Fixslicing - Application to some NIST LWC round 2 candidates

Alexandre Adomnicai Thomas Peyrin

Nanyang Technological University, Singapore
Temasek Laboratories, Singapore

Lightweight Cryptography Workshop 2020
What this talk is about

▷ **Constant-time** software implementations on 32-bit platforms

▷ Application of the **fixslicing implementation strategy** to some NIST LWC round 2 candidates built upon AES-128, GIFT-128 and Skinny-128 primitives

▷ Benchmarking results on **ARM Cortex-M3** for payloads up to 256 bytes
The fixslicing implementation strategy

- Initially introduced as a new representation for the GIFT block ciphers [ANP20]
The fixslicing implementation strategy

- Initially introduced as a new representation for the GIFT block ciphers [ANP20]

- Fixsliced GIFT-128 runs about 7x faster on ARM Cortex-M3 compared to a naive bitsliced implementation
The fixslicing implementation strategy

- Initially introduced as a new representation for the GIFT block ciphers [ANP20]

- Fixsliced GIFT-128 runs about 7x faster on ARM Cortex-M3 compared to a naive bitsliced implementation

- Consists in fixing a slice to never move and adjusting the others for the S-box layer
Classical representation of GIFT-128
Fixsliced representation of GIFT-128
Genericity of the fixslicing technique

Actually, the fixslicing technique is a particular case for permutations which ensures that, from a bitsliced perspective, all bits within a slice remain in the same one through the permutation. Therefore, it can be applied to all permutations that verify this property, and the number of rounds to consider for the decomposition equals $min(\text{order}(P_i))$ for all i.

Figure: Extract from [ANP20]

▷ So, only of interest for Substitution-bitPermutation Networks (SbPN)?
Genericty of the fixslicing technique

Actually, the fixslicing technique is a particular case for permutations which ensures that, from a bitsliced perspective, all bits within a slice remain in the same one through the permutation. Therefore, it can be applied to all permutations that verify this property, and the number of rounds to consider for the decomposition equals $\min(\text{order}(P_i))$ for all i.

Figure: Extract from [ANP20]

▷ So, only of interest for Substitution-bitPermutation Networks (SbPN)? NOPE!

▷ Many ciphers spend cycles to move bits within the slices to achieve better diffusion \Rightarrow alternative representations might be valuable even for more complex linear layers
Application to AES-like ciphers

Figure: AES round function
Application to AES-like ciphers

Figure: Skinny round function
Application to AES-like ciphers

Performance improvements for AES and Skinny-128 on ARM Cortex-M and E31 RISC-V processors [AP20]
Implementation results on ARM Cortex-M3

Performance for constant-time implementations on ARM Cortex-M3
Implementation results on ARM Cortex-M3

Performance for constant-time implementations on ARM Cortex-M3
Bitslicing a single block for Skinny-128

Fixslicing - Application to some NIST LWC round 2 candidates - LWC Workshop 2020
Bitslicing a single block for Skinny-128

1st layer
b0
b1
b2
b3
b4
b5
b6
b7
2nd layer
b0
b1
b5
b6
b4
b2
b3
b7
3rd layer
b7
b4
b2
b3
b0
b5
b6
b1
4th layer
last permutation
output
b2
b3
b7
b4
b6
b1
b0
b5
Speed optimized Skinny tweakey schedule

(a) Single round

Figure: Skinny tweakey schedule round function
Speed optimized Skinny tweakey schedule

(a) Single round

(b) Double round

Figure: Skinny tweakey schedule round function
Speed optimized Skinny tweak key schedule

Fixslicing - Application to some NIST LWC round 2 candidates - LWC Workshop 2020
Benchmark results on ARM Cortex-M3

Fixslicing - Application to some NIST LWC round 2 candidates - LWC Workshop 2020
What about other candidates?

- Fixslicing may be valuable for other candidates!
 - PHOTON-Beetle? (AES-like primitive)
 - Elephant? (Spongent is an SbPN)
 - ...
What about other candidates?

- Fixslicing may be **valuable for other candidates**!
 - PHOTON-Beetle? (AES-like primitive)
 - Elephant? (Sponge is an SbPN)
 - ...

- Some primitives are **fixsliced by design** (e.g. Ascon-p)
Thanks for your attention!

Questions?

Feel free to contact us at firstname.lastname@ntu.edu.sg