local collisions joined together are also
differential paths for SHA-1. They can be specified by the
vector of 32 bit elements (x0, ..., x79) calleddisturbance vec-
tor (DV in short) it corresponds to the message differential
on the starting steps of the local collisions.

†Some trade-off relations are considerable in the collision
search. One of them are described in [15].

Table 1 An Example of Local Collision

Stepi xi−1 mi−1 ai bi ci di ei

i 00000001 0 0
i+1 5 0
i+2 0 30
i+3 30 30
i+4 30 30
i+5 30

The element in the columns onxi is a hexadecimal number. Each element
e (ex. 5) in the columns ofmi ,ai · · · ,ei means number±2e (ex.

00000020).

4.2 Disturbance Vector Search by Wang’s Approach

This subsection shows the approach used to derive DVs as
proposed by Wang et al.[4].

First, set the search space described below. We call this
search space as “rectangle range”.

• The search space of Wang’s approach (rectangle range)
{xi = (0, . . . , 0, xi,1, xi,0)|i = t, . . . , t + 15}
wherexi, j is a bit andt = 0, . . . , 64 (65·232 possibilities
in total), which is a part of DV in 16-step.

After that, evaluate #CVC corresponding to a DV by using
the following “Wang’s Calculation Algorithm of #CVC”.

Wang’s Calculation Algorithm of #CVC

1. Each element in rectangle range (a set of a vector cor-
responding 16 steps) is expanded into the vector of
80 steps using SHA-1 message expansion. Then DV
{x0, . . . , xt, . . . , xt+15, . . . , x79} is generated.

2. Reduce the Hamming weight (HW) of each DV by us-
ing the special counting rule 1.

3. Estimate a number of conditions in rounds 2-4 by using
the counting rules in Table 2

4. Select a DV with the lowest #CVCs.

Table 2 Rules of Wang et al. for counting #CVCs in round 2-4

step disturb in disturb in comments
bit 2 other bits

19 0 1 Fora21

20 0 2 Fora21,a22

21 1 3 Conditiona20 is “truncated”
22-36 2 4

37 3 4
38-40 4 4
40-60 4 4
61-76 2 4

77 2 3 Conditions are “truncated”
78 2 2 starting at step 77.
79 (1) (1) Conditions for step 79,80
80 (1) (1) can be ignored in analysis.

[Special counting rules by Wang et al.[4]]

1. If two disturbances start in both bit 2 and bit 1 in the same step, then
they only result in 4 conditions.

2. For Round 3, two consecutive disturbances in the same bit position
only account for 6 conditions (rather than 8). This is due to the prop-
erty of the MAJ function.

4
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.1 JANUARY 2009

We note that the original Wang’s Algorithm has a step
for restricting of DVs which have low HW†† in rounds 2 to
4 between the step 2 and 3 in the above algorithm. Since,
the complexity of counting the #CVCs for all DVs is not so
large, we need not restriction by considering the HW. Then
we are comparing the #CVCs among all possible DVs in our
approach described from the following section.

5. Proposed method

5.1 Problems of the previous method on the counting
#CVC from one DV

On the approach of the DV search by Wang et al. described
in Section 4, we found five problems in “Wang’s Calculation
Algorithm of #CVC”. We discuss the details of the problems
and introduce the countermeasures.
Problem1.Rough Application of Special Counting Rule1
Wang et al. reduce the HW of DV by the special counting

rule 1. This rule can be stated as “If two local collisions
start in both bit 1 and bit 0 in the same step, then they result
in only 4 conditions.” They consider only the case of bit 1
and 0, however, this technique can also be applied to other
consecutive bits.
Problem2.Inaccurate Counting Rules
In the counting rules, Wang et al. evaluate that the #CVCs
for LCs that cross from 3rd round to 4th round (step 57 to
60 in bit position 1) is 4. However, these evaluations are not
correct. They count more #CVCs than needed.
Problem3.Not all cases of addition in MSB considered
In SHA-1, the #CVCs is reduced if addition is done in MSB.
This case occurs if LCs start in round 2 or 4 from bit position
j, (j = 1,31). However, their counting rules consider only
the case ofj = 1.
Problem4.Rough Application of Special Counting Rule2
In the method of Wang et al., Special Counting Rules 2

takes account of the property of the functionf in 3rd round,
and reduces the #CVCs in a special case. However, there are
many other such properties forf , and then, their counting
rules don’t cover all the properties off .

