
A Very Compact FPGA Implementation of
LED and PHOTON

N. Nalla Anandakumar1,2 Thomas Peyrin2

Axel Poschmann2,3

1Society for Electronic Transactions and Security (SETS), India
2Nanyang Technological University (NTU), Singapore

3NXP Semiconductors, Germany

Indocrypt - 2014

1 / 30



Outline

Introduction

Algorithms Overview

Implementations

Results

Conclusion

2 / 30



Lightweight cryptographic algorithms

Lightweight devices such as
1 RFID tags
2 Wireless sensor nodes
3 Smart cards

These smart lightweight devices might manipulate sensitive
data and thus usually require some security

Classical cryptographic algorithms are not very suitable for
this type of applications

Thus many lightweight cryptographic schemes have been
recently proposed (block ciphers or hash functions)

In this work we study:
1 LED (the lightweight block cipher)
2 PHOTON (the lightweight family of hash functions)

3 / 30



Lightweight cryptographic algorithms

Lightweight devices such as
1 RFID tags
2 Wireless sensor nodes
3 Smart cards

These smart lightweight devices might manipulate sensitive
data and thus usually require some security

Classical cryptographic algorithms are not very suitable for
this type of applications

Thus many lightweight cryptographic schemes have been
recently proposed (block ciphers or hash functions)

In this work we study:
1 LED (the lightweight block cipher)
2 PHOTON (the lightweight family of hash functions)

3 / 30



Trade-offs

The main focus of lightweight cryptography research has been
on the trade-offs between

Cost
Security
Performance in terms of speed, area and computational power.

These primitives can be implemented either in software or in
hardware platforms such as

Field-Programmable Gate Array (FPGA)
Application Specific Integrated Circuit (ASIC)

Compared to ASICs, FPGAs offer additional advantages in
terms of

1 Time-to-market
2 Reconfigurability
3 Cost

4 / 30



Our contributions.

In this article, we describe three different hardware
architectures of the LED and PHOTON family optimized for
FPGA devices

1 Round-based architecture: computes one round per clock cycle

2 Fully serialized architecture: performing operations on a single
cell per clock cycle

3 Serialized using SRL16: computations based on shift registers
(SRL16)

5 / 30



Our Goal.

To cover a wide variety of new implementation trade-offs
offered by crypto primitives using serialized MDS (Maximum
Distance Separable) matrices

For which LED and PHOTON are the main representatives

Implemented on a wide variety of different Xilinx FPGA
families, ranging from low-cost (Spartan-3) to high-end
(Artix-7).

6 / 30



LED Algorithm

Substitution-Permutation Network,
64-bit block size,
64-128 bit key length, 32/48 rounds,
No Keyschedule (Key repeated every four rounds),

a 64-bit key array

a 128-bit key array

7 / 30



LED Algorithm

Substitution-Permutation Network,
64-bit block size,
64-128 bit key length, 32/48 rounds,
No Keyschedule (Key repeated every four rounds),

a 64-bit key array

a 128-bit key array

7 / 30



A single round of LED

AddConstants: xor round-dependent constants to the two
first columns
SubCells: apply the PRESENT 4-bit Sbox to each cell
ShiftRows: rotate the i-th line by i positions to the left
MixColumnsSerial : each nibble column of the internal state is
transformed by multiplying it once with MDS matrix χ4 (or
two times with matrix χ2, or four times with matrix χ)

χ =


0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

 ; (χ)2 =


0 0 1 0
0 0 0 1
4 1 2 2
8 6 5 6

 ; (χ)4 =


0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2


4

=


4 1 2 2
8 6 5 6
B E A 9
2 2 F B


8 / 30



PHOTON Algorithm

PHOTON is a family of sponge functions, characterized by
two parameters: a bitrate r, and a capacity c.
Each PHOTON hash function is denoted by PHOTON-n/r/r′

The (t=c + r)-bit, with c = n, internal state is viewed as a
(d× d) matrix of s-bit cells.
Two Phases:

absorbing phase: iteratively processes all the r-bit message
chunks by XORing them to the bitrate part of the internal
state and then applying the t-bit permutation P
squeezing phase: the extracting r′ bits from the bitrate part of
the internal state and then applying the permutation P on it.

