

Distinguishers for the Compression Function and Output Transformation of Hamsi-256

Jean-Philippe Aumasson Emilia Käsper Lars Ramkilde Knudsen Krystian Matusiewicz **Rune Ødegård** Thomas Peyrin Martin Schläffer

ACISP, Sydney, Australia - 2010-07-05

Introduction

Description of Hamsi-256

Higher-order differential analysis

First order differential analysis

Summary

Questions?

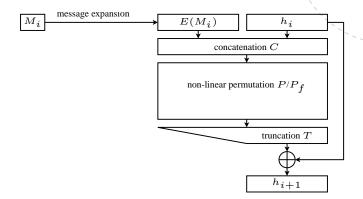
NIST Hash Competition

- Collision attacks on the deployed standards MD5 and SHA-1 [WLF⁺05, WY05, WYY05b, WYY05a] have weakened the confidence in the MD family of hash functions.
- The US Institute of Standards and Technology (NIST) launched a public competition to develop a future SHA-3 standard [NIS07].
- The hash function Hamsi [KÖ9a] is one of 64 designs submitted to NIST in fall 2008.
- Hamsi is also one of the 14 submissions selected for the second round of the competition.

Introduction

Description of Hamsi-256

Higher-order differential analysis

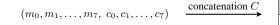

First order differential analysis

Summary

Questions?

Hamsi domain extension algorithm ${ \mathscr{Y} }$

Q2S


Message expansion

- The message expansion of Hamsi uses a linear code to expand a 32-bit word into eight words (that is, 256 bits).
- The minimum distance of the code is 83.

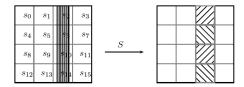
Concatination

m_0	m_1	c_0	c_1	
c_2	c_3	m_2	m_3	
m_4	m_5	c_4	c_5	
c_6	c_7	m_6	m_7	

Truncation

s

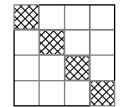
^s 0	^s 1	s_2	^s 3		^s 0	s_1	s_2	^s 3	
s_4	^s 5	^s 6	^s 7	truncation T		\sum	$\langle \rangle$	$\langle \rangle$	
^s 8	^s 9	s_{10}	s_{11}		^s 8	^s 9	s_{10}	^s 11	
312	^s 13	^s 14	^s 15		\square	$\langle \rangle \langle$	\square	\square	


Permutations

- The permutations P and P_f only differ in the number of rounds (3 for P and 6 for P_f), and the constants used.
- The round function is composed of three layers.
- First, constants and a counter are XORed to the whole internal state.
- Then there is a substitution layer.
- Followed by a linear layer.

Permutation - Substitution layer

The substitution layer uses one 4-bit Sbox of the block cipher Serpent [BAK98], in a bitsliced way.


x	0 1	2	3 4	5	6	7	8	9 1	0 11	12	13	14	15
S[x]	8 6	7	9 3	12	10	15	13	1 1	4 4	0	11	5	2

Permutation - Linear layer.

A_0	B_0	<i>C</i> ₀	D_0	
D_1	A_1	B_1	C_1	
C_2	D_2	A_2	B_2	
B_3	C_3	D_3	A_3	

L

$$a := a \ll 13$$

$$c := c \ll 3$$

$$b := a \oplus b \oplus c$$

$$d := (a \ll 3) \oplus c \oplus d$$

$$b := b \ll 1$$

$$d := d \ll 7$$

$$a := a \oplus b \oplus d$$

$$c := (b \ll 7) \oplus c \oplus d$$

$$a := a \ll 5$$

$$c := c \ll 22$$

Introduction

Description of Hamsi-256

Higher-order differential analysis

First order differential analysis

Summary

Questions?

Definitions

k-sum problem for Hamsi's compression function *f*

Find x_1, \ldots, x_k strings of *n* bits such that

$$\bigoplus_{i=1}^k f(x_k) = 0$$

Zero-sum problem: additional requirement that $\bigoplus_{i=1}^{k} x_i = 0$ Generic method: generalized birthday in $O(k2^{n/(1+\log k)})$ [Wag02] XHASH attack (linear algebra) for $k \approx n$ [BM97]

Observation

- The only nonlinear component of Hamsi's compression function is the layer of Sboxes.
- One round thus has degree 3.
- *N* rounds have degree at most 3^{*N*}, with respect to any choice of variables.
- With carefully chosen variables we can make the first round linear and the degree at most 3^{*N*-1} after *N* rounds.
- This means that the degree is at most 81 after five rounds, and that at least six rounds are necessary to reach maximal degree.