5.2 The Proposed Method

As we discussed in the previous section, the DV search by
Wang et al. contains five problems. We use four new tech-
niques “Strict Differential Bit Compression”, “Differential
Path Confirmation for Rounds 2 to 4”, “DV expansion” and
“Precise Counting Rules in Every Step” to solve the prob-
lems. Our algorithm is described as Algorithm1-3. In our
algorithm, we accurately count the #CVCs from a DV by
using the four techniques. The detail of our algorithm is
described below.
††They claim that 27 is a reasonable threshold since three CVCs

are needed, on average for each local collision so the total success
probability becomes 2−81 or worse, which is worse than the bound
of the attack complexity derived from birthday paradox (2−80).

Table 3 Example of Strict Differential Bit Compression

#CVC by Wang et al.’s counting technique
Stepi xi−1 ai bi ci di ei #CVC
18 e000000029,30,31 3
19 0 29,30,31 3
20 0 27,28,29 3
21 0 27,28,29 3
22 0 27,28,29 0
23 0 0

total 12

#CVC by our technique
Stepi xi−1 ai bi ci di ei #CVC
18 e0000000 29 1
19 0 29 1
20 0 27 1
21 0 27 1
22 0 27 0
23 0 0

total 4

(1) Strict Differential Bit Compression

When consecutive “1”s exist in DV in the same step, we
treat this DV as having only “1” exists at the lowest position
in the consecutive bits. For example, we treate0000000 as
20000000. As we described in Problem 1 in Section 5.1,
Wang et al.’s “Special Counting Rule 1” addresses only the
least significant bits. In order to identify the least #CVCs
strictly, we apply the compression technique to the other bits
yielding the compressed DV. As a result, we can count only
essential differential bits given by DV. This solves Problem
1. However, DV compression is impossible if consecutive
bits exist between the bit position 1 and 2, or 26 and 27
because there are 30-bit and 5-bit rotation shifts in the SHA-
1 compression function.

Table 3 shows differential path expanded by DV. In this
example, there are three differential bits in steps 18 to 22.
Wang et al.’s counting technique counts twelve CVCs for
those differential bits. On the other hand, our method needs
only four CVCs by adding the appropriate sign condition
of mi , and by letting the condition to eliminate the carry of
differentials.

(2) Differential Path Confirmation for Rounds 2 to 4

In our counting method, DVs are compressed by using the
Differential Bit Compression described in (1). In some of
these DVs, the differential path in rounds 2 to 4 cannot be
constructed by using the compressed DV and LCs. In order
to exclude such DVs, we have to confirm the contradiction
of differential values in each step by using a simple proce-
dure described in Algorithm 3. This technique also solves
Problem 1.

(3) DV expansion

We derive a differential path (DP) from a compressed DV
in rounds 2 to 4 in order to count #CVC in each step more
precisely than Wang et al.’s special counting rule 2. We can
construct a DP by using DV and LCs. For example, we
expand DP fromx23 = 0x40000000 andx24 = 0x20000000

YAJIMA et al.: A STRICT EVALUATION METHOD ON THE NUMBER OF CONDITIONS FOR SHA-1 COLLISION SEARCH
5

Table 4 Example of Effect by DV expansion

Stepi xi−1 ai bi ci di ei #CVC Comment
Wang’s Ours

24 40000000 30 1 1 for eliminating carry
25 20000000 28 30 2 2 for f function (see Table 5)
26 0 28 28 2 0 and eliminating carry
27 0 26 28 2 2 for f function
28 0 26 28 1 1 for f function
29 0 26 0 0

Total 8 6

as shown in Table 4.
Table 4 shows an example of the effect of this tech-

nique. This technique, combined with technique (4), counts
#CVC as 6, while Wang et al.’s technique counts #CVC as
8. We explain the counting method of #CVC based on DPs
in the next paragraph. This technique solves Problem 4 of
Wang et al.’s technique described in Section 5.1.