9 / 30



One round of a PHOTON permutation

The internal permutations apply 12 rounds

AddConstants: xor round-dependant constants to the first
column

SubCells: apply the PRESENT Sbox (when s = 4) or AES
Sbox (when s = 8) to each cell

ShiftRows: rotate the i-th line by i positions to the left

MixColumnsSerial : each nibble column of the internal state is
transformed by multiplying it once with MDS matrix

10 / 30



LED round based encryption architecture

11 / 30



FPGA round-based implementation results of LED.

Design MDS Block Key Area Clock T/put Eff. FPGA Deviceapproach Size Size (slices) Cycles (Mbps) (Mbps/slices)
(bits) (bits)

(χ) 64
64 170 32 157.56 0.93

Spartan-3 XC3S50-5

128 199 48 104.8 0.53

(χ)2 64
64 198 32 175.3 0.89
128 227 48 116.54 0.51

LED
(χ)4 64

64 204 32 197.35 0.97
Round−based 128 233 48 131.2 0.56

(χ) 64
64 102 32 565.54 5.50

Artix-7 XC7A100T-3

128 158 48 376.57 2.39

(χ)2 64
64 110 32 580.97 5.28
128 163 48 389.18 2.40

(χ)4 64
64 136 32 669.7 4.92
128 168 48 444.97 2.65

PRESENT 64 128 202 32 508 2.51 Spartan-3 XC3S400-5
AES 128 128 17,425 — 25,107 1.44 Spartan-3 XC3S2000-5
AES 128 128 1800 — 1700 0.90 Spartan 3

ICEBERG 64 128 631 — 1016 1.61 Virtex-II
SEA 126 126 424 — 156 0.37 Virtex-II XC2V4000

The Sbox state is for the simultaneous execution of the SubCells (SC) operations, Ad-
dConstants (AC) operations and XORing the roundkey (AK) every fourth round. It
requires 16 clock cycles.
The Srow state is for the execution of the ShiftRows operation. It can be performed in
3 clock cycles with no additional hardware cost, because it just shifts the row positions
of the state matrix.
The MCS state is for the execution of the MixColumnsSerial operation. It calculates the
result fully serialized, that is one cell in each clock cycle. It first calculates the topmost
cell of the leftmost column (cell 00) by storing the result in the last row of the rightmost
column (cell 33) in Figure ??. At the same time, the entire state array is shifted to the
left by one position, where the leftmost cells in every row are shifted into the rightmost
cells of the row located on top. This way in the subsequent clock cycle the topmost cell
of the second column is processed, leading to a serialized row-by-row calculation of the
MixColumnsSerial.

It is to be noted that during the MixColumnsSerial operation in the architecture
proposed in [16], the result is stored in the last row of the leftmost column (cell 30),
leading to a serialized column-by-column calculation. Our new architecture is strictly
better as it saves both area and time: As the leftmost column requires only 1-input
FFs instead of 2-input FFs the area requirement is reduced significantly. Our proposed
architecture has similarities with the work from [26], regarding the way the storing
and rotating of matrices are implemented. Furthermore, it takes only 16 clock cycles
to perform the MixColumnsSerial instead of the usual 20 clock cycles [16]. This new
architecture is applicable to all AES-like permutations that use a serialized MixColumns
operation and we will also use it for the PHOTON implementations described in Section 4.

This serialized architecture of LED requires 35 clock cycles to perform one round,
resulting in a total latency of 1120 clock cycles for LED-64 and 1680 clock cycles for
LED-128. Therefore, we have reduced the latency by 128 clock cycles for LED-64 and
by 192 clock cycles for LED-128, respectively, when compared to the design proposed
in [16]. We give in the first row of Table ?? the detailed results of our serialized imple-

12 / 30



Serialized LED encryption architecture

13 / 30



Serialized LED encryption architecture

14 / 30



Serialized LED encryption architecture

15 / 30



Serialized LED encryption architecture

16 / 30



Serialized LED architecture: original proposal for
ASICs

17 / 30



SRL16s based implementation: Xilinx Shift Register

The CLB is the basic logic unit in a FPGA.

Each CLB has four slices.
Only the two at the left of the CLB can be used as shift
registers.

