GIFT: A Small Present

Towards Reaching the Limit of Lightweight Encryption

Subhadeep Banik ${ }^{1,2}$ Sumit Kumar Pandey ${ }^{1}$ Thomas Peyrin ${ }^{1} \quad$ Yu Sasaki ${ }^{3}$ Siang Meng Sim ${ }^{1}$ Yosuke Todo ${ }^{3}$

1. Nanyang Technological University, Singapore
2. École Polytechnique Fédérale de Lausanne, Switzerland
3. NTT Secure Platform Laboratories, Japan

CHES2017

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox
(4) Security and Performances
- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox

4 Security and Performances

- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

10 Years Ago...

A decade ago, a lightweight block cipher, PRESENT, was presented at CHES2007.

31-round SPN block cipher with 64-bit block size.
Very simple design of Sbox layer and bit permutation (cost 0GE in hardware).

In 2012, selected as ISO standards, ISO/IEC 29192.

Block Cipher PRESENT

Its resistance against differential cryptanalysis (DC) comes from its Sbox which has differential branching number 3.

Differential branching number $x(B N x)$: Total Hamming weight of any nonzero input and output differences is at least x.

Figure: Hamming wt2 Example.

$\Delta_{\mathrm{O}}=1$

Figure: Hamming wt3 Example.

Block Cipher PRESENT

However, BN3 Sboxes are costly in general. PRESENT Sbox (BN3) costs 21.33GE, while SKINNY Sbox (BN2) costs 13.33GE.
This difference is multiplied in round based implementation.
Also, it is weaker against linear cryptanalysis (LC).

Now...

In CHES2017, we present a new lightweight block cipher, improving over PRESENT, we called it - GIFT.

By carefully crafting the bit permutation in conjunction with the Sbox properties, we can remove the constraint of BN3.

Advantages of GIFT compared to PRESENT:

- smaller area thanks to smaller Sbox and also lesser subkey additions,
- better resistance against LC thanks to good choice of Sbox and bit permutation,
- lesser rounds and higher throughput,
- simpler and faster key schedule.

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox
(4) Security and Performances
- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

Block Cipher GIFT

There are 2 versions of GIFT:

- GIFT-64, 28-round with 64-bit block size,
- GIFT-128, 40-round with 128-bit block size.

Both versions have 128-bit key size.

Introduction
Specification Design Rationale Security and Performances Conclusion

Round Function

Each round of GIFT consists of 3 steps:

SubCells, PermBits and AddRoundKey.

Denote rightmost bit as LSB b_{0} and $\left\{b_{4 i+j}\right\}$ as bit j. E.g. $b_{1}, b_{5}, b_{9}, \ldots$ are bit 1 .

Introduction

SubCells

Apply 16 4-bit Sboxes, GS, in parallel to every nibble of the state.
Table: GIFT Sbox GS

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$G S(x)$	1	a	4	c	6	f	3	9	2	d	b	7	5	0	8	e

Introduction
Specification Design Rationale Security and Performances Conclusion

PermBits

Pure bit permutation without any XOR gate.

Map bit j to bit j.

Introduction

AddRoundKey

Add 32-bit round key $R K$ to the state, $R K=U\left\|V=u_{15} \ldots u_{0}\right\| v_{15} \ldots v_{0}$.
U and V are XORed to bit 1 and bit 0 respectively.

Introduction
Specification Design Rationale Security and Performances Conclusion

AddRoundKey

Add a single bit ' 1 ' is to the most significant bit, and a 6-bit round constant $C=c_{5} c_{4} c_{3} c_{2} c_{1} c_{0}$ is XORed to bit 3 of the first 6 nibbles.

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox

4 Security and Performances

- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

Round Key

The 128-bit key is split into 816 -bit words.

$$
K=k_{7}\left\|k_{6}\right\| \ldots\left\|k_{1}\right\| k_{0}, \text { where } k_{i} \text { is } 16 \text {-bit words. }
$$

k_{1} and k_{0} are extracted as the round key $R K=U \| V$.

Key state is updated after key extraction.

