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Integer Representations

Binary representation n =
∑

ai 2
i where ai ∈ {0, 1}

e.g. (13)10 = (001101)2 = (1101)2.

Unicity: The most significant bit is not 0.

Ternary representation n =
∑

ai 2
i where ai ∈ {0, 1, 1̄}

e.g. (13)10 = (1001̄1̄)2 = (11̄0001̄1̄)2 = (101̄01)2.

Unicity: For any two adjacent digits, at least one is zero
and the most significant digit is not 0 [Reitwiesner, 1960].
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Foundations

{0, 1, 1̄} can be generalized to {0, 1, x}. Improvement of [Muir
and Stinson, 2003]

The canonical representation of an integer using {0, 1, x} is
defined as in the case {0, 1, 1̄}: For any two adjacent digits,
at least one is zero and the most significant digit is not 0.

Such a representation is called the {0, 1, x}-Non-Adjacent
Form (NAF), if it exists.

Which sets D = {0, 1, x} where x ∈ Z are such that every
positive integer has a D-NAF?

Such a set {0, 1, x} is called a Non-Adjacent Digit Set (NADS).

G. Avoine, J. Monnerat, and T. Peyrin Advances in Alternative Non-Adjacent Form Representations



Preliminaries
Theoretical Results
Algorithmic Aspects

Conclusion
Known NADS

{0, 1, 1̄}

{0, 1, 3}

{0, 1,−5}, {0, 1,−13}, {0, 1,−17}, {0, 1,−25}, etc.
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Known NADS

{0, 1, 1̄}

{0, 1, 3} → In the following, we will consider x negative

{0, 1,−5}, {0, 1,−13}, {0, 1,−17}, {0, 1,−25}, etc.
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Infinite Families

Example of infinite family of NADS [Muir and Stinson, 2003]:

Let x be a negative integer such that x ≡ 3 (mod 4) and
x = 7− 2t , t ≥ 3, {0, 1, x} is a NADS iff t is odd
e.g. -1, -25, -121, etc.

Example of infinite family of NON-NADS [Muir and Stinson, 2003]:

Let x be a negative integer, if 3−x
4 = 11 · 2i with i ≥ 0, then

{0, 1, x} is a not a NADS (so called NON-NADS)
e.g. -41, -85, -173, etc.
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NADS

How to determine whether or not a set D = {0, 1, x} is a NADS?

Definition
D is a NADS iff every positive integer has a D-NAF.

Theorem (Muir and Stinson)
If every positive integer in [0, b−x/3c] has a D-NAF, then D is a
NADS.

Theorem (Muir and Stinson)
If every positive integer in [0, b−x/3c] and equal to 3 modulo 4 has
a D-NAF, then D is a NADS.
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NAF

How to determine whether or not an integer n has a D-NAF?

Theorem
A positive integer n has a D-NAF iff, fD(n) has a D-NAF, where

fD(n) = n
4 if n ≡ 0 (mod 4)

fD(n) = n−1
4 if n ≡ 1 (mod 4)

fD(n) = n
2 if n ≡ 2 (mod 4)

fD(n) = n−x
4 if n ≡ 3 (mod 4)
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Graph of n

Gn : n −→ fD(n) −→ f 2
D(n) −→ f 3

D(n) −→ . . . −→ 0

f 4
D(n)

↙ ↖

Gn : n −→ fD(n) −→ f 2
D(n) −→ f 3

D(n)

Either fD(n) reaches 0 or fD(n) loops because:

fD(n) ≤ −x
3 when n is in the search domain

0 is the only fixpoint of fD
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Graph of n

Gn : n −→ fD(n) −→ f 2
D(n) −→ f 3

D(n) −→ . . . −→ 0

f 4
D(n)

↙ ↖

Gn : n −→ fD(n) −→ f 2
D(n) −→ f 3

D(n)

Either fD(n) reaches 0 or fD(n) loops because:

fD(n) ≤ −x
3 when n is in the search domain

0 is the only fixpoint of fD

A positive integer n has a D-NAF iff Gn does not contain cycle.
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Theoretical Results
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Contents

Search domain

Generators of infinite families of NON-NADS

Worst NON-NADS
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Search Domain

Theorem
If every positive integer in [0, b−x/3c] has a D-NAF, then D is a
NADS.
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Search Domain

Theorem
If 3 - x and every positive integer in [0, b−x/3c] has a D-NAF,
then D is a NADS.
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Search Domain

Theorem
If 3 - x and every positive integer in [0, b−x/6c] has a D-NAF,
then D is a NADS.
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Search Domain

Theorem
If 3 - x and every positive integer in [0, b−x/6c] has a D-NAF,
then D is a NADS.