LUT can be configured as a 16-bit shift register (SRL16)

32 bit shift register normally requires 16 slices
Using SRL16 requires only 2 slices

18 / 30



SRL16s based implementation of LED

Data read from SRL16s by two ways:
The last bit of its 16 stages (Q15) is always available.
A multiplexer allows to access one additional bit from any of
its internal stages.

Investigated possible area reductions using SRL16s:
8-bit datapath when using (χ)2

16-bit datapath when using (χ) and (χ)4

MixColumnsSerial requires 16-bit inputs (4 times 4-bit) in
every clock cycle
Each SRL16 only allows access to 2 bits
We have to use eight and sixteen SRL16s to store the state,
respectively.

19 / 30



SRL16s based implementation of LED

Data read from SRL16s by two ways:
The last bit of its 16 stages (Q15) is always available.
A multiplexer allows to access one additional bit from any of
its internal stages.

Investigated possible area reductions using SRL16s:
8-bit datapath when using (χ)2

16-bit datapath when using (χ) and (χ)4

MixColumnsSerial requires 16-bit inputs (4 times 4-bit) in
every clock cycle
Each SRL16 only allows access to 2 bits
We have to use eight and sixteen SRL16s to store the state,
respectively. 19 / 30



SRL16s based implementation of LED

20 / 30



Content of SRL16s for one round of LED when
using (χ)2 for the 8-bit datapath

clk content of SRL16s clk content of SRL16s
Init Re-update

1
00

17
01 02 03 20 21 22 23 00 01 02 03 22 23 20 21 00

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11

2
00 01

18
02 03 20 21 22 23 00 01 02 03 22 23 20 21 00 01

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12

3
00 01 02

19
03 20 21 22 23 00 01 02 03 22 23 20 21 00 01 02

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13

4
00 01 02 03

20
20 21 22 23 00 01 02 03 22 23 20 21 00 01 02 03

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10

5
00 01 02 03 20

21
21 22 23 00 01 02 03 22 23 20 21 00 01 02 03 22

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33

6
00 01 02 03 20 21

22
22 23 00 01 02 03 22 23 20 21 00 01 02 03 22 23

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30

7
00 01 02 03 20 21 22

23
23 00 01 02 03 22 23 20 21 00 01 02 03 22 23 20

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31

8
00 01 02 03 20 21 22 23

24
00 01 02 03 22 23 20 21 00 01 02 03 22 23 20 21

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32
SrSc MCS

9
00 01 02 03 20 21 22 23 00

25
01 02 03 22 23 20 21 00 01 02 03 22 23 20 21 00′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′

10
00 01 02 03 20 21 22 23 00 01

26
02 03 22 23 20 21 00 01 02 03 22 23 20 21 00′ 01′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′

11
00 01 02 03 20 21 22 23 00 01 02

27
03 22 23 20 21 00 01 02 03 22 23 20 21 00′ 01′ 02′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 20 31 32 10′ 11′ 12′

12
00 01 02 03 20 21 22 23 00 01 02 03

28
22 23 20 21 00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′

13
00 01 02 03 20 21 22 23 00 01 02 03 22

29
23 20 21 00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′ 20′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′ 30′

14
00 01 02 03 20 21 22 23 00 01 02 03 22 23

30
20 21 00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′ 20′ 21′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′ 30′ 31′

15
00 01 02 03 20 21 22 23 00 01 02 03 22 23 20

31
21 00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′ 20′ 21′ 22′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′ 30′ 31′ 32′

16
00 01 02 03 20 21 22 23 00 01 02 03 22 23 20 21

32
00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′ 20′ 21′ 22′ 23′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′ 30′ 31′ 32′ 33′

and 31′) and so on. In total 8 clock cycles (clk 25-32) are required to complete the
MixColumnsSerial layer using (χ)2, 4 clock cycles when using (χ)4, and 16 clock
cycles when using (χ), respectively. The next round starts with the SrSc state (clk 9)
and inputs 00′ and 11′.

Concerning the key incorporation, the details of SRL16 positions will be provided
in the long version of the article for the key when using 8-bit datapath with (χ)2 (resp.
when using (χ)4 or (χ) for the 16-bit datapath).