(4) Precise Counting Rules in Every Step

In our technique, we count #CVC from the DP derived by
technique (3) in each step, while Wang et al. count #CVC
by each DV bit. We constructed new counting rules to count
#CVC in each step. The rules are shown in Tables 5. In our
rules, the #CVCs are counted by the exact differentials inf ,
not DV. In order to cover all cases of addition in MSB, Each
case of differentials at MSB and not at MSB are considered
in round 2 and 4. Problem 2 and Problem 3 with Wang et
al.’s technique shown in Section 5.1 are solved by counting
in each step by referring the table for eachf function. #CVC
in each step is the sum of the result of i and ii.

i Count the number of “1” bits in chaining variablea.
(This result gives us the number of conditions after
eliminating the carry of differentials of chaining vari-
ablea.)

ii Obtain #CVC for f in each step corresponding to the
differential of chaining variablesb, c,d, which are ele-
ments of DP, by referring to Tables 5.

Strict Calculation Algorithm of #CVC

Algorithm 1: #CVC calculation algorithm

i Expand DV to 80 steps in consideration of message ex-
pansion.

ii Evaluate #CVC of the DV by using the following
“#CVC calculation core algorithm” (Algorithm 2).

iii Check the contradiction of the differential path for each
steps in rounds 2-4 by using the following “Differential
Path Confirmation Algorithm” (Algorithm 3).

Algorithm 2: #CVC calculation core algorithm We as-
sume that chaining variablesai (i ∈ {1, . . . , k}) are satisfi-
able.

i Compress input DV by using “Strict Differential Bit
Compression” shown in Section 5.2-(1).

ii Derive the differential of output in each step by using
“DV expansion” shown in Section 5.2-(3).

Table 5 Counting Table for XOR and MAJ functions

Differential Condition #CVC
(XOR(∆bi, j ,∆ci, j ,∆di, j)) bit j = 31 j , 31

XOR(1,0,0) ai−2, j+2 0 1
XOR(0,1,0) ai−1, j 0 1
XOR(0,0,1) ai−1, j 0 1
XOR(1,1,0) none 0
XOR(0,1,1) none 0
XOR(1,0,1) none 0
XOR(1,1,1) none 0

Differential Condition #CVC
(MAJ(∆bi, j ,∆ci, j ,∆di, j)) bit

MAJ(1,0,0) ai−2, j+2 1
MAJ(0,1,0) ai−1, j 1
MAJ(0,0,1) ai−1, j 1
MAJ(1,1,0) none 0
MAJ(0,1,1) none 0
MAJ(1,0,1) none 0
MAJ(1,1,1) none 0
We omit (mod 32) on the subscriptionj of a.

Sign is not included in the differential but this is not a problem because the
sign of the differential of inputs to thef function doesn’t influence #CVC.

iii Calculate #CVC from stepk + 1 to step 80 by using
“Precise Counting Rules” shown in Section 5.2-(4).
(#CVC is counted by eachai (i ∈ {k− 1, . . . , 80}))

iv Remove conditions for prevent carries ata79,a80 be-
cause it is possible to disregard them in collision
search.

v Return the total #CVC ofai for all i ∈ {k + 1, . . . , 80}.
Algorithm 3: Differential Path Confirmation Algorithm
(Section 5.2-(2))

i Derive the message (without sign) differentials in each
step by using LCs from (uncompressed) DV.

ii Derive the (without sign) differentials of output in each
step by using compressed-DV.

iii Check (δai−5, j ≪ 30) ⊕ (δai−1, j ≪ 5) ⊕ (δai, j) ⊕
(δmi−1, j) ⊕ (δ fi−1, j) = 0 in each bit positionj.
When the above equation is TRUE, finish this check as
SUCCESS.

iv Check the contradiction more strictly by considering
the carry effect of each parameter.

6. Experimental Results

In this section, we show a computer experiment using our
new algorithm proposed in Section5.2.

