The SKINNY Family of Lightweight Tweakable Block Ciphers

Jérémy Jean

joint work with:

Christof Beierle Stefan Kölbl Gregor Leander Amir Moradi Thomas Peyrin Yu Sasaki Pascal Sasdrich Siang Meng Sim

CRYPTO 2016

August 17, 2016

Goals and Results

Goals

- Alternative to NSA-designed SIMON block cipher
- Construct a lightweight (tweakable) block cipher
- Achieve scalable security
- Suitable for most lightweight applications
- Perform and share full security analysis
- Efficient software/hardware implementations in many scenarios

FBSS⁺13

Goals and Results

Goals

- Alternative to NSA-designed SIMON block cipher
- Construct a lightweight (tweakable) block cipher
- Achieve scalable security
- Suitable for most lightweight applications
- Perform and share full security analysis
- Efficient software/hardware implementations in many scenarios

Results

- SKINNY family of lightweight (tweakable) block ciphers
- Generalize the STK construction from TWEAKEY framework [JNP14]
- Block sizes n: 64 and 128 bits
- Various key+tweak sizes: n, 2n and 3n bits
- Security guarantees for differential/linear cryptanalysis in both single-key (SK) and related-key (RK) models
- Efficient and competitive software/hardware implementations
 - Round-based SKINNY-64-128: 1696 GE
 - CTR mode @ Skylake (avx2): 2.63 c/B

FBSS⁺13

Introduction Specifications Rationale Security Analysis Implementations Conclusion

Tweakable Block Cipher

- Having a tweakable block cipher has many applications:
 - Authenticated encryption
 - Disk/memory encryption
 - Hashing: block counter as tweak for HAIFA-like CF

(More...)

- There are have been several proposed constructions, most of which rely on a block cipher, and generically introduce the tweak (XEX, XPX, XTS, etc.)
- Very few direct constructions: Hasty Pudding Cipher, Threefish, Mercy, BLAKE2
- TWEAKEY framework [JNP14]: as a designer, key and tweak seem like they have to be handled in the same way by the primitive, with a ''tweakey schedule''

TWEAKEY Framework [JNP14]

High-Level Overview

- Bring key and tweak schedules together
- Extend key-alternating strategy

Superposition-Tweakey (STK)

- Fully linear scheduling (h': cell permutation)
- Provide bounds in terms of number of active Sboxes in related-key/related-tweak (RK/RT)
- Trick: linear code due to small field multiplications to bound the number of cancellations in the XORs
- Allows usage of automated tools to find bounds (even for RK/RT)

Example of the TK2 construction: $|KT| = |K| + |T| = 2 \cdot |P|$

Introduction Specifications Rationale Security Analysis Implementations Conclusion

SKINNY: General Design Strategy

- Start from weak crypto components, but providing very efficient implementations
 - \blacksquare Opposed to AES: strong Sbox and diffusion \Rightarrow only 10 rounds
 - \blacksquare Similar to SIMON: only AND/XOR/ROT \Rightarrow many rounds
- Reuse AES well-understood design strategy
- Remove all operations not strictly necessary to security

Introduction Specifications Rationale Security Analysis Implementations Conclusion

SKINNY: Similarities and Differences with the AES

Similarities

Design

- Key-alternating cipher
- **4** \times 4 internal state
- AES-like SPN round function

Security

- Diffusion achieved by SR+MC
- Bounds on # of active Sboxes
- Design resistant against lin. and diff. cryptanalysis

Differences

Design	Security
 More rounds Linear TWEAKEY schedule Non-optimal diffusion matrix (binary, branch number: 2) 	 Related-key/related-tweak security claimed SK bounds harder to prove than AES (non MDS) → MILP
	Simpler MILP modeling (RK/RT)

Specifications: Overview

Specifications

- SKINNY has a state of either 64 bit (s = 4) or 128 bits (s = 8).
- Internal state *IS*: viewed as a 4×4 matrix of *s*-bit elements. $\Rightarrow |IS| = n = 16s \in \{64, 128\}.$
- The tweakey size can be n, 2n or 3n.

	m_0	m_1	m_2	m_3	
15 -	m_4	m_5	m_6	m_7	
10 —	m_8	m_9	m_{10}	m_{11}	
	m_{12}	m_{13}	m_{14}	m_{15}	

Number of Rounds

	1	weakey siz	e
Block size n	n	2n	3 <i>n</i>
64	32	36	40
128	40	48	56

Comparison: SKINNY-64-128 has 36 rounds, SIMON-64-128 has 44 rounds.