For the 8-bit datapath, 24 clock cycles are required in order to complete one round
of LED (clk 9-32 in Table ??), resulting in a total latency of 768 clock cycles for LED-64
and 1152 clock cycles for LED-128. Table ?? shows the detailed results of our imple-
mentations of LED based on SRL16s for various MDS matrix computation approaches.
Our design (χ)2 only occupies 77 slices for LED-64 and 86 slices for LED-128 respec-
tively, with a corresponding throughput of 9.93Mbps and 6.71Mbps respectively. The
throughput can be increased to 29.82Mbps by scaling the 8-bit to a 16-bit datapath and
by directly computing the (χ)4 matrix. It is noteworthy to point out that our SRL16

21 / 30



FPGA serialized implementation results of LED

mentations. For a (χ) version of the diffusion matrix computation, we obtain for LED-64
and LED-128 140 slices and 167 slices respectively, while the throughput reaches 9.11
Mbps and 5.2 Mbps, respectively. One can see that LED-64 and LED-128 seem to re-
quire much less area than most ciphers [21, 17, 9, 22] while having a higher throughput
than SIMON [3]. Furthermore, an increased throughput can be reached by scaling the
datapath to 16 bits and by computing the diffusion matrix in a less serial manner, i.e. by
applying two times (χ)2 or direct (χ)4. Moreover, our proposed serialized implemen-
tations when using directly (χ)4 outperforms most ciphers [22, 3] implementations in
terms of throughput per area ratio (Eff.). Using device-dependent building blocks, such
as BRAMs and DSPs, are a great way to enhance performance and optimize implemen-
tations for a specific target device. However, it also, obviously, makes a fair comparison
of the hardware costs (area) much more difficult. Therefore we do not use any addi-
tional building blocks and instead compare the number of slices. In the next section we
will explain how to further reduce area and latency.

Design MDS Data- Block Key Area Clock T/put Eff. FPGA Deviceapproach path Size Size
(slices) Cycles (Mbps) (Mbps/

(bits) (bits) (bits) slices)

(χ) 4 64
64 140 1120 9.11 0.07

Spartan-3 XC3S50-5(χ)2

128 167 1680 5.2 0.03

8 64
64 169 608 16.6 0.10

(χ)4

128 203 912 9.97 0.05
LED

16 64
64 180 352 24.99 0.14

Serialized 128 219 528 15.6 0.07

(χ) 4 64
64 37 1120 21.6 0.58

Artix-7 XC7A100T-3

128 40 1680 14.02 0.35

(χ)2 8 64
64 58 608 40.03 0.69

128 61 912 25.02 0.41

(χ)4 16 64
64 78 352 66.8 0.86

128 82 528 45.53 0.56

(χ) 16 64
64 111 640 11.96 0.11

Spartan-3 XC3S50-5

128 122 960 7.88 0.06

(χ)2 8 64
64 77 768 9.93 0.13

128 86 1152 6.71 0.08
LED

(χ)4 16 64
64 119 256 29.82 0.25

Serialized using SRL16s 128 127 384 19.65 0.15

(χ) 16 64
64 51 640 30.39 0.60

Artix-7 XC7A100T-3

128 59 960 20.57 0.35

(χ)2 8 64
64 40 768 22.93 0.57

128 50 1152 16.81 0.34

(χ)4 16 64
64 63 256 71.21 1.13

128 69 384 47.75 0.70

PRESENT 64 128 117 256 28.46 0.24 Spartan-3 XC3S50-5
HIGHT 64 128 91 160 65.48 0.72 Spartan-3 XC3S50-5
xTEA 64 128 254 112 35.78 0.14 Spartan-3 XC3S50-5

PRESENT 64 80 271 — — — Spartan-3E XC3S500
SIMON 128 128 36 — 3.60 0.10 Spartan-3E XC3S500
AES 128 128 184 160 36.5 0.20 Spartan-3 XC3S50-5
AES 128 128 393 534 16.86 0.04 Spartan-3 XC3S50-5

22 / 30



SRL16s based implementation of LED

One can see in the previous table that our SRL16
implementation technique both saves area and increases
throughput compared to a classical optimized serial
implementation.

We believe this technique is very interesting in order to
implement serial-matrix based cryptographic primitives in
FPGA technology.