6
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.1 JANUARY 2009

Table 6 One example of effective DV for various message modifiable
steps

i xi−1 # i xi−1 # i xi−1 # i xi−1 #
140000003 21000000034 41000000022 61 000000021
200000002 22000000023 42000000002 62 000000000
380000003 23800000024 43000000022 63 000000000
480000002 24000000023 44000000002 64 000000000
540000000 25800000033 45000000032 65 000000000
600000002 26000000002 46000000001 66 000000000
780000003 27800000004 47000000002 67 000000000
880000000 28000000023 48000000021 68 000000000
940000003 29800000013 49000000001 69 000000000

1000000002 30000000002 50000000001 70 000000000
1180000003 31000000003 51000000000 71 000000000
1280000002 32000000022 52000000001 72 000000001
1340000000 33000000021 53000000021 73 000000041
1400000002 34000000000 54000000001 74 000000001
1580000003 35000000000 55000000001 75 000000002
1680000000 36000000000 56000000000 76 000000082
1700000003 37000000000 57000000000 77 000000042
1800000002 38000000001 58000000001 78 00000000(2)
1980000001 39000000021 59000000021 79 000000100
2000000002 40000000002 60000000001 80 000000080
The elements in the columns in # mean the number of CVCs associated
with each variableai in stepi.
The number in the symbol ‘()’ means the #CVC for second block.

Table 7 The number of remaining CVCs after message modification

MM until step #CVC MM until step #CVC
21 70(72) 26 55(57)
22 67(68) 27 51(53)
23 63(65) 28 48(50)
24 60(62) 29 45(47)
25 57(59) 30 43(45)

6.1 Implementation of Our Algorithm

We implemented our algorithm on a PC. The running time to
obtain #CVCs of all DVs is about 8 hours by using 4 threads
in SUSE Linux 10.0 on AMD Opteron(tm) Processor Dual
Core Model 275 (2.2GHz, Dual CPU).

The search procedure is described below.

DV search procedure for this experiment

(i) Execute (ii)-(iv) for all DVs lie within Rectangle Range.
(ii) Decide a DV of certain 16 steps in SHA-1 80 steps.
(iii) Execute “#CVC calculation algorithm” proposed in

section 5.2 by using the DV decided in ii, and get
#CVC of the DV.

(iv) Construct the actual differential path and the set of
CVCs with no contradiction for each step in rounds 2-
4.

(v) Sort all DVs in decreasing order and take the minimal
DV.

(vi) Construct a differential path from the DV in round 1.

In this experiment, we tried to find the DV that has only
less #CVCs.

Table 8 non-linear differential path and conditions for step 1-16

step CVC
1 01100111010001010010001100000001
2 -01--...1....1.....0.110.1++1000
3 -.0++00..0...0....0..+.++00+-1--
4 100.111111.....+.--+0..10+11--0-
5 11110010010+0++..1.0+0.011-100+1
6 -01++000++10100000.000-..-+0-+11
7 111--0-0000+00+00...0.--.-1--110
8 +1++++++++++++++++.1..+.+00+0000
9110001001.11.001....1.1+0100
10 .+101001100001000111.+.-+00..0-+
11 10.0...................1.0..+10-
12 +0.0....................+10-000-
13 .+........................1.11--
14 0+10......................1.-0..
15 -0..........................110-
16 -..1........................01++

step MM
1 +00--................1...+0-0101
2 x..++................0.11--0-011
3 0......................11-0..100
4 ..0+...................00+++00.1
5 00++0011.................+1-00+-
6 00++10.....................1-100
7 0101..01.................-1110+-
8 x-.+..010................xx+00-0
9 x+-+000.....0..............+...0
10 xxxx.....................+x.-0-0
11 x........................x0...0.
12 x..+.....................++x....
13 x.-+.....................x.-..--
14 ..-x........................-...
15+....--
16 xx.+.....................---..+.

Notations are as follows;
“.” : no condition, “0” : 0 → 0, “1” : 0 → 0,

“-” : 1 → 0, “+” : 0 → 1, “x” : 0 → 1 or 1→ 0.

6.2 Results and Consideration

We found several DVs that have less #CVCs and one of them
is shown in Table 6. After that, we derive a differential path,
CVC and MC in round 2 to 4, and 1. The results are shown
in Table 9 and Table??, respectively. We note that it is
confirmed all the MCs which can be expanded to the MC in
Round 1 by message expansion has not contradiction each
other.

By using our method, we can evaluate the number of
CVCs precisely. Table 7 shows the number of essential
CVCs for each cases that we can modify message up to
step 21-30. For example, if we assume that we can modify
messages up to step 25, the number of its essential CVCs
is 57 (or 59) for 1st (or 2nd) block. However, we don’t
confirm the practicability of the message modifications for
new DV. We can not say immediately that we can find a
collision for SHA-1 with this number of CVCs. As we
mentioned in the subsection 3.2, there are some trade-off

relations (ex.message freedom.) For the practical collision
search, we need to consider the remaining factors which we
didn’t discuss in this paper.