6/23

The SKINNY Family of Lightweight Tweakable Block Ciphers

June 3, 2016

SKINNY Round Function

AES-like Round Function

- **SubCells (SC)**: Application of a *s*-bit Sbox to all 16 cells
- AddConstants (AC): Inject round constants in the state
- AddRoundTweakey (ART): Extract and inject the subtweakeys to half the state
- ShiftRows (SR): Right-rotate Line i by i positions
- MixColumns (MC): Multiply the state by a binary matrix

SKINNY 4-bit Sbox

- \mathcal{S}_4 : 4-bit Sbox for SKINNY-64-*
- Almost PICCOLO Sbox [SIH+11]
- Implementation: 4 NOR and 4 XOR
- Hardware cost: 12 GE

Properties

- Maximal diff. probability: 2^{-2}
- \blacksquare Maximal abs. linear bias: 2^{-2}
- $\bullet \deg(\mathcal{S}_4) = \deg(\mathcal{S}_4^{-1}) = 3$
- One fixed point: $\mathcal{S}_4(0xF) = 0xF$
- Branch number: 2

SKINNY 8-bit Sbox

- \mathcal{S}_8 : 8-bit Sbox for SKINNY-128-*
- \blacksquare Generalize the \mathcal{S}_4 construction
- Implementation: 8 NOR and 8 XOR
- Hardware cost: 24 GE

Properties

- Maximal diff. probability: 2^{-2}
- Maximal abs. linear bias: 2^{-2}
- $\bullet \deg(\mathcal{S}_8) = \deg(\mathcal{S}_8^{-1}) = 6$
- One fixed point: $S_8(0xFF) = 0xFF$
- Branch number: 2

SKINNY Round Constants

6-bit LFSR

- The round constants are produced with a LFSR
- **State:** $(rc_5||rc_4||rc_3||rc_2||rc_1||rc_0)$
- Initial value 0, clocked before injection
- Hardware cost: 1 XNOR

s = 4	s = 8	
$\begin{bmatrix} rc_3 rc_2 rc_1 rc_0 & 0 & 0 \\ 0 & 0 rc_5 rc_4 & 0 & 0 \\ 0 x2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} $	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$

TWEAKEY Schedule in SKINNY

TWEAKEY Schedule

- Similar to the STK construction
- Subtweakey: first and second rows of all tweakey words are injected in the internal state
- Then, the tweakey words are updated independently:
 - \blacksquare The cells are reordered with a permutation P_T
 - Half the cells are individually updated with LFSRs (1 XOR each)

June 3, 2016

SKINNY MixColumns

MixColumns

- Matrix multiplication performed as in the MixColumns of the AESHowever:
 - lacksquare The matrix ${f M}$ is binary
 - It has branch number 2: $\mathbf{M} \times (0, \alpha, 0, 0)^{\top} = (0, 0, \alpha, 0)^{\top}$

$$\mathbf{M} = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{array} \right)$$

Implementation Using 3 XORs

Design Choices

Criteria for Elementary Component Selection

- Informally: Minimize number of operations, maximize security
- Many new components, selected incrementally:
 - Sboxes
 - ShiftRows+MixColumns
 - **TWEAKEY Permutation** P_T
- Selection based on two independent estimations:
 - Security (manual analysis and MILP)
 - Implementation efficiency (hardware/software)

Hardware Area Estimation

- NOR/NAND gate: 1 GE
- OR/AND gate: 1.33 GE
- XOR/XNOR gate: 2.67 GE
- NOT gate: 0.67 GE
- One memory bit: 6 GE (using scan flip-flop)

Rationale: Selection of S_4

Selection process

- Optimization for HW implementation
- Explore all permutations using an increasing number of instructions from {NAND, NOR, XOR, NXOR}
- Stop when reaching certain criterion $(p_{max}, \epsilon_{max}, \ldots)$

Result:
$$S_4$$
 with 4 NOR + 4 XOR

- Almost PICCOLO Sbox
- 12 GE with special 4-input gates

SKTNNY-128-*

Similar selection intractable for the 8-bit Sbox (S_8) \Rightarrow reuse structure of S_4

Rationale: Selection of ${\bf M}$

Selection (for fixed ShiftRows)

Implementation-wise requirements:

- Binary matrix: implementations using only XOR (no shifts)
- Restricted to (invertible) matrices using at most 3 XORs

Security-wise requirements:

- Full diffusion (enc/dec) in 5 or 6 rounds
- One subkey XORed to half the state affects the whole state after one round forwards and backwards
- Number of candidates: 24 matrices (all 6-round full diffusion)
- \blacksquare Choose ${\bf M}$ maximizing the number of active Sboxes for 12+ rounds

Rationale: TWEAKEY Schedule

Selection

Security-wise requirements:

- Follow the STK construction
- Linear and independent updates for each tweakey state TK_i
- \blacksquare P_T ensures full tweakey state is used every 2 rounds
- LFSR updates verify the TWEAKEY constraints (cancellations)

Implementation-wise requirements:

- XOR only half the tweakey state (two lines): save about 85 GE for 64-bit blocks for round-based implementations
- Ultra light LFSR: only 1 XOR
- Nibble-wise permutation P_T
- Number of candidates: 5040 permutations × 6 pairs of lines = 30240
- Sort using Sbox counting (MILP), then pick best one

Theoretical Performances of SKINNY and Others

		#operation	Round-based	
Cipher	Rounds	without KS	with KS	area estimation
SKINNY-64-128	36	117	139.5	8.68
SIMON-64-128	44	88	154	8.68
PRESENT-64-128	31	147.2	161.8	12.43
PICCOLO-64-128	31	162.75	162.75	12.35
SKINNY-128-128	40	130	130	7.01
SIMON-128-128	72	136	204	7.34
NOEKEON-128-128	16	100	200	30.36
AES-128-128	10	202.5	248.1	59.12

Example of SKINNY-64-128

(more in the paper)

- 1R: (4 NOR + 4 XOR)/4 [SB] + (3 XOR)/4 [MC] + (32 XOR)/64 [ART]
- That is (per bit per round): 1 NOR + 2.25 XOR
- #operations per bit (without KS): $(1+2.25) \times 36 = 117$
- #operations per bit per round in KS only (TK2): (8 XOR)/64 [LFSR] + (32 XOR)/64 [$TK_1 \oplus TK_2$] = 0.625
- **RB** area estimation: $1 \times 1 + (2.25 + 0.625) \times 2.67 = 8.68$
- Very low number of operations per plaintext bit.

Security Analysis: Overview

Claims

- Security against known classes of attacks
- Security in the related-key/related-tweak model

Attack Vectors Considered

- Differential/Linear cryptanalysis
- Integral attack
- Division property
- Meet-in-the-middle attack
- Impossible differential attack
- Invariant subspace attack
- Slide attack
- Algebraic attack

[DKR97] [Tod15. BC16] [DS08, DKS10, DFJ13] [Knu98] **FLMR151** [BW99, BW00]

ASIC Implementations

Preliminaries

- ASIC: Application-Specific Integrated Circuit
- Synthesis: Synopsys Design Compiler version A-2007.12-SP1
- UMCL18G212T3 standard cell library
 - UMC L180 0.18µm 1P6M logic process
 - Typical voltage of 1.8V

Four scenarios

Round-based implementations \Rightarrow most important target for our design choices (see full version) Fully unrolled implementations Serial implementations (see full version) Bit-serial Nibble- or byte-serial Threshold implementations (see full version)

[Vir04]

Round-Based Implementation Results

	Area	Delay	Throughput @100KHz	Throughput @maximum
	GE	ns	KBit/s	MBit/s
SKINNY-64-128	1696	1.87	177.78	951.11
SKINNY-128-128	2391	2.89	320.00	1107.20
SKINNY-128-256	3312	2.89	266.67	922.67
SIMON-64-128	1751	1.60	145.45	870
SIMON-128-128	2342	1.60	188.24	1145
SIMON-128-256	3419	1.60	177.78	1081
LED-64-64	2695	-	198.9	_
LED-64-128	3036	-	133.0	-
PRESENT-64-128	1884	-	200.00	-
PICCOLO-64-128	1773	-	193.94	-

SKINNY in a Nutshell

 \blacksquare New very lightweight family of tweakable block cipher \Rightarrow Almost as light as possible

- Alternative to SIMON family of block ciphers
- Very efficient implementations (both SW and HW)
- SK and RK/RT security garantees

More in the Full Version

- Complete description of all design choices
- Security analysis
 - Detailed analysis of many known classes of attacks
- All implementation results
 - ASIC: Bit/Nibble-serial, Low-latency, Threshold
 - FPGA (Virtex 7)
 - Micro-controllers (ATmega644)
 - Software (bit-sliced, CTR mode)
- Low-latency tweakable block cipher: MANTIS
 - Similar to PRINCE, but including a tweak input
 - Useful for memory encryption

Paper, Specifications, Results and Updates available at: https://sites.google.com/site/skinnycipher/

Paper, Specifications, Results and Updates available at: https://sites.google.com/site/skinnycipher/

Thank you for your attention!