23 / 30



SRL16s based implementation of LED

One can see in the previous table that our SRL16
implementation technique both saves area and increases
throughput compared to a classical optimized serial
implementation.

We believe this technique is very interesting in order to
implement serial-matrix based cryptographic primitives in
FPGA technology.

23 / 30



A round based architecture of the PHOTON

24 / 30



Round-based implementation results of PHOTON

Design MDS Data- Area Clock T/put Eff. FPGA Deviceapproach path
(slices) Cycles (Mbps) (Mbps/

(bits) slices)

PHOTON-80/20/16
(χ) 100 285 12 130.88 0.46 Spartan-3 XC3S50-5
(χ) 100 142 12 387.75 2.73 Artix-7 XC7A100T-3

SPONGENT-88 88 157 45 17.78 0.11 Spartan-3

PHOTON-128/16/16
(χ) 144 549 12 87.19 0.16 Spartan-3 XC3S50-5
(χ) 144 204 12 252.04 1.24 Artix-7 XC7A100T-3

SPONGENT-128 136 208 70 11.43 0.06 Spartan-3

PHOTON-160/36/36
(χ) 196 846 12 183.09 0.22 Spartan-3 XC3S400-5
(χ) 196 429 12 467.25 1.10 Artix-7 XC7A100T-3

SPONGENT-160 176 264 90 8.89 0.03 Spartan-3

PHOTON-224/32/32
(χ) 256 1235 12 137.95 0.11 Spartan-3 XC3S400-5
(χ) 256 616 12 402.11 0.65 Artix-7 XC7A100T-3

SPONGENT-224 240 322 120 6.67 0.02 Spartan-3

PHOTON-256/32/32
(χ) 288 2067 12 94.24 0.05 Spartan-3 XC3S400-5
(χ) 288 865 12 299.81 0.35 Artix-7 XC7A100T-3

SPONGENT-256 272 357 140 5.71 0.02 Spartan-3
CUBEHASH-256 — 2883 — 50 0.017 Spartan-3 XC3S5000-5

4.2 Serialized

Similarly to our work on LED in Section 3.2, we have built a serialized implementation
of the different PHOTON versions. One can see in Figure 4 that our serialized implemen-
tation consists of 6 modules: MCS, IO, AC, SC, ShR, and Controller. These modules
and the general hardware architecture that we propose are almost the same as the one
described in [15] for ASICs. Yet, we applied the same optimization for MixColumnSe-
rial that we have described for LED in detail in Section 3.2. It takes d ·d clock cycles to
perform MixColumnsSerial operation instead of the usual d · (d +1) clock cycles [15].

Overall, our implementation requires d ·d +(d−1)+d ·d clock cycles to perform
one round of the PHOTON internal permutation P, instead of the d ·d+(d−1)+d ·(d+1)
clock cycles required in [15]. Therefore, we obtain a total latency of 12 ·(2 ·d ·d+d−1)
clock cycles, which is 12 · d clock cycles faster. We give in Table ?? our implemen-
tation results for PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-
224/32/32 and PHOTON-256/32/32. One can see that when compared to previous FPGA
implementations [11, 25, 10, 20, 23], we have greatly reduced the area and increased the
throughput (and also obtained a better throughput per area ratio (Eff.)) as compared to
PHOTON-80/20/16 [11] and PHOTON-128/16/16 [25]. Compared to FPGA implementa-
tions [1] of the lightweight hash function SPONGENT [6], we get bigger area require-
ments but for a much higher throughput per area (Eff.). We will see in the next section
that SRL16 based implementations of PHOTON will lead to lower area and much higher
throughput and yield a better throughput per area ratio (Eff.) than SPONGENT.

