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Mainly on differential and linear cryptanalysis, but now also on integral distinguishers, cube attacks, meet-
in-the-middle attacks, etc. 

Solving time is a crucial aspect and can be impacted by: 

• the framework you use (SAT/MILP/CP/etc.) 

• the strategy of modeling 

Timeline of Automated Cryptanalysis
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Automated cryptanalysis using declarative frameworks (SAT/MILP/CP/etc.) is 
generally slower or at best same as ad-hoc tools, but so much more convenient
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Typically, for finding differentials or differential trails: 

• Use variables to represent the various stages of the internal state bit differences during the round (and 
throughout the rounds)

• Use other variables to represent the probability P of the differential path (in -log2)

• Model a round of the cipher as a set of declarative constraints (Markov assumption !) to represent the 
difference propagation (either truncated or not). Use temporary variables if needed for certain 
components.

• Put all this into a system and use a solver on it.

• Can be combined with extra upper-level strategies (Matsui branch-and-bound, etc.)

Automated Cryptanalysis for Differential Paths
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One can: 

• Find the best differential path / linear characteristic

• Enumerate the number of solutions

• Estimate the probability of a differential
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All variables are Boolean, a constraint is a Conjunctive Normal Form                      
(CNF – conjunction of disjunctions/clauses). Ex: (a∨b) ∧ (¬a∨c∨d) ∧ (¬b∨c)

• Equality is easy to model     x = y  ⇔ (¬x ∨ y) ∧ (x ∨ ¬y) = 1 

• Linear layers are easy to model, by combining the simple XOR model:
      x = a ⊕ b  ⇔ (¬a ∨ b ∨ x) ∧ (a ∨ ¬b ∨ x) ∧ (a ∨ b ∨ ¬x) ∧ (¬a ∨ ¬b ∨ ¬x) = 1
     (use dummy variables with combinations of XORs for multiple-inputs XORs)

• Nonlinear layers (Sbox/AND/OR/Additions) are more complex to model

Then, add a constraint to force the path to have a certain fixed probability P:

• If the solver returns SAT, we directly get a path with probability P. 

• If the solver returns UNSAT, we run again this time with a probability P’ < P                                         

(drawback: we need to iterate through decreasing target values).

Satisfiability Problem (SAT/SMT) for Cryptanalysis

SAT is very good for all ciphers, especially for ARX ciphers

SAT is very good for finding optimal differential paths, and 
good for estimating the probability of a differential.
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All variables are Boolean/integer/real, a constraint is a linear inequality 

Ex: {a + 4b + 2c ≥ 3d + 7e} 

• Equality is easy to model x = y  ⇔  {x ≥ y}, {y ≥ x} 

• Linear layers are easy to model, by using 4 inequalities:
      x = a ⊕ b  ⇔  {a + b ≥ x}, {a + x ≥ b}, {b + x ≥ a}, {a + b + x ≤ 2}
      (use dummy variables with combinations of XORs for multiple-inputs XORs)

• Nonlinear layers (Sbox/AND/OR/Additions) are more complex to model

Then, add an objective function to minimize/maximize (encoding the path 
probability). Ex: {a + 3b + 2c + 5d}. The solver will directly return the best instance 
identified.

Mixed Integer Linear Programming (MILP) for Cryptanalysis
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MILP is good on most ciphers. 

MILP is very good for finding optimal differential paths, 
less so for estimating the probability of a differential.
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• Sboxes are relatively easy to model: transform DDT into constraints

• You can’t use that strategy for ARX: size is too large (32/64 bits)

• To overcome this, researchers tried:

– to fully linearise mod. addition (Ex: MDx/SHA-x collision attacks):    x = a ⊞ b ≈ a ⊕ b 

– to use Lipmaa-Moriai formula for XOR-differential propagation through addition:

– to build the differential path iteratively, only propagating the most likely differences 
at each round (not representing the full cipher in a single model): partial DDT (pDDT)

The Problem with Modular Addition Modeling

for (α, β → γ):  eq(α ≪ 1, β ≪ 1, γ ≪ 1) ∧ (α ⊕ β ⊕ γ ⊕ (β ≪ 1)) = 0 , with eq(x, y, z) := (¬x ⊕ y) ∧ (¬x ⊕ z)

Exact
model

Fully linear 
model

In between ? accurate, but slowFast, but approximate
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The Window Heuristic
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A difference on bit i of a modular addition input can create a differential 
carry propagation from i to many later positions.

A linear model forces 0 carry difference propagation (but is fast), while exact 
model allows any propagation (but is slow). 

• Our observation: good differential paths are (almost always) composed of 
modular addition diff. transitions that are propagating very little (if not at all), 
with only a few rounds with more propagation. 

The Windows Heuristic Idea
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A difference on bit i of a modular addition input can create a differential 
carry propagation from i to many later positions.

A linear model forces 0 carry difference propagation (but is fast), while exact 
model allows any propagation (but is slow). 

• Our observation: good differential paths are (almost always) composed of 
modular addition diff. transitions that are propagating very little (if not at all), 
with only a few rounds with more propagation. 

• Our idea: generalize the linear and exact models, by allowing a difference     
in the carry to propagate a little bit (over s bits, aka the “window” of 
propagation). We can control for each modular addition and each difference 
bit of it, what window size to allow.

The Windows Heuristic Idea
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Example:

The Windows Heuristic Idea
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• In MILP, for each n-bit modular addition with s-bit window, we add the 

(n - 1 - s) following new constraints on the corresponding carry C:

Encoding the Window in MILP and SAT
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• In SAT, for each n-bit modular addition with s-bit window, we add the 

22(s+1) (n - 1 - s) following new constraints on the corresponding carry C:
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Window Heuristic does not create invalid paths, but potentially miss good ones 
(good to find attacks, bad to prove the non-existence of diff. paths).

We observed that fixing s for an entire round generally works well in practice, 
but this remains dependent on the cipher and attack we study.  

Other possible heuristics:

• Force each round to contain few consecutive carry difference clusters (in 
general small for good differential paths)

• Restrict the total number of carry differences for each modular additions (in 
general not too large for good differential paths)

Unfortunately, these other heuristics did not improve the results. 

The Heuristics
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Results
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Application to SPECK Block Cipher
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[41] Qin et al.
        CoRR abs/2203.09741 - 2022

[42] Sadeghi et al.
        Des. Codes Cryptography 2021
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Application to ChaCha

Differential paths on 
ChaCha with MILP

Differential paths on ChaCha - comparison

Boomerang Distinguishers on ChaCha

[7] Bellini et al. - IJACT 2023
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Application to LEA Block Cipher
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Key recovery on LEA

Differential paths on LEA Differential paths on LEA (time)

[3]   Bagherzadeh et al. - IET Information Sec. 2020

[43] Song et al. - ACISP 2016
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Conclusion
- 

Future Works
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• Maybe better heuristics exist with such window modeling trick

• Generalize the way we limit the carry, maybe other good 

representations are possible 

• Generalize to more complex operations cases (multiplications, algebraic 

formula, ..)

• What about linear cryptanalysis ? Truncated differential cryptanalysis ?

• Incorporate the Window Heuristic into larger models with key recovery

Conclusion
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