Advances in Alternative Non-Adjacent
Form Representations

Gildas Avoine, Jean Monnerat, and Thomas Peyrin

EPFL

Lausanne, Switzerland

(gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Preliminaries

Theoretical Results

Algorithmic Aspects

Conclusion

Preliminaries

@ Binary representation n = Y_ a;2' where a; € {0,1}
e.g. (13)10 = (001101), = (1101)s.

Unicity: The most significant bit is not 0.

o Ternary representation n = >_ a;2' where a; € {0,1,1}
e.g. (13)10 = (10011), = (1100011), = (10101),.

Unicity: For any two adjacent digits, at least one is zero
and the most significant digit is not 0 [Reitwiesner, 1960].

{0,1,1} can be generalized to {0, 1, x}. Improvement of [Muir
and Stinson, 2003]

The canonical representation of an integer using {0,1,x} is
defined as in the case {0,1,1}: For any two adjacent digits,
at least one is zero and the most significant digit is not 0.

Such a representation is called the {0,1, x}-Non-Adjacent
Form (NAF), if it exists.

Which sets D = {0,1,x} where x € Z are such that every
positive integer has a D-NAF?

Such a set {0,1, x} is called a Non-Adjacent Digit Set (NADS).

e {0,1,1}

e {0,1,3}

o {0,1,-5}, {0,1,-13}, {0,1,-17}, {0,1,—25}, etc.

e {0,1,1}

e {0,1,3} — In the following, we will consider x negative

o {0,1,-5}, {0,1,-13}, {0,1,-17}, {0,1,—25}, etc.

Example of infinite family of NADS [Muir and Stinson, 2003]:
@ Let x be a negative integer such that x = 3 (mod 4) and

x=7-2% t>3,{0,1,x} is a NADS iff t is odd
e.g. -1, -25, -121, etc.

Example of infinite family of NON-NADS [Muir and Stinson, 2003]:

@ Let x be a negative integer, if 3;—’(= 11-2 with i > 0, then
{0,1,x} is a not a NADS (so called NON-NADS)
e.g. -41, -85, -173, etc.

How to determine whether or not a set D = {0,1, x} is a NADS?

Definition
D is a NADS iff every positive integer has a D-NAF.

Theorem (Muir and Stinson)
If every positive integer in [0, |—x/3]|] has a D-NAF, then D is a
NADS.

Theorem (Muir and Stinson)
If every positive integer in [0, | —x/3|] and equal to 3 modulo 4 has
a D-NAF, then D is a NADS.

How to determine whether or not an integer n has a D-NAF?

Theorem

A positive integer n has a D-NAF iff, fp(n) has a D-NAF, where

fD n
n

n

(
(
(
(

)=
)=
)=
)=

fD n

ifn=0
ifn=1
ifn=2
ifn=3

Gn: n— fp(n) — f3(n) — f3(n) — ... — 0

f5(n)
/ AN

Gn: n— fp(n) — f,%(n) — fD3(n)

Either fp(n) reaches 0 or fp(n) loops because:
o fp(n) < 5 when nis in the search domain

@ 0 is the only fixpoint of fp

Gn: n— fp(n) — f3(n) — f3(n) — ... — 0

f5(n)
/ AN

Gn: n— fp(n) — f,%(n) — fD3(n)

Either fp(n) reaches 0 or fp(n) loops because:
o fp(n) < 5 when nis in the search domain

@ 0 is the only fixpoint of fp

A positive integer n has a D-NAF iff G, does not contain cycle.

Theoretical Results

@ Search domain

@ Generators of infinite families of NON-NADS

@ Worst NON-NADS

Theorem
If every positive integer in [0, —x/3|] has a D-NAF, then D is a
NADS.

Theorem
If 3+ x and every positive integer in [0,|—x/3|] has a D-NAF,
then D is a NADS.

Theorem
If 3+ x and every positive integer in [0, —x/6|] has a D-NAF,
then D is a NADS.

Theorem

If 3+ x and every positive integer in [0, —x/6|] has a D-NAF,
then D is a NADS.

Theorem

If 34 x and 7 1 x and every positive integer in [0, |—x/12|] U
[[=x/7],[—x/6]] has a D-NAF, then D is a NADS.

@ n has a D-NAF if and only if G, does not contain any cycle.
o If it exists n such that G, contains a cycle, D is not a NADS.

@ Instead of looking for NADS, we look for NON-NADS,

obtaining (theoretically) the NADS by completion.

@ We consider a cycle of a given form and deduce the x's for
which it exists an n which lies in this cycle.

@ We choose the length t of the cycle and solve

f5(n) = n.

® Define fo(n) = 2, fi(n) = "%, fo(n) = §. and fi(n) = "=,

@ We choose the form of the cycle and solve

f5(n)=f,of, jo...f;(n)=n,

It—1

for some chosen i, € {0,1,2,3} for k =1,2...,t.

@ Such a cycle is denoted as i1|iz] . . . |i.