Finding k-sums and zero sums

- For randomly chosen 256-bit values, finding 4-sums for the compression function of Hamsi requires an effort of complexity approximately 2⁸⁷, using the generalized birthday method.
- Because of the low algebraic degree of Hamsi we are able to find 16-sums, 8-sums and 4-sums efficiently
- Examples found for the IV specified in [K09b]
- Based on the work of [Wag99, §9], we show how to find large zero sums efficiently by exploting the fact that two *halves* of Hamsi's permutation have low algebraic degree

Introduction

Description of Hamsi-256

Higher-order differential analysis

First order differential analysis

Summary

Questions?

Differential properties of the Sbox

- About half the differential transitions are impossible
- The probabilities of the non-zero differentials are either 2⁻² or 2⁻³.
- We construct high-probability differential paths by
 - 1. keeping the overall number of active Sboxes low and
 - 2. avoiding probability 2^{-3} differentials where possible

Tirst order differential analysis Differential properties of the Linear f transform

- Each bit of *L* contributes to one of the 128 Sboxes in each round.
- To minimize the number of active Sboxes, we thus need to minimize number of differences in *L*.
- If we introduce a single input difference at bit position in one input word, the HW of the output differences depends on the position and word of the input difference.
- We observe that for some specific words and bit positions, the resulting HW can be quite small. This happens if one or more differences are removed by the shift operation.

Near collision

- Using our observations on the differential properties of Hamsi's Sbox and linear transform we searched manually for high-probability paths leading to near-collisions for the compression function.
- Nikolic reported near collisions [Nik09] on (256 25) bits with 14 differences in the chaining value.
- Wang et al. reported [WWJW09] near collisions on (256 23) bits with 16 differences in the chaining value.
- We found a (256 25)-bit collision from 6 bit differences.

Automated differential path search

- We searched for differential paths with some difference in the input and output chaining value, and no difference in the input message.
- For this purpose we constructed an automated differential path randomized search algorithm.
- The primary heuristic is to minimise the HW of the differences in each round.
- Full details of the path search are in the paper.

It.		Sbox	input		Sbox output				
start					00000000 2C020018 00000000 28020018	00000000 000045C0 00000000 000045C0	84004880 00000000 84024880 00000000	4081C400 00000000 4081C400 00000000	
1	00000000 2C020018 00000000 28020018	00000000 000045C0 00000000 000045C0	84004880 00000000 84024880 00000000	4081C400 00000000 4081C400 00000000	04000000 28020018 00000018 04020000	00000000 000040C0 00004100 000004C0	04000000 04020000 00000800 80024880	40818000 00000000 00804000 00004400	(58)
2	00000000 30000010 30000010 00000000	00000000 00000080 00000080 00000000	00000000 00000000 00000000 00000000	00010000 00000080 00010080 00000000	00000000 30000000 00000010 00000000	00000000 00000000 00000000 00000080	00000000 00000000 00000000 00000000	00010000 00000080 00000000 00000000	17
3	00000000 20000000 20000000 00000000	00000000 00000000 00000000 00000000	00000000 00000000 00000000 00000000	00000000 00000000 00000000 00000000	00000000 20000000 00000000 00000000	00000000 00000000 00000000 00000000	00000000 00000000 00000000 00000000	00000000 00000000 00000000 00000000	3
4	00000000 40000000 00000000 00000000	00000000 00000000 00000000 00000000	00000000 00000000 00000000 00000000	00000008 00000000 00000000 00000000	40000000 40000000 00000000 00000000	00000000 00000000 00000000 00000000	00000000 00000000 00000000 00000000	00000000 00000008 00000000 00000008	5
5	04038000 80000000 00000002 00000000	00000000 00001000 00000000 00000000	00000200 00000000 00000a01 00000000	00000010 00000010 00000000 00200400	80000000 04038002 00000000 84038002	00001000 00001000 00000000 00000000	00000000 00000801 00000000 00000a01	00200410 00000000 00000000 00200400	33
6	08420002 0903000C 00000000 01C0014A	F8022900 00000000 A0A26145 00000000	00000000 04001002 00041080 08051082	30821140 00000000 12807200 10420000	08830144 0181014C 01800148 00400002	A0022100 58A04845 58A04845 58000800	0C051080 0C051082 08011002 00040080	10C01000 22406340 22406340 20020140	90
End	CD9F7546 8D0682FD 88871BEA A1DD0199	362513EA F100928A 70315A82 40072022	56FE147F B44C3D06 4819C14B 8329356A	85F6B1E1 18A0D101 26257026 A744E830		4 🗆	▶ ∢∄▶		