Backup Slides

Differential/Linear Cryptanalysis

- We adapt the number of rounds to get resistance (+ margin):
 SKINNY-64-64/128/192 has 32/36/40 rounds
 - SKINNY-128-128/256/384 40/48/56 rounds
- As a result, for all SKINNY variants:
 - SK security reached in less than 40% of the rounds
 - **TK2** security reached in 40 45% of the rounds

Comparisor	with Other 64/128 and	128/128 Ciphers
Cipher	Single Key (SK)	Related Key (RK)
SKINNY-64-128	8/36 = <mark>22%</mark>	15/36 = <mark>42%</mark>
SIMON-64-128	19/44 = 43%	no bound known
SKINNY-128-128	15/40 = 37%	19/40 = 47%
SIMON-128-128	41/72 = 57%	no bound known
AES-128	4/10 = 40%	6/10 = 60%
NOEKEON-128	12/16 = 75%	12/16 = 75%

Unrolled Implementations

	Area	Delay	Throughput @100KHz	Throughput @maximum
	GE	ns	KBit/s	MBit/s
SKINNY-64-128	17454	51.59	6400.00	1240.55
SKINNY-128-128	32415	97.53	12800.00	1307.06
SKINNY-128-256	46014	119.57	12800.00	1070.50
LED-64-128	111496	-	_	-
PRESENT-64-128	56722	-	-	-
PICCOLO-64-128	25668	-	-	-

Notes

- One encryption in one cycle \Rightarrow best throughput
- Long critical path \Rightarrow long delays
- Very few academic unrolled implementations

Serial Implementations (nibble- or byte-wise)

	Area	Delay	Clock	Thr	oughput
			Cycles	@100KHz	@maximum
	GE	ns	#	KBit/s	MBit/s
SKINNY-64-128	1399	0.95	788	8.12	85.49
SKINNY-128-128	1840	1.03	872	14.68	142.51
SKINNY-128-256	2655	0.95	1040	12.31	129.55
SIMON-64-128	1000	-	-	16.7	-
SIMON-128-128	1317	-	-	22.9	-
SIMON-128-256	1883	-	-	21.1	-
LED-64-128	1265	-	1872	3.4	-
PRESENT-64-128	1391	-	559	11.45	-
PICCOLO-64-128	1773	-	528	12.12	-
Notes					
■ The datapath is	either or	4 bits	(nibble) o	or 8 bits	(byte)

Bit-Serial Implementations

	Area	Delay	Clock	Throu	Ighput
			Cycles	@100KHz	@maximum
	GE	ns	#	KBit/s	MBit/s
SKINNY-64-128	1172	1.06	3152	2.27	22.06
SKINNY-128-128	1481	1.05	6976	1.83	17.47
SKINNY-128-256	2125	0.89	8320	1.53	17.29
SIMON-64-128	958	-	-	4.2	-
SIMON-128-128	1234	-	-	2.9	-
SIMON-128-256	1782	-	-	2.6	-

Notes

- The datapath is reduced to a single bit
- SIMONcan use regular flip-flops (4.67 GE)
- SKINNYhas to use (some) scan flip-flops (6 GE)
- So far, the possibility of implementing an SPN cipher in a bit-serial way is an unique feature of SKINNY

Bibliography I

The SKINNY Family of Lightweight Tweakable Block Ciphers

Bibliography II

	Učervin Deminni and Ali Avdin Selevi
	nuseyin benirci and Ali Aydın selçük.
	A Meet-in-the-Middle Attack on 8-Round AES.
	In Kaisa Nyberg, editor, <u>FSE 2008</u> , volume 5086 of <u>LNCS</u> , pages 116––126. Springer, February 2008.
	Jérémy Jean. Ivica Nikolic. and Thomas Pevrin.
	Two ke and Kaya for Black Cibbars, The TWEAKEY Framework
	INCC Server 244 288 Environ Description Description 2014
-	LNCS, pages 274200. Springer, December 2014.
	Lars Knudsen.
	DEAL - A 128-bit Block Cipher.
	In <u>NIST AES Proposal</u> , 1998.
	Gregor Leander, Brice Minaud, and Sondre Rønjom.
	A Generic Approach to Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro.
	LNCS, pages 254283. Springer, 2015.
	Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita, and Taizo Shirai.
	Piccolo: An Ultra-Lightweight Blockcipher.
	In Bart Preneel and Tsuyoshi Takagi, editors, <u>CHES 2011</u> , volume 6917 of <u>LNCS</u> , pages 342357. Springer,
	September / October 2011.
	Yosuke Todo.
	Structural Evaluation by Generalized Integral Property.
	LNCS, pages 287314. Springer, 2015.
	Virtual Silicon Inc.
	$0.18~\mu$ m VIP Standard Cell Library Tape Out Ready, Part Number: UMCL18G212T3, Process: UMC Logic $0.18~\mu$ m
	Generic II Technology: 0.18μm, July 2004.