Theorem
If 3 - x and 7 - x and every positive integer in [0, b−x/12c] ∪
[b−x/7c, b−x/6c] has a D-NAF, then D is a NADS.
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Generators of NON-NADS

n has a D-NAF if and only if Gn does not contain any cycle.

If it exists n such that Gn contains a cycle, D is not a NADS.

Instead of looking for NADS, we look for NON-NADS,
obtaining (theoretically) the NADS by completion.

We consider a cycle of a given form and deduce the x ’s for
which it exists an n which lies in this cycle.
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Generators of NON-NADS

We choose the length t of the cycle and solve

f t
D(n) = n.

Define f0(n) = n
4 , f1(n) = n−1

4 , f2(n) = n
2 , and f3(n) = n−x

4 .

We choose the form of the cycle and solve

f t
D(n) = fit ◦ fit−1 ◦ . . . fi1 (n) = n,

for some chosen ik ∈ {0, 1, 2, 3} for k = 1, 2 . . . , t.

Such a cycle is denoted as i1|i2| . . . |it .
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2-cycles

We have 3 possible cycles of length 2, namely 3|0, 3|1 and
3|2.

They lead to the equations n−x
16 = n, n−x−4

16 = n and
n−x

8 = n.

Since n ≡ 3 (mod 4), we can set n = 4k − 1.

Theorem
If x = −60k + 15, x = −60k + 11 or x = −28k + 7 with k ∈ N,

then {0, 1, x} is a NON-NADS.
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t-Cycles

We apply our method to a cycle of length t of the form
3|3|3| . . . |3|0.

We solve f0 ◦ f t−1
3 (n) = n for t ≥ 2

Theorem
Let t ≥ 2 and k > 0 be two integers and
x = −(4k − 1)(22t−1 − 1). Then {0, 1, x} is a NON-NADS.
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NADS Density
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Worst NON-NADS

Definition
Let x be a negative integer such that x ≡ 3 (mod 4). {0, 1, x} is
a worst NON-NADS if for all n ≤ − x

3 with n ≡ 3 (mod 4), n has
not {0, 1, x}-NAF.

Theorem
Let x be a negative integer such that x ≡ 3 (mod 4). {0, 1, x}
is a worst NON-NADS if and only if there exists i ≥ 2 such that
(4mi − 1) < −x < (3 · 2i ), where

mi :=





2 · 2i−1
3 for i even

2i+1−1
3 for i odd
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Algorithmic Aspects
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Improvements

Improvements of the search domain
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Improvements

Improvements of the search domain

Generators of NON-NADS as a sieve
(with an optimal cycle length tmax)
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Improvements

Improvements of the search domain

Generators of NON-NADS as a sieve
(with an optimal cycle length tmax)

Worst NON-NADS

Memoization techniques
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Memoization

Memoization consists of remembering function calls and the
corresponding outputs.

The goal is to avoid to call a function several times with the
same arguments.
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Is-NADS?

Is-NADS?(x)

N ← 3

while N ≤ −x
3

do





n← N

S ← ∅
while n 6= 0

do





if n ∈ S

then return false

S ← S ∪ {n}
n← fD (n)

N ← N + 4
return true
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Example

Evaluation of Is-NADS?(-25)
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Example

Evaluation of Is-NADS?(-25)

G3

fD(3)
↓

fD(1)
↓
0
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Example

Evaluation of Is-NADS?(-25)

G3 G7

fD(3) fD(7)
↓ ↓

fD(1) fD(2)
↓ ↓
0 fD(1)

↓
0
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Example

Evaluation of Is-NADS?(-25)

G3 G7 G11

fD(3) fD(7) fD(11)
↓ ↓ ↓

fD(1) fD(2) fD(3)
↓ ↓ ↓
0 fD(1) fD(1)

↓ ↓
0 0
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Memoization Technique

Memoization is a straighforward technique (it can be applied
because x is fixed at the begining of the evaluation of
Is-NADS?(x)).

A much more interesting idea is to use memoization over
several executions of Is-NADS?.

fD(n) depends on x

Memoization only when n 6≡ 3 (mod 4).

For that we define equivalence classes.
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Memoization Technique

Memoization is a straighforward technique (it can be applied
because x is fixed at the begining of the evaluation of
Is-NADS?(x)).

A much more interesting idea is to use memoization over
several executions of Is-NADS?.

fD(n) depends on x but only when n ≡ 3 (mod 4).

Memoization only when n 6≡ 3 (mod 4).

For that we define equivalence classes.
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Equivalence Class of 7

29

469 234 465 464 232 233 232 116468

28

117 116 58 113 112 56

7

14
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Improvements

Improvement of the search domain

Generators of NON-NADS as a sieve

Worst NON-NADS

Memoization techniques
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Reduction of the search domain.

Generator of infinite families of NON-NADS.

Improvement of the Muir and Stinson algorithm
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