$\mathrm{k}_{1} \gg 2$	$\mathrm{k}_{0} \gg 12$	k_{7}	k_{6}	k_{5}	k_{4}	k_{3}	k_{2}

where $\gg i$ is an i bits right rotation within a 16 -bit word.

Round Constants

Round constants are generated using a 6 -bit affine LFSR with 1 XNOR gate (same as SKINNY's).

Initialised to zero, and updated before using as round constants.

Rounds	Constants
$\mathbf{1 - 1 6}$	$01,03,07,0 \mathrm{~F}, 1 \mathrm{~F}, 3 \mathrm{E}, 3 \mathrm{D}, 3 \mathrm{~B}, 37,2 \mathrm{~F}, 1 \mathrm{E}, 3 \mathrm{C}, 39,33,27,0 \mathrm{E}$
$\mathbf{1 7}-\mathbf{3 2}$	$1 \mathrm{D}, 3 \mathrm{~A}, 35,2 \mathrm{~B}, 16,2 \mathrm{C}, 18,30,21,02,05,0 \mathrm{~B}, 17,2 \mathrm{E}, 1 \mathrm{C}, 38$
$\mathbf{3 3}-\mathbf{4 8}$	$31,23,06,0 \mathrm{D}, 1 \mathrm{~B}, 36,2 \mathrm{D}, 1 \mathrm{~A}, 34,29,12,24,08,11,22,04$

Introduction

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox

4. Security and Performances

- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

Introduction

PRESENT Bit Permutation

To understand why BN2 Sboxes do not work for PRESENT, we have to look into the PRESENT bit permutation.

PRESENT bit permutation can be partitioned into 4 independent 16-bit permutations.

		S_{13}	S_{12}	S_{11}											
S_{15}	S_{14}	S_{13}	S_{12}	S_{11}	S_{10}	S_{9}	S_{8}	S_{7}	S_{6}	S_{5}	S_{4}				

Introduction

Group Mapping

A group mapping sends the 16 output bits of the Quotient group to the input of the Remainder group.
$Q 0=\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \rightarrow R 0=\left\{S_{0}, S_{4}, S_{8}, S_{12}\right\}$.
$Q 1=\left\{S_{4}, S_{5}, S_{6}, S_{7}\right\} \rightarrow R 1=\left\{S_{1}, S_{5}, S_{9}, S_{13}\right\}$.
$Q 2=\left\{S_{8}, S_{9}, S_{10}, S_{11}\right\} \rightarrow R 2=\left\{S_{2}, S_{6}, S_{10}, S_{14}\right\}$.
$Q 3=\left\{S_{12}, S_{13}, S_{14}, S_{15}\right\} \rightarrow R 3=\left\{S_{3}, S_{7}, S_{11}, S_{15}\right\}$.
The group mappings are identical.

PRESENT Group Mapping

$$
Q 0=\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \rightarrow R 0=\left\{S_{0}, S_{4}, S_{8}, S_{12}\right\} .
$$

Table: PRESENT group mapping.

Q0	S_{0}	S_{4}	S_{8}	S_{12}
S_{0}	$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$
S_{1}	$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$
S_{2}	$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$
S_{3}	$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$

(i, j) means output bit i goes to input bit j

E.g. The b_{1} is bit 1 of S_{0}, it is mapped to bit 0 of S_{4}, b_{16}. Hence $P(1)=16$.

1 - 1 bit DDT

$1-1$ bit DDT as a sub-table of the DDT containing Hamming weight 1 differences.

Table: 1 - 1 bit DDT Example

$\Delta \mathbf{x}$	1000	0100	0010	0001
bit $3=1000$	0	2	4	0
bit $2=0100$	0	0	0	0
bit $1=0010$	0	0	0	0
bit $0=0001$	0	2	2	0

An Sbox has BN3 if and only if its $1-1$ bit DDT is all zeroes.

