

A Very Compact FPGA Implementation of LED and PHOTON

$\frac{\text{N. Nalla Anandakumar}^{1,2} \text{ Thomas Peyrin}^2}{\text{Axel Poschmann}^{2,3}}$

¹Society for Electronic Transactions and Security (SETS), India ²Nanyang Technological University (NTU), Singapore ³NXP Semiconductors, Germany

Indocrypt - 2014

Outline

- Introduction
- Algorithms Overview
- Implementations
- Results
- Conclusion

Lightweight cryptographic algorithms

- Lightweight devices such as
 - RFID tags
 - Wireless sensor nodes
 - Smart cards
- These smart lightweight devices might manipulate sensitive data and thus usually require some security
- Classical cryptographic algorithms are not very suitable for this type of applications
- Thus many lightweight cryptographic schemes have been recently proposed (block ciphers or hash functions)

Lightweight cryptographic algorithms

- Lightweight devices such as
 - RFID tags
 - Wireless sensor nodes
 - Smart cards
- These smart lightweight devices might manipulate sensitive data and thus usually require some security
- Classical cryptographic algorithms are not very suitable for this type of applications
- Thus many lightweight cryptographic schemes have been recently proposed (block ciphers or hash functions)

In this work we study:

- LED (the lightweight block cipher)
- PHOTON (the lightweight family of hash functions)

Trade-offs

- The main focus of lightweight cryptography research has been on the trade-offs between
 - Cost
 - Security
 - Performance in terms of speed, area and computational power.
- These primitives can be implemented either in software or in hardware platforms such as
 - Field-Programmable Gate Array (FPGA)
 - Application Specific Integrated Circuit (ASIC)
- Compared to ASICs, FPGAs offer additional advantages in terms of
 - Time-to-market
 - 2 Reconfigurability
 - Ost

Our contributions.

- In this article, we describe three different hardware architectures of the LED and PHOTON family optimized for FPGA devices
 - Round-based architecture: computes one round per clock cycle
 - Fully serialized architecture: performing operations on a single cell per clock cycle
 - Serialized using SRL16: computations based on shift registers (SRL16)

Our Goal.

- To cover a wide variety of new implementation trade-offs offered by crypto primitives using serialized MDS (Maximum Distance Separable) matrices
- For which LED and PHOTON are the main representatives
- Implemented on a wide variety of different Xilinx FPGA families, ranging from low-cost (**Spartan-3**) to high-end (**Artix-7**).

LED Algorithm

- Substitution-Permutation Network,
- 64-bit block size,
- 64-128 bit key length, 32/48 rounds,
- No Keyschedule (Key repeated every four rounds),

LED Algorithm

- Substitution-Permutation Network,
- 64-bit block size,
- 64-128 bit key length, 32/48 rounds,
- No Keyschedule (Key repeated every four rounds),

a 64-bit key array

a 128-bit key array

A single round of LED

- AddConstants: xor round-dependent constants to the two first columns
- SubCells: apply the PRESENT 4-bit Sbox to each cell
- ShiftRows: rotate the i-th line by i positions to the left
- *MixColumnsSerial*: each nibble column of the internal state is transformed by multiplying it once with MDS matrix χ^4 (or two times with matrix χ^2 , or four times with matrix χ)

$$\chi = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 1 & 2 & 2 \end{pmatrix}; \qquad (\chi)^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 1 & 2 & 2 \\ 8 & 6 & 5 & 6 \end{pmatrix}; \qquad (\chi)^4 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 1 & 2 & 2 \end{pmatrix}^4 = \begin{pmatrix} 4 & 1 & 2 & 2 \\ 8 & 6 & 5 & 6 \\ B & E & A & 9 \\ 2 & 2 & F & B \\ 8 & 6 & 5 & 6 \end{pmatrix}$$

PHOTON Algorithm

- PHOTON is a family of sponge functions, characterized by two parameters: a bitrate r, and a capacity c.
- Each PHOTON hash function is denoted by PHOTON-n/r/r'
- The (t=c + r)-bit, with c = n, internal state is viewed as a $(d \times d)$ matrix of s-bit cells.
- Two Phases:
 - absorbing phase: iteratively processes all the *r*-bit message chunks by XORing them to the bitrate part of the internal state and then applying the t-bit permutation P
 - squeezing phase: the extracting r' bits from the bitrate part of the internal state and then applying the permutation P on it.