@ We have 3 possible cycles of length 2, namely 3|0, 3|1 and
3)2.
@ They lead to the equations

n—x __
3 = n.

n n—x—4

—X __ —
6 =M 16 —nand

@ Since n=3 (mod 4), we can set n =4k — 1.

Theorem
If x = —60k + 15, x = —60k + 11 or x = —28k + 7 with k € N,
then {0,1,x} is a NON-NADS.

@ We apply our method to a cycle of length t of the form
313/3] ... [3|0.
o We solve fyo £f=1(n) = nfor t >2

Theorem
Let t > 2 and k > 0 be two integers and
x = —(4k — 1)(2%=1 —1). Then {0,1,x} is a NON-NADS.

NADS DENSITY (from 0to -10e-7)

rumber of NADS

40 79 113 157 196 235 274 313 352 391 430 460 508 547 556 B25 BG4 703 742 7RI &30 85O 293 G37 976
interval of test (-10000)

Definition

Let x be a negative integer such that x = 3 (mod 4). {0,1,x} is
a worst NON-NADS if for all n < —% with n = 3 (mod 4), n has
not {0, 1, x}-NAF.

Theorem

Let x be a negative integer such that x = 3 (mod 4). {0,1,x}
is a worst NON-NADS if and only if there exists i > 2 such that
(4m; — 1) < —x < (3-27), where

i .
2. 23—1 for i even

i+1_ .
2 3 L for i odd

Algorithmic Aspects

@ Improvements of the search domain

@ Improvements of the search domain

@ Generators of NON-NADS as a sieve
(with an optimal cycle length tmax)

@ Improvements of the search domain

@ Generators of NON-NADS as a sieve
(with an optimal cycle length tmax)

@ Worst NON-NADS

@ Improvements of the search domain

@ Generators of NON-NADS as a sieve
(with an optimal cycle length tmax)

@ Worst NON-NADS

@ Memoization techniques

@ Memoization consists of remembering function calls and the
corresponding outputs.

® The goal is to avoid to call a function several times with the
same arguments.

Is-NADS?(x)
N «—3

while N < =

n—N
S—o
while n # 0
ifnesS
then return false
S—Su{n}

n«— fp(n)

N—N+14
return true

Is-NADS?(x)
N «—3

while N < =

n—N
S—go
while n # 0
ifnesS
then return false
S—Su{n}

n«— fp(n)

N—N+14
return true

Is-NADS?(x)
N3

while NV < =

n—N
S—go
while n # 0
ifnesS
then return false
S—Su{n}

n«— fp(n)

N«— N+4
return true

Is-NADS?(x)
N3

while NV < =

n—N
S—go
while n # 0
ifnesS
then return false
S—Su{n}

n«— fp(n)

N«— N+4
return true

Evaluation of Is-NADS?(-25)

Evaluation of Is-NADS?(-25)
G3

p(3)

(

l
fo(1)
l
0

—~~
Lo
N
L
o~
(%)
|
<
=
o
(.
o
c
.2
-
[q]
=2
[
>
L

Gy

—~~
Lo
N
L
o~
(%)
|
<
=
o
(.
o
c
.2
-
[q]
=2
[
>
L

—~~
Lo
N
L
o~
(%)
|
<
=
o
(.
o
c
.2
-
[q]
=2
[
>
L

—~~
Lo
N
L
o~
(%)
|
<
=
o
(.
o
c
.2
-
[q]
=2
[
>
L

Memoization is a straighforward technique (it can be applied
because x is fixed at the begining of the evaluation of
Is-NADS?(x)).

A much more interesting idea is to use memoization over
several executions of Is-NADS?.

fp(n) depends on x

Memoization only when n # 3 (mod 4).

For that we define equivalence classes.

Memoization is a straighforward technique (it can be applied
because x is fixed at the begining of the evaluation of
Is-NADS?(x)).

A much more interesting idea is to use memoization over
several executions of Is-NADS?.

fp(n) depends on x but only when n =3 (mod 4).

Memoization only when n # 3 (mod 4).

For that we define equivalence classes.

@ Improvement of the search domain

@ Generators of NON-NADS as a sieve

@ Worst NON-NADS

@ Memoization techniques

—~
)
=}
=
o
51
o
2
<
o
£
=

2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07 1.4e+07

-X

[MS03]

—~
)
=}
=
o
51
o
2
<
o
£
=

2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07 1.4e+07

-X

—~
)
=}
=
o
51
o
2
<
o
£
=

[MS03]

—

" [AMPO4]

2e+06 4e+06

6e+06 8e+06 le+07 1.2e+07 1.4e+07
-X

—~
)
=}
=
o
51
o
2
<
o
£
=

[MS03]

[MS04]

—

" [AMPO4]

2e+06 4e+06

6e+06 8e+06 le+07 1.2e+07 1.4e+07
-X

Conclusion

@ Reduction of the search domain.

@ Generator of infinite families of NON-NADS.

@ Improvement of the Muir and Stinson algorithm

	Preliminaries
	Theoretical Results
	Algorithmic Aspects
	Conclusion