Introduction

BN2 Sbox in PRESENT

Q0	S_{0}	S_{4}	S_{8}	S_{12}
S_{0}	$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$
S_{1}	$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$
S_{2}	$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$
S_{3}	$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$

$\Delta \mathbf{x}$	bit 3	bit 2	bit 1	bit 0
bit 3	0	2	4	0
bit 2	0	0	0	0
bit 1	0	0	0	0
bit 0	0	2	2	0

BN2 Sbox in PRESENT

5 active Sboxes in 5 rounds (BN2 Sbox) vs 10 active Sboxes in 5 rounds (original).

PRESENT bit permutation is not compatible with Sboxes with BN2.

Introduction

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox

4 Security and Performances

- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

Bad Output must go to Good Input (BOGI)

Table: 1 - 1 bit DDT Example

$\Delta \mathbf{x}$	bit 3	bit 2	bit 1	bit 0
bit 3	0	2	4	0
bit 2	0	0	0	0
bit 1	0	0	0	0
bit 0	0	2	2	0

Let $G I, G O, B I, B O$ denote the set of good inputs, good outputs, bad inputs and bad outputs respectively.

$$
\left.\begin{array}{rl}
G I & =\{\text { bit } 2, \text { bit } 1\}, G O \\
B I & =\{\text { bit } 3, \text { bit } 0\}, B O
\end{array}=\{\text { bit } 3, \text { bit } 0\},, \text { bit } 1\right\} . . ~ \$
$$

Core Idea

Single active bit \in GO

BOGI perm

Single active bit $\in B I$ S

Single active bit $\in B O$
BOGI perm

Single active bit $\in \mathrm{G}$ I

Observation:
If a single active bit transition occurs, the input and output active bit must be in $B I$ and $B O$.

Core idea:
We send the bit from $B O$ to $G I$ so that single bit transition does not happen continuously. Same for backward direction.

Both Δ_{I} and Δ_{O} have at least 2 active bits.
≥ 7 active Sboxes in 5 rounds!

BOGI Permutation

Let $\pi_{1}: B O \rightarrow G I$ and $\pi_{2}: G O \rightarrow\left(\pi_{1}(B O)\right)^{c}$.
BOGI permutation π is the union of π_{1} and π_{2}.

$$
\begin{aligned}
& G I=\{\text { bit } 2, \text { bit } 1\}, G O=\{\text { bit } 3, \text { bit } 0\}, \\
& B I=\{\text { bit } 3, \text { bit } 0\}, B O=\{\text { bit } 2, \text { bit } 1\} .
\end{aligned}
$$

For this example, π can be an identity mapping.
I.e. π : bit $j \mapsto$ bit j.

Necessary and sufficient condition:

$$
|B O| \leq|G I| \Longrightarrow|G I|+|G O| \geq 4
$$

Denote $|G I|+|G O|$ the score of an Sbox.
This can be extended to the $1-1$ bit LAT and linear cryptanalysis, which is the Achilles' heel of PRESENT.

Introduction

GIFT-64 Group Mapping

New bit permutation based on BOGI group mapping.

Table: GIFT-64 group mapping

$Q 0$	$G S_{0}$	$G S_{4}$	$G S_{8}$	$G S_{12}$
$G S_{0}$	$(0,0)$	$(1,1)$	$(2,2)$	$(3,3)$
$G S_{1}$	$(1,1)$	$(2,2)$	$(3,3)$	$(0,0)$
$G S_{2}$	$(2,2)$	$(3,3)$	$(0,0)$	$(1,1)$
$G S_{3}$	$(3,3)$	$(0,0)$	$(1,1)$	$(2,2)$

Select an Sbox with score 4 and has BOGI identity permutation.

Introduction

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox
(4) Security and Performances
- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

GIFT Sbox Criteria

GIFT Sbox criteria:
(1) Significantly lighter than PRESENT Sbox.
(2) At least score 4 for both differential and linear cases.
(3) There exists BOGI identity permutation for both differential and linear cases.
(4) For Δ_{I}, Δ_{O} s.t. $p\left(\Delta_{I} \rightarrow \Delta_{O}\right)>2^{-2}, w t\left(\Delta_{I}\right)+w t\left(\Delta_{O}\right) \geq 4$.

The last criterion ensures that when sub-optimal differential transition occurs, there is at least a total of 4 active Sboxes in the previous and next round.