9/30

One round of a PHOTON permutation

The internal permutations apply 12 rounds

- *AddConstants*: xor round-dependant constants to the first column
- SubCells: apply the PRESENT Sbox (when s = 4) or AES Sbox (when s = 8) to each cell
- ShiftRows: rotate the i-th line by i positions to the left
- *MixColumnsSerial*: each nibble column of the internal state is transformed by multiplying it once with MDS matrix

LED round based encryption architecture

FPGA round-based implementation results of LED.

Design	MDS approach	Block Size (bits)	Key Size (bits)	Area (slices)	Clock Cycles	T/put (Mbps)	Eff. (Mbps/slices)	FPGA Device		
	(22)	64	64	170	32	157.56	0.93			
	(\mathbf{x})	04	128	199	48	104.8	0.53			
	$(\alpha)^2$	64	64	198	32	175.3	0.89	Sporton 2 VC2850 5		
	(\mathbf{x})	04	128	227	48	116.54	0.51	Spartan-5 AC5550-5		
LED	$(\alpha)^4$	64	64	204	32	197.35	0.97			
Round-based	$(\chi)^{-1}$	04	128	233	48	131.2	0.56			
	(X)	64	64	102	32	565.54	5.50			
		04	128	158	48	376.57	2.39			
	$(\chi)^2$	64	64	110	32	580.97	5.28	Artiv 7 XC7A100T 3		
		04	128	163	48	389.18	2.40	Alux-/ AC/A1001-5		
	$(\mathbf{x})^4$	64	64	136	32	669.7	4.92			
	(x)	04	128	168	48	444.97	2.65			
PRESE	NT	64	128	202	32	508	2.51	Spartan-3 XC3S400-5		
AES		128	128	17,425	—	25,107	1.44	Spartan-3 XC3S2000-5		
AES		128	128	1800	—	1700	0.90	Spartan 3		
ICEBE	RG	64	128	631	—	1016	1.61	Virtex-II		
SEA		126	126	424	_	156	0.37	Virtex-II XC2V4000		

Serialized LED architecture: original proposal for $\ensuremath{\mathsf{ASICs}}$

SRL16s based implementation: Xilinx Shift Register

- The CLB is the basic logic unit in a FPGA.
 - Each CLB has four slices.
 - Only the two at the left of the CLB can be used as shift registers.
- LUT can be configured as a 16-bit shift register (SRL16)
 - 32 bit shift register normally requires 16 slices
 - Using SRL16 requires only 2 slices

- Data read from SRL16s by two ways:
 - The last bit of its 16 stages (Q15) is always available.
 - A multiplexer allows to access one additional bit from any of its internal stages.

• Data read from SRL16s by two ways:

- The last bit of its 16 stages (Q15) is always available.
- A multiplexer allows to access one additional bit from any of its internal stages.
- Investigated possible area reductions using SRL16s:
 - 8-bit datapath when using $(\chi)^2$
 - 16-bit datapath when using (χ) and $(\chi)^4$
 - MixColumnsSerial requires 16-bit inputs (4 times 4-bit) in every clock cycle
 - Each SRL16 only allows access to 2 bits
 - We have to use eight and sixteen SRL16s to store the state, respectively.

Content of SRL16s for one round of LED when using $(\chi)^2$ for the 8-bit datapath

