

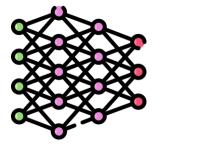
Truth Table Net: Scalable, Compact & Verifiable Neural Networks with a Dual Convolutional Small Boolean Circuit Networks Form

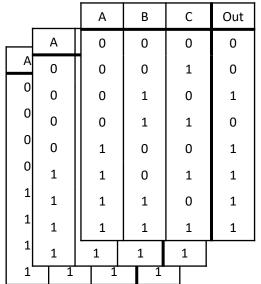
A. Benamira, T. Peyrin, T. Yap, T. Guérand, B. Hooi

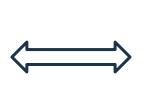
Nanyang Technological University

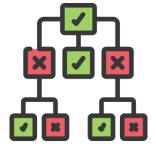
Introduction

Our findings









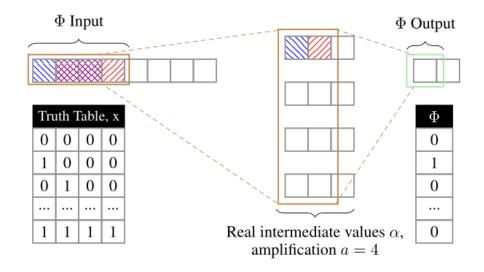
Neural Network

Set of lookup tables

Boolean Circuit

Scalable
Performances
Interpretable
Verifiable

From black box to truth tables



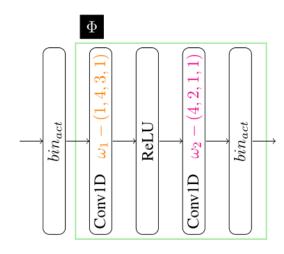


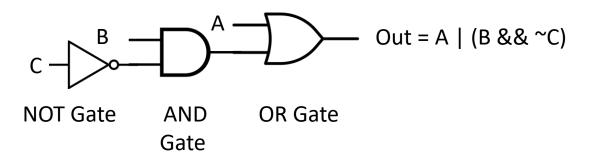
Figure from [4]

Convolution Filter ⇔ Truth Table

From black box to truth tables

What is the most complete, objective, simple form of information?

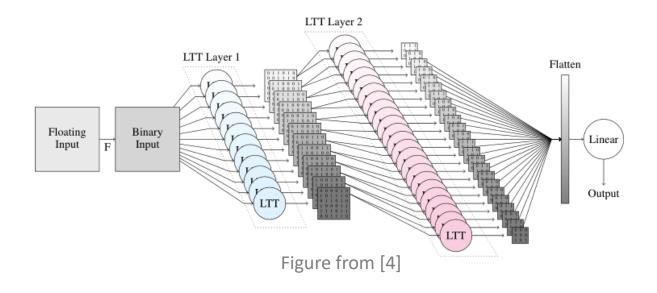
→ Truth Tables (for discrete at least)



Out Function Truth Table

Α	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

From black box to truth tables



- The Neural Network is seen as an aggregate of Truth Tables
- Neural Network ⇔ Truth Tables ⇔ Boolean Expressions
- Scales to ImageNet

RESULTS

ImageNet & Cifar-10

 $\mathsf{TTnet}_{\mathsf{n-lk}}$: input size of n, last layer quantized on k bits

n refers to the size of the kernel of the CNN Filter: i.e. if n = 16, kernel size is $(4,4) \rightarrow 16$ values

Top 1 and Top 5 Acc. Comparison on ImageNet

Accuracy	TTnet 16- 8	Original BNN	XnorNet	
top 1	41.6 % ± 0.6	27.9 %	44.2 %	
top 5	65.1 % ± 0.7	50.4 %	69.2 %	

Accuracy of TTnet_{n-|8} on CIFAR-10.

n	24	20	16	12	8	4
Acc.	89.1%	87.8%	86.0%	84.3%	81.2%	77.5%
	± 0.2	± 0.2	± 0.3	± 0.2	± 0.4	± 0.4

State of the art accuracy on CIFAR-10, comparable accuracy to first BNNs on ImageNet

