Indocrypt, December 20-22, 2004

Advances in Alternative Non-Adjacent Form Representations

Gildas Avoine, Jean Monnerat, and Thomas Peyrin

EPFL Lausanne, Switzerland

G. Avoine, J. Monnerat, and T. Peyrin

Preliminaries

Theoretical Results

Algorithmic Aspects

Conclusion

G. Avoine, J. Monnerat, and T. Peyrin

Preliminaries

G. Avoine, J. Monnerat, and T. Peyrin

Integer Representations

• Binary representation $n = \sum a_i 2^i$ where $a_i \in \{0, 1\}$ e.g. $(13)_{10} = (001101)_2 = (1101)_2$.

Unicity: The most significant bit is not 0.

• Ternary representation $n = \sum a_i 2^i$ where $a_i \in \{0, 1, \overline{1}\}$ e.g. $(13)_{10} = (100\overline{1}\overline{1})_2 = (1\overline{1}000\overline{1}\overline{1})_2 = (10\overline{1}01)_2$.

Unicity: For any two adjacent digits, at least one is zero and the most significant digit is not 0 [Reitwiesner, 1960].

- $\{0, 1, \overline{1}\}$ can be generalized to $\{0, 1, x\}$. Improvement of [Muir and Stinson, 2003]
- The canonical representation of an integer using $\{0, 1, x\}$ is defined as in the case $\{0, 1, \overline{1}\}$: For any two adjacent digits, at least one is zero and the most significant digit is not 0.
- Such a representation is called the {0,1,x}-Non-Adjacent Form (NAF), if it exists.
- Which sets D = {0,1,x} where x ∈ Z are such that every positive integer has a D-NAF?
- Such a set {0,1,x} is called a Non-Adjacent Digit Set (NADS).

- $\{0, 1, \overline{1}\}$
- $\{0, 1, 3\}$
- $\{0, 1, -5\}$, $\{0, 1, -13\}$, $\{0, 1, -17\}$, $\{0, 1, -25\}$, etc.

G. Avoine, J. Monnerat, and T. Peyrin

• $\{0, 1, \overline{1}\}$

• $\{0,1,3\} \rightarrow$ In the following, we will consider x negative

•
$$\{0, 1, -5\}$$
, $\{0, 1, -13\}$, $\{0, 1, -17\}$, $\{0, 1, -25\}$, etc.

Example of infinite family of NADS [Muir and Stinson, 2003]:

• Let x be a negative integer such that $x \equiv 3 \pmod{4}$ and $x = 7 - 2^t$, $t \ge 3$, $\{0, 1, x\}$ is a NADS iff t is odd e.g. -1, -25, -121, etc.

Example of infinite family of NON-NADS [Muir and Stinson, 2003]:

• Let x be a negative integer, if $\frac{3-x}{4} = 11 \cdot 2^i$ with $i \ge 0$, then $\{0, 1, x\}$ is a not a NADS (so called NON-NADS) e.g. -41, -85, -173, etc.

How to determine whether or not a set $D = \{0, 1, x\}$ is a NADS?

Definition

D is a NADS iff every positive integer has a D-NAF.

Theorem (Muir and Stinson)

If every positive integer in $[0, \lfloor -x/3 \rfloor]$ has a D-NAF, then D is a NADS.

Theorem (Muir and Stinson)

If every positive integer in $[0, \lfloor -x/3 \rfloor]$ and equal to 3 modulo 4 has a D-NAF, then D is a NADS.

How to determine whether or not an integer n has a D-NAF?

Theorem

A positive integer n has a D-NAF iff, $f_D(n)$ has a D-NAF, where

 $f_D(n) = \frac{n}{4} \quad if \ n \equiv 0 \pmod{4}$ $f_D(n) = \frac{n-1}{4} \quad if \ n \equiv 1 \pmod{4}$ $f_D(n) = \frac{n}{2} \quad if \ n \equiv 2 \pmod{4}$ $f_D(n) = \frac{n-x}{4} \quad if \ n \equiv 3 \pmod{4}$

Graph of n

 $f_{D}^{4}(n)$

$$\mathbf{G}_{n}: n \longrightarrow f_{D}(n) \longrightarrow f_{D}^{2}(n) \longrightarrow f_{D}^{3}(n) \longrightarrow \ldots \longrightarrow 0$$

 $G_{n}: \quad n \longrightarrow f_{D}(n) \longrightarrow f_{D}^{2}(n) \quad \longrightarrow \quad f_{D}^{3}(n)$

Either $f_D(n)$ reaches 0 or $f_D(n)$ loops because:

- $f_D(n) \leq \frac{-x}{3}$ when *n* is in the search domain
- 0 is the only fixpoint of f_D

Graph of n

$$\mathbf{G}_{n}: \quad n \longrightarrow f_{D}(n) \longrightarrow f_{D}^{2}(n) \longrightarrow f_{D}^{3}(n) \longrightarrow \ldots \longrightarrow 0$$

$$G_n: n \longrightarrow f_D(n) \longrightarrow f_D^2(n) \longrightarrow f_D^3(n)$$

 $f_D^4(n)$

Either $f_D(n)$ reaches 0 or $f_D(n)$ loops because:

- $f_D(n) \leq \frac{-x}{3}$ when *n* is in the search domain
- 0 is the only fixpoint of f_D

A positive integer n has a D-NAF iff G_n does not contain cycle.

Theoretical Results

G. Avoine, J. Monnerat, and T. Peyrin

- Search domain
- Generators of infinite families of NON-NADS
- Worst NON-NADS

If every positive integer in $[0, \lfloor -x/3 \rfloor]$ has a D-NAF, then D is a NADS.

If $3 \nmid x$ and every positive integer in $[0, \lfloor -x/3 \rfloor]$ has a D-NAF, then D is a NADS.

If $3 \nmid x$ and every positive integer in $[0, \lfloor -x/6 \rfloor]$ has a D-NAF, then D is a NADS.

If $3 \nmid x$ and every positive integer in $[0, \lfloor -x/6 \rfloor]$ has a D-NAF, then D is a NADS.

Theorem

If $3 \nmid x$ and $7 \nmid x$ and every positive integer in $[0, \lfloor -x/12 \rfloor] \cup [\lfloor -x/7 \rfloor, \lfloor -x/6 \rfloor]$ has a D-NAF, then D is a NADS.

- *n* has a *D*-NAF if and only if G_n does not contain any cycle.
- If it exists n such that G_n contains a cycle, D is not a NADS.
- Instead of looking for NADS, we look for NON-NADS, obtaining (theoretically) the NADS by completion.
- We consider a cycle of a given form and deduce the x's for which it exists an *n* which lies in this cycle.

• We choose the length t of the cycle and solve

$$f_D^t(n)=n.$$

• Define $f_0(n) = \frac{n}{4}$, $f_1(n) = \frac{n-1}{4}$, $f_2(n) = \frac{n}{2}$, and $f_3(n) = \frac{n-x}{4}$.

• We choose the form of the cycle and solve

$$f_D^t(n) = f_{i_t} \circ f_{i_{t-1}} \circ \ldots f_{i_1}(n) = n,$$

for some chosen $i_k \in \{0, 1, 2, 3\}$ for k = 1, 2..., t.

• Such a cycle is denoted as $i_1|i_2|\ldots|i_t$.

- We have 3 possible cycles of length 2, namely 3|0, 3|1 and 3|2.
- They lead to the equations $\frac{n-x}{16} = n$, $\frac{n-x-4}{16} = n$ and $\frac{n-x}{8} = n$.
- Since $n \equiv 3 \pmod{4}$, we can set n = 4k 1.

If x = -60k + 15, x = -60k + 11 or x = -28k + 7 with $k \in \mathbb{N}$, then $\{0, 1, x\}$ is a NON-NADS.

• We apply our method to a cycle of length t of the form 3|3|3|...|3|0.

• We solve
$$f_0 \circ f_3^{t-1}(n) = n$$
 for $t \ge 2$

Theorem

Let $t \ge 2$ and k > 0 be two integers and $x = -(4k-1)(2^{2t-1}-1)$. Then $\{0, 1, x\}$ is a NON-NADS.

NADS Density

Definition

Let x be a negative integer such that $x \equiv 3 \pmod{4}$. $\{0, 1, x\}$ is a worst NON-NADS if for all $n \leq -\frac{x}{3}$ with $n \equiv 3 \pmod{4}$, n has not $\{0, 1, x\}$ -NAF.