GIFT Sbox

Our GIFT Sbox GS has:

- cost of 16GE, lighter than PRESENT Sbox (21.33GE),
- maximal differential probability of $2^{-1.415}$,
- only 2 transitions with probability $2^{-1.415}$,
- sum of Hamming weight of input and output differences is 4 .
- maximal absolute linear bias of 2^{-2},
- algebraic degree 3 ,
- no fixed point.

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox

4 Security and Performances

- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

Differential and Linear Bounds

Table: Lower bounds for number of active Sboxes.

Cipher	DC/LC	Rounds								
		1	2	3	4	5	6	7	8	9
GIFT-64	DC	1	2	3	5	7	10	13	16	18
	LC	1	2	3	5	7	9	12	15	18
PRESENT	DC	1	2	4	6	10	12	14	16	18
	LC	1	2	3	4	5	6	7	8	9
GIFT-128	DC	1	2	3	5	7	10	13	17	19
	LC	1	2	3	5	7	9	12	14	18

GIFT matches the differential bound of PRESENT- an average of 2 active Sboxes per round.
In addition, GIFT achieved the same ratio for linear bound at 9-round where PRESENT could not.

Differential and Linear Probabilities

Table: 9-round Differential/Linear Probabilities

Cipher	No. of Rounds	Differential Probability	Linear Hull Effect	Est. Rounds Needed
GIFT-64	28	$2^{44.415}$	$2^{49.997}$	14
PRESENT	31	$2^{40.702}$	$2^{27.186}$	22
GIFT-128	40	$2^{46.99}$	$2^{45.99}$	27

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox
(4) Security and Performances
- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

Round-based Implementation

Comparison of performance metrics for round based implementations synthesized with STM 90nm Standard cell library.

Cipher	Area (GE)	Delay (ns)	Cycles	$\mathrm{TP}_{\text {MAX }}$ $(\mathrm{MBit} / \mathrm{s})$	Power $(\mu \mathrm{W})$ $(@ 10 \mathrm{MHz})$	Energy (pJ)
GIFT-64-128	1345	1.83	29	1249.0	74.8	216.9
SKINNY-64-128	1477	1.84	37	966.2	80.3	297.0
PRESENT 64/128	1560	1.63	33	1227.0	71.1	234.6
SIMON 64/128	1458	1.83	45	794.8	72.7	327.3
GIFT-128-128	1997	1.85	41	1729.7	116.6	478.1
SKINNY-128-128	2104	1.85	41	1729.7	132.5	543.3
SIMON 128/128	2064	1.87	69	1006.6	105.6	728.6
AES 128	7215	3.83	11	3038.2	730.3	803.3

Bit-slice Implementation

Bitslice software implementations of GIFT and other lightweight block ciphers. Performances are given in cycles per byte, with messages composed of 2000 64-bit blocks to obtain the results.

Cipher	Speed $(\mathrm{c} / \mathrm{B})$	Cipher	Speed $(\mathrm{c} / \mathrm{B})$
GIFT-64-128	2.10	GIFT-128-128	2.57
SKINNY-64-128	2.88	SKINNY-128-128	4.70
SIMON-64-128	1.74	SIMON-128-128	2.55

Table of Contents

(1) Introduction
(2) Specification

- Round Function
- Key Schedule and Round Constants
(3) Design Rationale
- Understanding PRESENT Bit Permutation
- Designing the GIFT Permutation
- Searching for the GIFT Sbox
(4) Security and Performances
- Differential and Linear Cryptanalysis
- Hardware and Software Performances
(5) Conclusion

Conclusion

- Propose new lightweight block cipher with 2 block sizes, GIFT-64 and GIFT-128.
- Improvement of PRESENT:
- remove Sbox constraint of BN3,
- use lighter Sbox than PRESENT Sbox,
- prevent the LC weakness in PRESENT,
- improve performances,
- extend to 128 -bit block size.
- Strong against classical DC/LC and other cryptanalysis.
- Better performances than existing lightweight block ciphers: area, throughput, energy.

Thank you. :)

