
#RSAC

SESSION ID:

Emanuele Bellini, David Gerault, Juan Grados, Thomas Peyrin

The Window Heuristic:
Automating Differential Trail
Search in ARX Ciphers with Partial
Linearization Trade-offs

TII, UAE, Nanyang Technological University, Singapore

CRYP-M01A

#RSAC

Presentations are intended for educational purposes only and do not replace independent professional

judgment. Statements of fact and opinions expressed are those of the presenters individually and,

unless expressly stated to the contrary, are not the opinion or position of RSA Conference LLC or any

other co-sponsors. RSA Conference LLC does not endorse or approve, and assumes no responsibility

for, the content, accuracy or completeness of the information presented.

Attendees should note that sessions may be audio- or video-recorded and may be published in various

media, including print, audio and video formats without further notice. The presentation template and

any media capture are subject to copyright protection.

© 2025 RSA Conference LLC or its affiliates. The RSAC and RSAC CONFERENCE logos and other trademarks are proprietary. All rights reserved.

Disclaimer

2

#RSAC

Automated
Cryptanalysis

#RSAC

Mainly on differential and linear cryptanalysis, but now also on integral distinguishers, cube attacks, meet-
in-the-middle attacks, etc.

Solving time is a crucial aspect and can be impacted by:

• the framework you use (SAT/MILP/CP/etc.)

• the strategy of modeling

Timeline of Automated Cryptanalysis

4

Automated cryptanalysis using declarative frameworks (SAT/MILP/CP/etc.) is
generally slower or at best same as ad-hoc tools, but so much more convenient

202420232022202120202019201820172016201520142013201220112010

AD-HOC
algorithms

Mouha et al.
[SAT]

for ARX
ciphers

Gerault et al.
[CP]

for instantiating
diff. path

Mouha et al.
Wu et al.

[MILP]

Today almost all

cryptanalysis are assisted

by solvers (FSE 2024: two

entire sessions just for pure

automated cryptanalysis)

MILP

SAT

CP

Gohr
[ML]

for small SPECK

ML

CASCADA CLAASPTAGADACRYPTOSMT

Fully
automated

cryptanalysis ?

• the solver

• the type of problem studied / scale

#RSAC

Typically, for finding differentials or differential trails:

• Use variables to represent the various stages of the internal state bit differences during the round (and
throughout the rounds)

• Use other variables to represent the probability P of the differential path (in -log2)

• Model a round of the cipher as a set of declarative constraints (Markov assumption !) to represent the
difference propagation (either truncated or not). Use temporary variables if needed for certain
components.

• Put all this into a system and use a solver on it.

• Can be combined with extra upper-level strategies (Matsui branch-and-bound, etc.)

Automated Cryptanalysis for Differential Paths

5

One can:

• Find the best differential path / linear characteristic

• Enumerate the number of solutions

• Estimate the probability of a differential

#RSAC

All variables are Boolean, a constraint is a Conjunctive Normal Form
(CNF – conjunction of disjunctions/clauses). Ex: (a∨b) ∧ (¬a∨c∨d) ∧ (¬b∨c)

• Equality is easy to model x = y ⇔ (¬x ∨ y) ∧ (x ∨ ¬y) = 1

• Linear layers are easy to model, by combining the simple XOR model:
 x = a ⊕ b ⇔ (¬a ∨ b ∨ x) ∧ (a ∨ ¬b ∨ x) ∧ (a ∨ b ∨ ¬x) ∧ (¬a ∨ ¬b ∨ ¬x) = 1
 (use dummy variables with combinations of XORs for multiple-inputs XORs)

• Nonlinear layers (Sbox/AND/OR/Additions) are more complex to model

Then, add a constraint to force the path to have a certain fixed probability P:

• If the solver returns SAT, we directly get a path with probability P.

• If the solver returns UNSAT, we run again this time with a probability P’ < P

(drawback: we need to iterate through decreasing target values).

Satisfiability Problem (SAT/SMT) for Cryptanalysis

SAT is very good for all ciphers, especially for ARX ciphers

SAT is very good for finding optimal differential paths, and
good for estimating the probability of a differential.

#RSAC

All variables are Boolean/integer/real, a constraint is a linear inequality

Ex: {a + 4b + 2c ≥ 3d + 7e}

• Equality is easy to model x = y ⇔ {x ≥ y}, {y ≥ x}

• Linear layers are easy to model, by using 4 inequalities:
 x = a ⊕ b ⇔ {a + b ≥ x}, {a + x ≥ b}, {b + x ≥ a}, {a + b + x ≤ 2}
 (use dummy variables with combinations of XORs for multiple-inputs XORs)

• Nonlinear layers (Sbox/AND/OR/Additions) are more complex to model

Then, add an objective function to minimize/maximize (encoding the path
probability). Ex: {a + 3b + 2c + 5d}. The solver will directly return the best instance
identified.

Mixed Integer Linear Programming (MILP) for Cryptanalysis

7

MILP is good on most ciphers.

MILP is very good for finding optimal differential paths,
less so for estimating the probability of a differential.