clk	content of SRL16s	clk						с	onte	nt of	SRI	L16s					
	Init								Re	upda	ıte						
1	00	17	01	02	03	20	21	22 3	23 0	0 01	02	03	22	23	20	21	00
	10	11	11	12	13	30	31	32 3	33 1	1 12	13	10	33	30	31	32	11
2	00 01	18	02	03	20	21	22	23 (00 0	1 02	03	22	23	20	21	00	01
-	10 11	10	12	13	30	31	32	33	11 1	2 13	10	33	30	31	32	11	12
3	00 01 02	19	03	20	21	22	23	00 (01 0	2 03	22	23	20	21	00	01	02
	10 11 12		13	30	31	32	33	11	12 1	3 10	33	30	31	32	11	12	13
4	00 01 02 03	20	20	21	22	23	00	01 (02 0	3 22	23	20	21	00	01	02	03
	10 11 12 13	20	30	31	32	33	11	12	13 1	D 33	30	31	32	11	12	13	10
5	00 01 02 03 20	21	21	22	23	00	01	02 (03 2	2 23	20	21	00	01	02	03	22
	10 11 12 13 30	2.	31	32	33	11	12	13	10 3	3 30	31	32	11	12	13	10	33
6	00 01 02 03 20 21	22	22	23	00	01	02	03 2	22 2	3 20	21	00	01	02	03	22	23
0	10 11 12 13 30 31	22	32	33	11	12	13	10 3	33 3	D 31	32	11	12	13	10	33	30
7	00 01 02 03 20 21 22	23	23	00	01	02	03	22 3	23 2	0 21	00	01	02	03	22	23	20
<i>'</i>	10 11 12 13 30 31 32	25	33	11	12	13	10	33 :	30 3	1 32	11	12	13	10	33	30	31
8	00 01 02 03 20 21 22 23	24	00	01	02	03	22	23 3	20 2	1 00	01	02	03	22	23	20	21
0	10 11 12 13 30 31 32 33	24	11	12	13	10	33	30 3	31 3	2 11	12	13	10	33	30	31	32
	SrSc									MCS							
0	00 01 02 03 20 21 22 23 00	25	01	02	03	22	23	20 3	21 0	0 01	02	03	22	23	20	21	00'
	10 11 12 13 30 31 32 33 11	25	12	13	10	33	30	31 3	32 1	1 12	13	10	33	30	31	32	10'
10	00 01 02 03 20 21 22 23 00 01	26	02	03	22	23	20	21 (00 0	1 02	03	22	23	20	21	00'	01'
10	10 11 12 13 30 31 32 33 11 12	20	13	10	33	30	31	32	11 1	2 13	10	33	30	31	32	10'	11'
11	00 01 02 03 20 21 22 23 00 01 02	27	03	22	23	20	21	00 (01 0	2 03	22	23	20	21	00'	01'	02'
1.1	10 11 12 13 30 31 32 33 11 12 13	121	10	33	30	31	32	11	12 1	3 10	33	20	31	32	10'	11'	12'
12	00 01 02 03 20 21 22 23 00 01 02 03	28	22	23	20	21	00	01 (02 0	3 22	23	20	21	00 ′	01'	02'	03'
12	10 11 12 13 30 31 32 33 11 12 13 10	20	33	30	31	32	11	12	13 1	0 33	30	31	32	10 '	11'	12'	13'
12	00 01 02 03 20 21 22 23 00 01 02 03 22	20	23	20	21	00	01	02 (03 2	2 23	20	21	00'	01'	02'	03'	20'
15	10 11 12 13 30 31 32 33 11 12 13 10 33	29	30	31	32	11	12	13	10 3	3 30	31	32	10'	11'	12'	13'	30′
14	00 01 02 03 20 21 22 23 00 01 02 03 22 23	20	20	21	00	01	02	03 1	22 2	3 20	21	00'	01'	02'	03'	20'	21'
14	10 11 12 13 30 31 32 33 11 12 13 10 33 30	130	31	32	11	12	13	10 3	33 3	0 31	32	10'	11'	12'	13'	30'	31'
15	00 01 02 03 20 21 22 23 00 01 02 03 22 23 20	21	21	00	01	02	03	22 3	23 2	0 21	00'	01'	02'	03′	20'	21'	22'
13	10 11 12 13 30 31 32 33 11 12 13 10 33 30 31	1 31	32	11	12	13	10	33 :	30 3	1 32	10'	11'	12'	13'	30'	31'	32'
16	00 01 02 03 20 21 22 23 00 01 02 03 22 23 20 21	22	00	01	02	03	22	23 3	20 2	1 00/	01'	02'	03'	20'	21'	22'	23'
10	10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32	32	11	12	13	10	33	30 3	31 3	2 10'	11'	12'	13'	30'	31'	32'	33'