25 / 30



A serialized architecture of the PHOTON

26 / 30



The SRL16s based implementation of PHOTON

27 / 30



Serialized implementation results of PHOTON

Design impl. MDS Data- Area Clock T/put Eff. FPGA Deviceapproach approach path
(slices) Cycles (Mbps) (Mbps/

(bits) slices)

PHOTON-80/20/16

serial (χ) 4 146 648 3.10 0.02
Spartan-3 XC3S50-5

SRL16 (χ) 20 112 360 6.57 0.06
serial (χ) 4 67 648 10.17 0.15

Artix-7 XC7A100T-3
SRL16 (χ) 20 58 360 18.33 0.32
serial (χ) 4 82 648 9.34 0.11

Virtex-5 XC5VLX50-1
SRL16 (χ) 20 69 360 15.84 0.22

PHOTON-80/20/16 4 149 708 7 0.05 Virtex-5
SPONGENT-88 4 116 900 .81 0.01 Spartan-3

PHOTON-128/16/16

serial (χ) 4 183 924 1.76 0.01
Spartan-3 XC3S50-5

SRL16 (χ) 24 137 504 3.67 0.03
serial (χ) 4 84 924 6.24 0.07

Artix-7 XC7A100T-3
SRL16 (χ) 24 72 504 10.87 0.20

PHOTON-128/16/16 4 469 948 .551 0.001 Spartan-3
SPONGENT-128 4 144 2380 .34 0.002 Spartan-3

PHOTON-160/36/36

serial (χ) 4 233 1248 2.01 0.01
Spartan-3 XC3S50-5

SRL16 (χ) 28 164 672 6.58 0.04
serial (χ) 4 117 1248 9.47 0.08

Artix-7 XC7A100T-3
SRL16 (χ) 28 89 672 17.58 0.20

SPONGENT-160 4 193 3960 .2 0.001 Spartan-3

PHOTON-224/32/32

serial (χ) 4 274 1620 1.36 0.005
Spartan-3 XC3S50-5

SRL16 (χ) 32 176 864 4.57 0.03
serial (χ) 4 130 1620 7.55 0.06

Artix-7 XC7A100T-3
SRL16 (χ) 32 96 864 12.12 0.13

SPONGENT-224 4 225 7200 .11 0.0005 Spartan-3

PHOTON-256/32/32

serial (χ) 8 327 924 1.47 0.004
Spartan-3 XC3S50-5

SRL16 (χ) 48 416 504 3.74 0.009
serial (χ) 8 157 924 4.59 0.03

Artix-7 XC7A100T-3
SRL16 (χ) 48 159 504 10.75 0.07

SPONGENT-256 4 241 9520 0.08 .0003 Spartan-3 XC3S200-5
SHABAL-256 — 499 — .8 1.60 Spartan-3 XC3S200-5
BLAKE-256 — 631 — 216.3 0.34 Spartan-3 XC3S50-5
GRØSTL — 766 — 192.6 0.25 Spartan-3 XC3S50-5
JH — 558 — 63.7 0.11 Spartan-3 XC3S50-5

KECCAK — 766 — 46.2 0.06 Spartan-3 XC3S50-5
SKEIN — 766 — 16.6 0.02 Spartan-3 XC3S50-5
SHA-2 — 745 — 137.8 0.19 Spartan-3 XC3S50-5

the MixColumnsSerial operation for PHOTON-80/20/16. We have also implemented the
remaining 4 versions of PHOTON using same architecture.

d · d clock cycles are required for a z-bit datapath in order to complete the Mix-
ColumnsSerial operation. Overall, we require d+d ·d clock cycles to compute a single
round. Since PHOTON has 12 rounds, the total number of cycles required to process one
block of message is 12(d + d · d). Table ?? describes the performance results of our
implementations and compares it with existing FPGA implementations of PHOTON and
other lightweight hash functions. Concerning KECCAK-f[200], perhaps we just add that
KECCAK-f[200] is not included in this table as no FPGA implementation of this func-
tion has been published so far. As seen from the table, our work provides the smallest
area among all known implementations of lightweight hash functions while having a
higher throughput and yields a better throughput per area ratio (Eff.) than PHOTON-
80/20/16 [11], PHOTON-128/16/16 [25] and the implementation of SPONGENT [1]. We
remark that SHABAL [10] has a better throughput per area ratio than PHOTON, but in this

28 / 30



Conclusion

In this paper, we have analyzed the feasibility of creating a
very compact, low cost FPGA implementation of LED and
PHOTON.

For both primitives, we studied round-based and serial
architectures.

We implemented several possible trade-offs when computing
the diffusion matrix.

Our results show that LED and PHOTON are very good
candidates for lightweight applications.

Our implementations yield for example the best area of all
lightweight hash functions implementations published so far.

29 / 30



Thank you!
Any questions?

30 / 30


	Introduction