 $\mathcal{A} \mathcal{A} \mathcal{A}$

6-round differential path

- We found a differential path for 6 round Hamsi with probability 2^{-148} . Ideally, each differential should have probability $\approx 2^{-256}$.
- Thus, we show that the output transformation does not behave ideally.
- The current results don't seem to affect the security claims of the full hash function.
- However, we recommend increasing the number of rounds to 8.

Introduction

Description of Hamsi-256

Higher-order differential analysis

First order differential analysis

Summary

Questions?

Summary

Higher-order and standard differential cryptanalysis applied to the compression function of Hamsi-256

- Suboptimal algebraic degree
- k-sums and zero-sums found efficiently
- Near collisions; we found a (256 25)-bit collision from 6 bit differences.
- We found a differential path for 6 round Hamsi with probability 2⁻¹⁴⁸.
- We found a truncated differential path for 6 rounds in 180 of 256 output bits with probability 2^{-120.8}

Introduction

Description of Hamsi-256

Higher-order differential analysis

First order differential analysis

Summary

Questions?

Introduction

Description of Hamsi-256

Higher-order differential analysis

First order differential analysis

Summary

Questions?

References I

Eli Biham, Ross J. Anderson, and Lars R. [BAK98] Knudsen Serpent: A new block cipher proposal. In Serge Vaudenay, editor, FSE, volume 1372 of LNCS, pages 222–238. Springer, 1998. Mihir Bellare and Daniele Micciancio. [BM97] A new paradigm for collision-free hashing: Incrementality at reduced cost. In Walter Fumy, editor, EUROCRYPT, volume 1233 of LNCS, pages 163-192. Springer, 1997. [KÖ9a] Özgül Kücük. The hash function Hamsi. Submission to NIST, January 2009.

References II

[KÖ9b] Özgül Kücük. Reference implementation of Hamsi. Submission to NIST, January 2009. [Nik09] Ivica Nikolić. Near collisions for the compression function of Hamsi-256.

CRYPTO rump session, 2009.

[NIS07]

NIST.

Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-3) family.

Federal Register Notice, 72(112), November 2007.

References III

http://csrc.nist.govgroups/ST/hash/ documents/FR_Notice_Nov07.pdf.

- [Wag99] David Wagner. The boomerang attack. In Lars R. Knudsen, editor, *FSE*, volume 1636 of *LNCS*, pages 156–170. Springer, 1999.
 [Wag02] David Wagner.
- A generalized birthday problem. In Moti Yung, editor, *CRYPTO*, volume 2442 of *LNCS*, pages 288–303. Springer, 2002.

References IV

 [WLF⁺05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu.
 Cryptanalysis of the hash functions MD4 and RIPEMD.
 In Ronald Cramer, editor, *EUROCRYPT*, volume 3494 of *LNCS*, pages 1–18. Springer, 2005.

[WWJW09] Meiqin Wang, Xiaoyun Wang, Keting Jia, and Wei Wang. New pseudo-near-collision attack on reduced-round of Hamsi-256. Cryptology ePrint Archive, Report 2009/484, 2009.

References V

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald Cramer, editor, *EUROCRYPT*, volume 3494 of *LNCS*, pages 19–35. Springer, 2005.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu.
 Finding collisions in the full SHA-1.
 In Victor Shoup, editor, *CRYPTO*, volume 3621 of *LNCS*, pages 17–36. Springer, 2005.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attacks on SHA-0. In Victor Shoup, editor, *CRYPTO*, volume 3621 of *LNCS*, pages 1–16. Springer, 2005.