FPGA serialized implementation results of LED

Design	MDS approach	Data- path (bits)	Block Size (bits)	Key Size (bits)	Area (slices)	Clock Cycles	T/put (Mbps)	Eff. (Mbps/ slices)	FPGA Device		
	()	4	64	64	140	1120	9.11	0.07			
	(X)	4	04	128	167	1680	5.2	0.03			
	$(\alpha)^2$	~	64	64	169	608	16.6	0.10	Sporton 2 VC2850 5		
	$(\boldsymbol{\lambda})$	0	04	128	203	912	9.97	0.05	spartal-5 AC5350-5		
LED	$(\boldsymbol{\gamma})^4$	16	64	64	180	352	24.99	0.14			
Serialized	(1)	10	04	128	219	528	15.6	0.07			
	$(\boldsymbol{\gamma})$	4	64	64	37	1120	21.6	0.58			
	(1)		0.	128	40	1680	14.02	0.35			
	$(\boldsymbol{\chi})^2$	8	64	64	58	608	40.03	0.69	Artix-7 XC7A100T-3		
	(1)			128	61	912	25.02	0.41			
	$(\chi)^4$	16	64	64	78	352	66.8	0.86			
	(\mathbf{x})			128	82	528	45.53	0.56			
	(24)	16	64	64	111	640	11.96	0.11			
	(\mathbf{x})	10	04	128	122	960	7.88	0.06	1		
	$(\alpha)^2$	0	64	64	77	768	9.93	0.13	Sporton 2 VC2S50 5		
	(X)	0	04	128	86	1152	6.71	0.08	Spartal=5 AC5550=5		
LED	$(\chi)^4$	16	64	64	119	256	29.82	0.25			
Serialized using SRL16s		16	64	128	127	384	19.65	0.15			
	(7)	16	64	64	51	640	30.39	0.60			
	(1)	10	04	128	59	960	20.57	0.35			
	$(x)^{2}$	8	64	64	40	768	22.93	0.57	Artix-7 XC7A100T-3		
	(L)	0	04	128	50	1152	16.81	0.34	Alux-7 ACTA1001-5		
	$(\boldsymbol{\gamma})^4$	16	64	64	63	256	71.21	1.13			
	(1)	10	0.	128	69	384	47.75	0.70			
PRESEN	Г		64	128	117	256	28.46	0.24	Spartan-3 XC3S50-5		
HIGHT	64	128	91	160	65.48	0.72	Spartan-3 XC3S50-5				
xTEA			64	128	254	112	35.78	0.14	Spartan-3 XC3S50-5		
PRESEN	г		64	80	271	—	—		Spartan-3E XC3S500		
SIMON			128	128	36	—	3.60	0.10	Spartan-3E XC3S500		
AES			128	128	184	160	36.5	0.20	Spartan-3 XC3S50-5		
AES			128	128	393	534	16.86	0.04	Spartan-3 XC3S50-5		

• One can see in the previous table that our SRL16 implementation technique both saves area and increases throughput compared to a classical optimized serial implementation.

- One can see in the previous table that our SRL16 implementation technique both saves area and increases throughput compared to a classical optimized serial implementation.
- We believe this technique is very interesting in order to implement serial-matrix based cryptographic primitives in FPGA technology.

A round based architecture of the PHOTON

Round-based implementation results of PHOTON

Design	MDS approach	Data- path (bits)	Area (slices)	Clock Cycles	T/put (Mbps)	Eff. (Mbps/ slices)	FPGA Device
DUOTON 80/20/16	(χ)	100	285	12	130.88	0.46	Spartan-3 XC3S50-5
FII010N-80/20/10	(X)	100	142	12	387.75	2.73	Artix-7 XC7A100T-3
SPONGENT-	-88	88	157	45	17.78	0.11	Spartan-3

PHOTON-128/16/16	(χ)	144	549	12	87.19	0.16	Spartan-3 XC3S50-5
PHUIUN-128/10/10	(χ)	144	204	12	252.04	1.24	Artix-7 XC7A100T-3
SPONGENT-	128	136	208	70	11.43	0.06	Spartan-3

PHOTON-160/36/36	(χ)	196	846	12	183.09	0.22	Spartan-3 XC3S400-5
110101-100/30/30	(χ)	196	429	12	467.25	1.10	Artix-7 XC7A100T-3
SPONGENT-160		176	264	90	8.89	0.03	Spartan-3

PHOTON-224/32/32	(χ)	256	1235	12	137.95	0.11	Spartan-3 XC3S400-5
1 110101-22-4/52/52	(χ)	256	616	12	402.11	0.65	Artix-7 XC7A100T-3
SPONGENT-2	224	240	322	120	6.67	0.02	Spartan-3

PHOTON-256/32/32	(χ)	288	2067	12	94.24	0.05	Spartan-3 XC3S400-5
1 10101-250/52/52	(χ)	288	865	12	299.81	0.35	Artix-7 XC7A100T-3
SPONGENT-2	256	272	357	140	5.71	0.02	Spartan-3
CUBEHASH-2	256	—	2883	—	50	0.017	Spartan-3 XC3S5000-5

