Inside the hypercube

Jean-Philippe Aumasson Eric Brier Willi Meier María Naya-Plasencia Thomas Peyrin

Talk kindly given by Michael Gorski

CubeHash

D.J. Bernstein's SHA-3 candidate
"A simple hash function"
"ARX" algorithm ($+, \oplus, \gg$)
Sponge-like construction:

- r-round permutation of a 1024 -bit state, $r \in\{1,2, \ldots\}$
- XOR b-byte message block, $b \in\{1, \ldots, 128\}$
- repeat for each block
- finalize the state: $10 r$ rounds

Submission: $b=1, r=8$

CubeHash round

This talk

First third-party analysis of CubeHash
Improved generic attacks
Multicollisions strategy
State symmetries
Fixed point
Distinguisher

Previous (subsequent) works

Focus on collisions by linearization

- Aumasson $r=2, b=114$
- Dai $r=2, b=3$
- Peyrin $r=2, b=12$
- Brier, Khazaei, Meier, Peyrin $r=2, b=2$
- Brier, Khazaei, Meier, Peyrin $r=3, b=64$
- ...

Generic preimage attacks

- meet-in-the-middle on 128 - b bytes
- fwrd/bwrd multiblock computation
- $\exp _{2}(522-4 b-\log b)$ permutations

Improved generic preimage attacks

- multiple meet-in-the-middle on 128 - b bytes
- fwrd/bwrd multiblock computation
- $\exp _{2}(513-4 b)$ permutations

Multicollisions

Key observations:

- the zero state is a fixed point for the permutation
- no counter and no padding of message

Technique for finding q-collisions:

1. meet-in-the-middle IV $\rightarrow X \leftarrow 0$
2. append zero message blocks

Costs $2^{513-4 b}$ permutations (vs. Joux's $\log q \times 2^{512-4 b}$)

State symmetries

Permutation T applied to 32 words $x[0], \ldots, x[31]$
If input of the form

AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP

then output of the same form (with different values)
2^{512} states follow this pattern (out of 2^{1024} states)
Define a subgroup of 2^{512} elements

State symmetries

Can represent symmetry classes by a set of pairs (i, j), meaning $x[i]=x[j]$, for example

AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP
represented by $(0,1),(2,3), \ldots,(28,29),(30,31)$

State symmetries

Can represent symmetry classes by a set of pairs (i, j), meaning $x[i]=x[j]$, for example

AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP represented by $(0,1),(2,3), \ldots,(28,29),(30,31)$

Use this representation for an exhaustive enumeration of all distinct (but non-disjoint) symmetry classes:

- 16 classes C_{0}, \ldots, C_{15}
- each class contains 2^{512} states
- 2^{516} symmetric states in total
- $T\left(C_{i}\right)=C_{i}, i=0, \ldots, 15$

Exploiting symmetries

Key idea: classes sizes give upper bound on the size of the cycle of a symmetric state
\Rightarrow search for near collisions within a permutation cycle
Preimage attack (for $b \geq 4$)

1. meet-in-a-same-class C_{i}
2. collision within C_{i} using symmetry-preserving blocks

For $b=4$, meet in $C_{1}: 2^{481}$ permutations
vs. 2^{493} with the improved generic attack
Works for any reasonable r

On fixed points

$1 / k$ cycles of length k expected for a random permutation
\Rightarrow one fixed point expected (length-1 cycle)
Same round permutation repeated r times, thus

- a r-cycle gives r fixed points
- cycles of length dividing r give more fixed points

Taking symmetry classes into account:

- 67 fixed points expected for one round
- 269 for 8 rounds of CubeHash
\approx nonrandomness property

Distinguisher

Find a 3 -round characteristic with weights $64 \rightarrow 1$
64 secret bits in $x[25]$ and $x[26]$
Weight-1 difference gives observable biases after 7 more rounds
\Rightarrow truncated differential on 10 rounds
Not relevant to CubeHash hashing mode

Conclusion

CubeHash "broken", in the sense "less than 2^{n} permutations"...
Author considers "bit operations" (2^{11} per round)
Large parameters space, many safe choices
Which definition of nonrandomness is sufficient?

Inside the hypercube

Jean-Philippe Aumasson Eric Brier Willi Meier María Naya-Plasencia Thomas Peyrin

Talk kindly given by Michael Gorski