#RSAC

• Sboxes are relatively easy to model: transform DDT into constraints

• You can’t use that strategy for ARX: size is too large (32/64 bits)

• To overcome this, researchers tried:

– to fully linearise mod. addition (Ex: MDx/SHA-x collision attacks): x = a ⊞ b ≈ a ⊕ b

– to use Lipmaa-Moriai formula for XOR-differential propagation through addition:

– to build the differential path iteratively, only propagating the most likely differences
at each round (not representing the full cipher in a single model): partial DDT (pDDT)

The Problem with Modular Addition Modeling

for (α, β → γ): eq(α ≪ 1, β ≪ 1, γ ≪ 1) ∧ (α ⊕ β ⊕ γ ⊕ (β ≪ 1)) = 0 , with eq(x, y, z) := (¬x ⊕ y) ∧ (¬x ⊕ z)

Exact
model

Fully linear
model

In between ? accurate, but slowFast, but approximate

#RSAC

The Window Heuristic

#RSAC

A difference on bit i of a modular addition input can create a differential
carry propagation from i to many later positions.

A linear model forces 0 carry difference propagation (but is fast), while exact
model allows any propagation (but is slow).

• Our observation: good differential paths are (almost always) composed of
modular addition diff. transitions that are propagating very little (if not at all),
with only a few rounds with more propagation.

The Windows Heuristic Idea

10

LSBMSB

Inserted
difference

Decreasing carry difference probability

#RSAC

A difference on bit i of a modular addition input can create a differential
carry propagation from i to many later positions.

A linear model forces 0 carry difference propagation (but is fast), while exact
model allows any propagation (but is slow).

• Our observation: good differential paths are (almost always) composed of
modular addition diff. transitions that are propagating very little (if not at all),
with only a few rounds with more propagation.

• Our idea: generalize the linear and exact models, by allowing a difference
in the carry to propagate a little bit (over s bits, aka the “window” of
propagation). We can control for each modular addition and each difference
bit of it, what window size to allow.

The Windows Heuristic Idea

11

LSBMSB

Inserted
difference

s (propagation window)

#RSAC

Example:

The Windows Heuristic Idea

12

#RSAC

• In MILP, for each n-bit modular addition with s-bit window, we add the

(n - 1 - s) following new constraints on the corresponding carry C:

Encoding the Window in MILP and SAT

13

෍

𝑖=1

𝑠+1

𝐶 𝑗 − 𝑖 ≤ 𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝑠 + 1, … , 𝑛 − 1 .

• In SAT, for each n-bit modular addition with s-bit window, we add the

22(s+1) (n - 1 - s) following new constraints on the corresponding carry C:

¬(𝑎[𝑗 − 𝑖] ⊕ 𝑏[𝑗 − 𝑖] ⊕ 𝑐[𝑗 − 𝑖])ሥ ሧ

𝑛 − 1

𝑗 = 𝑠 + 1

𝑠 + 1

𝑖 = 1

#RSAC

Window Heuristic does not create invalid paths, but potentially miss good ones
(good to find attacks, bad to prove the non-existence of diff. paths).

We observed that fixing s for an entire round generally works well in practice,
but this remains dependent on the cipher and attack we study.

Other possible heuristics:

• Force each round to contain few consecutive carry difference clusters (in
general small for good differential paths)

• Restrict the total number of carry differences for each modular additions (in
general not too large for good differential paths)

Unfortunately, these other heuristics did not improve the results.

The Heuristics

14

#RSAC

Results

#RSAC

Application to SPECK Block Cipher

16

[41] Qin et al.
 CoRR abs/2203.09741 - 2022

[42] Sadeghi et al.
 Des. Codes Cryptography 2021

#RSAC

Application to ChaCha

Differential paths on
ChaCha with MILP

Differential paths on ChaCha - comparison

Boomerang Distinguishers on ChaCha

[7] Bellini et al. - IJACT 2023

#RSAC

Application to LEA Block Cipher

18

Key recovery on LEA

Differential paths on LEA Differential paths on LEA (time)

[3] Bagherzadeh et al. - IET Information Sec. 2020

[43] Song et al. - ACISP 2016

#RSAC

Conclusion
-

Future Works

#RSAC

• Maybe better heuristics exist with such window modeling trick

• Generalize the way we limit the carry, maybe other good

representations are possible

• Generalize to more complex operations cases (multiplications, algebraic

formula, ..)

• What about linear cryptanalysis ? Truncated differential cryptanalysis ?

• Incorporate the Window Heuristic into larger models with key recovery

Conclusion

20

#RSAC

	Slide 1: The Window Heuristic: Automating Differential Trail Search in ARX Ciphers with Partial Linearization Trade-offs
	Slide 2: Disclaimer
	Slide 3: Automated Cryptanalysis
	Slide 4: Timeline of Automated Cryptanalysis
	Slide 5: Automated Cryptanalysis for Differential Paths
	Slide 6: Satisfiability Problem (SAT/SMT) for Cryptanalysis
	Slide 7: Mixed Integer Linear Programming (MILP) for Cryptanalysis
	Slide 8: The Problem with Modular Addition Modeling
	Slide 9: The Window Heuristic
	Slide 10: The Windows Heuristic Idea
	Slide 11: The Windows Heuristic Idea
	Slide 12: The Windows Heuristic Idea
	Slide 13: Encoding the Window in MILP and SAT
	Slide 14: The Heuristics
	Slide 15: Results
	Slide 16: Application to SPECK Block Cipher
	Slide 17: Application to ChaCha
	Slide 18: Application to LEA Block Cipher
	Slide 19: Conclusion - Future Works
	Slide 20: Conclusion
	Slide 21