A serialized architecture of the PHOTON

The SRL16s based implementation of PHOTON

Serialized implementation results of PHOTON

Design	impl. approach	MDS approach	Data- path (bits)	Area (slices)	Clock Cycles	T/put (Mbps)	Eff. (Mbps/ slices)	FPGA Device
	serial	(X)	4	146	648	3.10	0.02	Sporton 3 VC3850 5
	SRL16	(X)	20	112	360	6.57	0.06	Spartan-5 AC5350-5
DUOTON 80/20/16	serial	(X)	4	67	648	10.17	0.15	Artix-7 XC7A100T-3
110101 00/20/10	SRL16	(X)	20	58	360	18.33	0.32	ruux riteritioor s
	serial	(X)	4	82	648	9.34	0.11	Virtex 5 XC5VI X50 1
	SRL16	(X)	20	69	360	15.84	0.22	VIIICX-5 AC5 VEA50-1
PHOTON	1-80/20/16		4	149	708	7	0.05	Virtex-5
SPON	GENT-88		4	116	900	.81	0.01	Spartan-3

	serial	(X)	4	183	924	1.76	0.01	Sporton 3 XC3850 5
PHOTON 128/16/16	SRL16	(X)	24	137	504	3.67	0.03	Spartan-5 AC5350-5
FII010N-120/10/10	serial	(X)	4	84	924	6.24	0.07	Artix 7 XC7A100T 3
	SRL16	(X)	24	72	504	10.87	0.20	Alux-/ AC/Aloo1-5
PHOTON-128/16/16			4	469	948	.551	0.001	Spartan-3
SPONGENT-128			4	144	2380	.34	0.002	Spartan-3

	serial	(X)	4	233	1248	2.01	0.01	Spartan-3 XC3S50-5
PHOTON-160/36/36	SRL16	(X)	28	164	672	6.58	0.04	sparan s resources
	serial	(X)	4	117	1248	9.47	0.08	Artix 7 XC7A100T 3
	SRL16	(X)	28	89	672	17.58	0.20	Alux-/ AC/Aloo1-5
SPONGENT-160			4	193	3960	.2	0.001	Spartan-3

	serial	(X)	4	274	1620	1.36	0.005	Sporton 3 XC3850 5
PHOTON 224/32/32	SRL16	(X)	32	176	864	4.57	0.03	Spartan-5 AC5550-5
	serial	(X)	4	130	1620	7.55	0.06	Artix 7 XC7A100T 3
	SRL16	(X)	32	96	864	12.12	0.13	Alux-7 AC/A1001-5
SPONG	ENT-224		4	225	7200	.11	0.0005	Spartan-3
	serial	(X)	8	327	924	1.47	0.004	Sporton 3 XC3850 5
PHOTON 256/32/32	SRL16	(X)	48	416	504	3.74	0.009	spartan-5 AC5550-5
FII010N-250/52/52	serial	(X)	8	157	924	4.59	0.03	Artix-7 XC7A100T-3
	SRL16	(X)	48	159	504	10.75	0.07	Allix-/ AC/A1001-5
SPONG	ENT-256		4	241	9520	0.08	.0003	Spartan-3 XC3S200-5
SHAB	AL-256		—	499	-	.8	1.60	Spartan-3 XC3S200-5
BLAI	KE-256		-	631		216.3	0.34	Spartan-3 XC3S50-5
GR	ØSTL		—	766		192.6	0.25	Spartan-3 XC3S50-5
	JH		—	558	_	63.7	0.11	Spartan-3 XC3S50-5
KECCAK			-	766	-	46.2	0.06	Spartan-3 XC3S50-5
SKEIN			—	766		16.6	0.02	Spartan-3 XC3S50-5
SHA-2			—	745	—	137.8	0.19	Spartan-3 XC3S50-5

Conclusion

- In this paper, we have analyzed the feasibility of creating a very compact, low cost FPGA implementation of LED and PHOTON.
- For both primitives, we studied round-based and serial architectures.
- We implemented several possible trade-offs when computing the diffusion matrix.
- Our results show that LED and PHOTON are very good candidates for lightweight applications.
- Our implementations yield for example the best area of all lightweight hash functions implementations published so far.

Thank you! Any questions?