Complexity on MNIST and CIFAR-10

MNIST		Acc.	# Param.	OPs	FLOPs
Traditional models	Linear Regression Neural Network	91.60% 98.40%	4K 22.6M	(4M) (45G)	4K 45M
Boolean DNNs	Diff Logic Net (small) Diff Logic Net	97.69% 98.47%	48K 384K	48K 384K	-
	TTnet ₆₋₄ (small) TTnet ₆₋₄ (big)	97.44% 98.32%	37K 203K	34K 188K	- -
BNNs	FINN	98.40%	-	5.28M	-
SNNs	M17 SET-MLP	98.08% 98.74%	4K 89.8K	(8M) (180M)	8K 180K

CIFAR-10		Acc.	# Param.	OPs	FLOPs
	Diff Logic Net (small)	51.27 %	48K	48K	-
	Diff Logic Net (medium)	57.39 %	512K	512K	-
	Diff Logic Net (large)	60.78 %	1.28M	1.28M	-
Boolean DNNs	Diff Logic Net (large x2)	61.41 %	2.56M	2.56M	-
DOOLGGII DININS	Diff Logic Net (large x4)	62 14 %	5 12M	5 12M	
	TTnet 6-4	50.10 %	565K	565K	-
	TTnet ₁₂₋₄	70.75 %	189M	189M	-
	TTnet _{12- 4}	84.63 %	1.2G	1.2G	
BNNs	H19	91.00%	23.9 M	87.4G	-
SNNs	PBW (ResNet32)	38.64 %	-	(140M)	(140K)
	MLPrune (ResNet32)	36.09 %	-	(140M)	(140K)
	ProbMask (ResNet32)	76.87 %	-	(140M)	(140K)
	SET-MLP `	74.84 %	279K	(558M)	`558K´

Boolean DNNs result in low complexity NN, with TTnet having the best performances

→ Competitive Ops/Performance trade-off

Fast Verification

General DNN verification with α - β -Crown vs TTnet with general SAT verification method.

	General DNN + α-β-Crown [Xu <i>et al.</i> , 2020] [Wang <i>et al.</i> , 2021]		TTnet ₉₋₁ + General SAT verification pipeline		
	Verif. time (s)	Timeout (%)	Verif. time (s)	Timeout (%)	
MNIST	96	13	0.06 (× 1600)	0	
CIFAR-10	175	27	0.14 (× 1250)	0	

Application of TTnet to complete adversarial robustness verification for low and high noise bounded by l_∞.

Comparison to state-of- the-art SAT methods

Dataset	Complete	Acc u	ıracy	Verif.	Timeout
(noise)	method	Verif.	Nat.	time (s)	
MNIST $(\epsilon_{test} = 0.1)$	TTnet _{9- 1}	95.12%	98.33%	0.012	0
	JR20	91.68%	97.46%	0.1115	0
	N+19 *	20.00%	96.00 %	5	0
MNIST $(\epsilon_{test} = 0.3)$	TTnet ₉₋₁	66.24%	97.43 %	0.065	0
	JR20	77.59%	96.36%	0.1179	0
CIFAR-10 $(\epsilon_{test} = 2/255)$	TTnet ₉₋₁ JR20	32.32% 30.49%	49.23% 47.35%	0.06 ⊕.1750	0 0
CIFAR-10 $(\epsilon_{test} = 8/255)$	TTnet ₉₋₁	21.08%	31.13%	0.04	0
	JR20	22.55%	35.00%	0.1781	0

^{*} results given on the first 1K images of the test set. Moreover, the authors only authorize a maximum of 20 pixels to switch.

A Boolean circuit is very SAT-friendly, resulting in ultra fast verification times

Limitations

TTnet has the following limitations:

- 1) Small size of inputs: n < 25 to allow Quine McClusky algorithm to find equivalent Boolean equations
- 2) First Layer with high bit-bandwidth is needed for large datasets (CIFAR-10, ImageNet)
- 3) Binarization results in a big loss of information

But we have the following advantages:

- 1) Very compact CNN
- 2) Low computational inference cost
- 3) Very fast verification times
- 4) Competitive accuracy on datasets smaller than ImageNet \rightarrow fine for most real life use cases

Contact us for collaborations:

guer0001@e.ntu.edu.sg, thomas.peyrin@ntu.sg