7. Conclusion and Future Works

In this paper, we proposed a new strict evaluation algorithm
of #CVC from one DV. This algorithm can evaluate #CVC
more strictly than the previous one. Our algorithm is used
for finding much effective DVs.

YAJIMA et al.: A STRICT EVALUATION METHOD ON THE NUMBER OF CONDITIONS FOR SHA-1 COLLISION SEARCH
7

Table 9 An Example of Difference Path, CVC and MC in Round2-4 about DV1

step DP CVC MC
16 ±31 a16,31 , m20,29
17 ±0 a17,0 = m20,30
18 ±1 a18,2 = a17,2
19 ±31∓ 0 a19,31 , m23,29, a19,0 , m20,1,

a19,31 , m22,29, a19,0 = m22,30,
a19,3 = a18,3, a19,0 , a17,0

a19,31 , m21,29, a19,30 = a18,0
20 ±1 a20,1 , m20,6, a20,1 , m22,6,

a20,2 = a19,2, a20,29 = a18,31,
a20,30 , a18,0

21 ±0 a21,30 , a20,0, a21,29 = a20,31, m20,31 , m20,30a21,0 = m20,1, a21,3 = a20,3
22 ±1 a22,1 = a20,1, a22,30 , a20,0, m21,6 , m20,1,

a22,3 = a21,3 m21,6 , m21,5
23 ±31± 1 a23,1 = m22,0, a23,31 = m22,31, m22,0 = m20,1a23,30 = a22,0, a23,3 = a22,3
24 ±1 a24,1 = a22,1, a24,29 = a22,31, m23,6 , m22,0,

a24,2 = a23,2 m23,4 , m22,31
25 ±31± 0 a25,0 , m24,0, a25,31 = m24,30, m24,6 = m22,26,

a25,29 = a24,31 m24,0 , m22,0,
m24,30 = m20,1m24,30 = m22,31

26 a26,29 , a24,31, a26,30 = a24,0 m25,4 , m24,30,
m25,6 , m25,5,
m25,6 , m24,0,
m25,1 = m22,6,

m25,29 , m22,31,
m25,30 = m20,1

27 ±31 a27,31 = m26,31, a27,30 = a26,0, m26,1 = m24,0,
a27,3 = a26,3, a27,29 = a26,31 m26,1 , m26,0,

m26,29 , m22,31
m26,31 = m24,30

28 ±1 a28,1 = m27,1, a28,29 , a26,31, m27,4 , m26,31,
a28,2 = a27,2 m27,30 , m24,0

29 ±31± 0 a29,31 = m28,30, a29,0 = m28,0, m28,6 , m27,1,
a29,29 = a28,31 m28,29 , m24,30,m28,30 = m26,31

m28,30 , m24,0
30 a30,29 , a28,31, a30,30 = a28,0 m29,1 , m27,1,

m29,30 , m24,0,
m29,5 , m28,0,
m29,4 , m28,30

31 a31,30 = a30,0, a31,29 = a30,31, m30,29 , m26,31,
a31,3 = a30,3 m30,0 , m28,0

32 ±1 a32,1 = m31,1, a32,3 = a31,3 m31,30 , m28,0
33 ±1 a33,1 = m32,1 m32,6 , m31,1,

m32,30 , m28,0,
m32,29 , m28,30

34 m33,1 , m31,1,
m33,6 , m32,1,
m33,30 , m28,0

m33,29 , m28,30
35 m34,1 , m32,1
36
37
38 a38,3 , a37,3

step DP CVC MC
39 ±1 a39,1 = m38,1
40 a40,31 , a38,1, a40,3 , a39,3 m39,6 , m38,1
41 ±1 a41,1 = m38,1, a41,31 , a40,1
42 a42,31 , a40,1, a42,3 , a41,3 m41,6 , m38,1
43 ±1 a43,1 = m38,1, a43,31 , a42,1
44 a44,31 , a42,1, a44,2 , a43,2 m43,6 , m38,1
45 ±0 a45,0 , m44,0, a45,31 , a44,1 m44,0 , m38,1
46 a46,30 , a44,0 m45,6 , m45,5,