Theorem

Let x be a negative integer such that $x \equiv 3 \pmod{4}$. $\{0, 1, x\}$ is a worst NON-NADS if and only if there exists $i \geq 2$ such that $(4m_i - 1) < -x < (3 \cdot 2^i)$, where

$$m_i := \left\{ egin{array}{c} 2 \cdot rac{2^i - 1}{3} \ ext{for } i \ ext{even} \ rac{2^{i+1} - 1}{3} \ ext{for } i \ ext{odd} \end{array}
ight.$$

Algorithmic Aspects

G. Avoine, J. Monnerat, and T. Peyrin

• Improvements of the search domain

G. Avoine, J. Monnerat, and T. Peyrin

- Improvements of the search domain
- Generators of NON-NADS as a sieve (with an optimal cycle length t_{max})

- Improvements of the search domain
- Generators of NON-NADS as a sieve (with an optimal cycle length t_{max})
- Worst NON-NADS

- Improvements of the search domain
- Generators of NON-NADS as a sieve (with an optimal cycle length t_{max})
- Worst NON-NADS
- Memoization techniques

- Memoization consists of remembering function calls and the corresponding outputs.
- The goal is to avoid to call a function several times with the same arguments.

Is-NADS?

Is-NADS?(x)*N* ← 3 while $N \leq \frac{-x}{3}$ $n \leftarrow N$ $S \leftarrow \varnothing$ while $n \neq 0$ if $n \in S$ do then return false $\mathbf{do} \left\{ \begin{array}{l} S \leftarrow S \cup \{n\} \\ n \leftarrow f_D(n) \end{array} \right.$ $N \leftarrow N + 4$ return true

G. Avoine, J. Monnerat, and T. Peyrin

Is-NADS?

Is-NADS?(x)*N* ← 3 while $N \leq \frac{-x}{3}$ $n \leftarrow N$ $S \leftarrow \varnothing$ while $n \neq 0$ if $n \in S$ do then return false $\mathbf{do} \left\{ \begin{array}{l} S \leftarrow S \cup \{n\} \\ n \leftarrow f_D(n) \end{array} \right.$ $N \leftarrow N + 4$ return true

Is-NADS?

Is-NADS?(x)*N* ← 3 while $N \leq \frac{-x}{3}$ $n \leftarrow N$ $S \leftarrow \varnothing$ while $n \neq 0$ if $n \in S$ do then return false $do \begin{cases} S \leftarrow S \cup \{n\} \\ n \leftarrow f_D(n) \end{cases}$ $N \leftarrow N + 4$ return true

G. Avoine, J. Monnerat, and T. Peyrin

Is-NADS?(x)*N* ← 3 while $N \leq \frac{-x}{3}$ $n \leftarrow N$ $S \leftarrow \varnothing$ while $n \neq 0$ if $n \in S$ do then return false $do \begin{cases} S \leftarrow S \cup \{n\} \\ n \leftarrow f_D(n) \end{cases}$ $N \leftarrow N + 4$ return true

G. Avoine, J. Monnerat, and T. Peyrin

Evaluation of Is-NADS?(-25)

Evaluation of Is-NADS?(-25)

 $\begin{array}{c} G_3\\ f_D(3)\\ \downarrow\\ f_D(1)\\ \downarrow\\ 0 \end{array}$

G. Avoine, J. Monnerat, and T. Peyrin

Evaluation of Is-NADS?(-25)

 $\begin{array}{cccc} G_3 & & G_7 \\ f_D(3) & & f_D(7) \\ \downarrow & & \downarrow \\ f_D(1) & & f_D(2) \\ \downarrow & & \downarrow \\ 0 & & f_D(1) \\ & & \downarrow \\ 0 & & 0 \end{array}$

G. Avoine, J. Monnerat, and T. Peyrin

Evaluation of Is-NADS?(-25)

Evaluation of Is-NADS?(-25)

Evaluation of Is-NADS?(-25)

- Memoization is a straighforward technique (it can be applied because x is fixed at the begining of the evaluation of Is-NADS?(x)).
- A much more interesting idea is to use memoization over several executions of Is-NADS?.
- $f_D(n)$ depends on x
- Memoization only when $n \not\equiv 3 \pmod{4}$.
- For that we define equivalence classes.

- Memoization is a straighforward technique (it can be applied because x is fixed at the begining of the evaluation of Is-NADS?(x)).
- A much more interesting idea is to use memoization over several executions of Is-NADS?.
- $f_D(n)$ depends on x but only when $n \equiv 3 \pmod{4}$.
- Memoization only when $n \not\equiv 3 \pmod{4}$.
- For that we define equivalence classes.

Equivalence Class of 7

- Improvement of the search domain
- Generators of NON-NADS as a sieve
- Worst NON-NADS
- Memoization techniques

G. Avoine, J. Monnerat, and T. Peyrin

Conclusion

G. Avoine, J. Monnerat, and T. Peyrin

- Reduction of the search domain.
- Generator of infinite families of NON-NADS.
- Improvement of the Muir and Stinson algorithm