m45,6 , m38,1
47 a47,30 , a46,0, a47,3 , a46,3 m46,1 , m46,0,

m46,1 , m38,1
48 ±1 a48,1 = m47,1 m47,30 = m38,1
49 a49,31 , a47,1 m48,6 , m47,1,

m48,30 = m38,1
50 a50,31 , a49,1 m49,1 , m47,1,

m49,30 = m38,1
51
52 a52,3 , a51,3
53 ±1 a53,1 = m52,1
54 a54,31 , a52,1 m53,6 , m52,1
55 a55,31 , a54,1 m54,1 , m52,1
56
57
58 a58,3 = a57,3
59 ±1 a59,1 = m58,1
60 a60,3 = a59,3 m59,6 , m58,1
61 ±1 a61,1 = m58,1
62 m61,6 , m58,1
63 m62,1 , m58,1
64
65
66
67
68
69
70
71
72 a72,4 = a71,4
73 ±2 a73,2 = m72,2
74 a74,0 = a72,2 m73,7 , m72,2
75 a75,5 = a74,5, a75,0 = a74,2, m74,2 , m72,2
76 ±3 a76,4 = a75,4, a76,3 = m75,3 m75,0 , m72,2
77 ±2 a77,1 = a75,3, a77,2 = m76,2 m76,0 , m72,2,

m76,8 , m75,3
78 (a78,0 = a76,2), (a78,1 = a77,3) m77,3 , m75,3,

m77,7 , m76,2,
m77,0 , m72,2

79 ±4 m78,2 , m76,2,
m78,1 , m75,3

80 ±3 (m79,1 , m75,3),
(m79,0 , m76,2),

m79,9 , m78,4
The CVCs and MCs appeared in step 16-20 on the above Table are a part of the necessary conditions for the collision search, on which the CVCs in step

21-80 depend. (Conditions for prevent carries at step 79 and 80 has been removed [4].)

We propose a strict evaluation method on (i) by im-
proving the previous method. We implemented our algo-
rithm on PC, and executed computer experiment. As a re-
sult, we confirmed our algorithm worked successfully, and
several candidates of DVs are found that may be used to ef-
ficient collision search.

In order to find a collision message pair on SHA-1,
studies of effectiveness on found DVs are marked as future
works. The studies include consideration on applicability of
message modification, other differential paths and etc,... Our
algorithm is extendable to other hash functions, i.e. SHA-
256, SHA-512.

References

[1] NIST, “Secure hash standard,” Federal Information Processing Stan-
dard, National Institute of Standards and Technology, April 1995.

[2] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and
W. Jalby, “Collisions in SHA-0 and reduced SHA-1,” EURO-
CRYPT2005, pp.36–57, International Association for Cryptologic

Research (IACR), May 2005.
[3] A. Joux and T. Peyrin, “Hash functions and the (amplified)

boomerang attack,” CRYPTO2007, pp.244–263, International As-
sociation for Cryptologic Research (IACR), August 2007.

[4] X. Wang, Y.L. Yin, and H. Yu, “Finding collisions in the full SHA-
1,” CRYPTO2005, pp.17–36, International Association for Crypto-
logic Research (IACR), August 2005.

[5] X. Wang, A.C. Yao, and F. Yao, “Cryptanalysis on SHA-1 hash func-
tion,” CRYPTOGRAPHIC HASH WORKSHOP, National Institute
of Standards and Technology, November 2005.

[6] X. Wang, “Cryptanalysis of hash functions and potential dangers,”
Invited Talk at the Cryptographer’s Track at RSA Conference 2006,
RSA, February 2006.

[7] X. Wang and H. Yu, “How to break MD5 and other hash functions,”
EUROCRYPT2005, pp.19–35, International Association for Cryp-
tologic Research (IACR), May 2005.

[8] F. Chabaud and A. Joux, “Differential collisions in SHA-0,”
CRYPTO’98, pp.56–71, International Association for Cryptologic
Research (IACR), August 1998.

[9] X. Wang, “The collision attack on SHA-0,” available at
http://www.infosec.sdu.edu.cn/people/wangxiaoyun. htm, 1997.

[10] C.D. Cannìere and C. Rechberger, “Finding SHA-1 characteristics:

8
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.1 JANUARY 2009

General results and applications,” ASIACRYPT2006, International
Association for Cryptologic Research (IACR), December 2006.

[11] P. Hawkes, M. Paddon, and G. Rose, “Automated search for round 1
differentials for SHA-1: Work in progress,” NIST SECOND CRYP-
TOGRAPHIC HASH WORKSHOP, National Institute of Standards
and Technology, August 2006.

[12] J. Yajima, Y. Sasaki, Y. Naito, T. Iwasaki, T. Shimoyama, N. Kuni-
hiro, and K. Ohta, “A new strategy for finding a differential path of
SHA-1,” ACISP2007, pp.45–58, International Association for Cryp-
tologic Research (IACR), July 2007.

[13] Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro,
and K. Ohta, “Improved collision search for SHA-0,” ASI-
ACRYPT2006, pp.21–36, International Association for Cryptologic
Research (IACR), December 2006.

[14] M. Sugita, M. Kawazoe, and H. Imai, “Gr¨obner basis based crypt-
analysis of SHA-1,” Fast Software Encryption 2007, IACR, March
2007.

[15] C.D. Cannìere, F. Mendel, and C. Rechberger, “On the full cost of
collision search for SHA-1,” ECRYPT Hash Workshop, ECRYPT
Network of Excellence in Cryptology, May 2007.

[16] “SHA-1 collision search graz,” August 2007. IAIK Krypto Group,
Graz University of Technology, http://boinc.iaik.tugraz.at/sha1coll
search/.

Jun Yajima received his B.E. and M.E. de-
grees in information and system engineering in
1997 and 1999, respectively, from Chuo Univer-
sity. Since 1999, he has been a researcher at FU-
JITSU LABORATORIES LTD. His current re-
search interest includes information security and
cryptography. He was awarded the SCIS2007
paper prize.

Terutoshi Iwasaki received his B.E. and
M.E. degrees in information and system engi-
neering in 2005 and 2007, respectively, from
Chuo University. Since 2007, he has been a sys-
tem engineer at Nomura Research Institute, Ltd.
His current research interest includes informa-
tion security and cryptography.

Yusuke Naito XXX

Yu Sasaki XXX

Takeshi Shimoyama received his B.S.,
M.S. degrees in mathematics from Yokohama
City University. in 1989 and 1991, respectively,
and D.E. degrees in information and system en-
gineering from Chuo University in 2000. He
is a research engineer of FUJITSU LABORA-
TORIES Ltd from 1991. He joined the Re-
search Project of Info Communication Security
under Telecommunications Advancement Orga-
nization of Japan from 1996 to 1998. His current
research interests are in cryptanalysis and infor-

mation security. He was awarded SCIS paper prize in 1997, IWSEC paper
prize in 2007, and OHM Technology Award in 2007. He attained the world
record of an integer factoring by GNFS in 2006.

Thomas Peyrin received his M.S. degree in
computer science from Ecole Polytechnique in
France in 2005. He is a PhD student at Univer-
sity of Versailles in France from 2005 and was
a JSPS Fellow at AIST in Japan from Septem-
ber 2007 to March 2008. His current research
interests are cryptanalysis and design of crypto-
graphic hash functions. He was awarded Asi-
acrypt 2007 best paper award.

Noboru Kunihiro received his B. E., M.
E. and Ph. D. in mathematical engineering
and information physics from the University of
Tokyo in 1994, 1996 and 2001, respectively. He
is an Associate Professor of the University of
Tokyo. He was a researcher of NTT Communi-
cation Science Laboratories from 1996 to 2002.
He was a associate professor of the University
of Electro-Communications from 2002 to 2008.
His research interest includes cryptography, in-
formation security and quantum computations.

He was awarded the SCIS’97 paper prize.

Kazuo Ohta received his B.S., M.S., and
Dr.S. degrees from Waseda University, Tokyo,
Japan, in 1977, 1979, and 1990, respectively.
He has been a professor at the University of
Electro-Communications since 2001. He was a
researcher at NTT Laboratories between 1979
and 2001. He is presently engaged in research
on information security. Dr. Ohta is a member
of the International Association for Cryptologic
Research,, IEICE, IPSJ and IEEE.

