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Introduction
Why Explainability ?

Sick / Not Sick

Patient Neural Network Decision
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Why Explainability ?

Sick / Not Sick

Patient Neural Network Decision

→ Why did the NN decides that the patient is sick ?
→ Which features matter ?

?

Age

Weight

Gender

…

Blood 
Type

Explainable AI (XAI)

Introduction
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What is XAI

Neural Network

Black Box Interpretable / Explainable methods

Scalable
Performances
Interpretable

Decision tree Linear 
Regression

Random Forest

Introduction

Less Interpretable More Interpretable
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What do we want

Neural Network Decision tree

Scalable
Performances
Interpretable

Introduction
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From black box to truth tables

Convolution block ⇔ Truth Table

Figure from [4]

TTnet

6



From black box to truth tables

What is the most complete, objective, simple form of information?

→ Truth Tables (for discrete at least)

OR Gate

A B C Out

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

A
B Out = A | (B && ~C)

Out Function Truth Table

TTnet

C

AND 
Gate

NOT Gate

7



From black box to truth tables

• The Neural Network is seen as an aggregate of Truth Tables

• Neural Network⇔ Truth Tables⇔ Boolean Expressions

• Scales to ImageNet

Figure from [4]

TTnet
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NN-based Rule Model

- Set of Truth Tables → Set of Rules
- Accurate
- Possibility to add Human Knowledge

Procedure:
1) We train our neural network TTnet on the dataset.
2) We convert TTnet in form of rules-based model.
3) We only use the rules-based model to infer.

→ All automated

TT-rules
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Use Case: Breast Cancer Wisconsin dataset [5]

Goal: Is a cell malign or benign ?

Dataset Dimensions: 100 binary variables, 700 samples → very small dataset

Dataset features:

• Clump Thickness​
• Uniformity of Cell Size
• Uniformity of Cell Shape​

• Single Epithelial Cell Size
• Bare Nuclei
• Bland Chromatin

• Mitoses
• Marginal Adhesion
• Normal Nucleoli

TT-rules
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Use Case: Breast Cancer Wisconsin dataset [5]

Comparison of our method to Linear/Logistic Regression[1], Decision Trees (DT)[1], GL[2] and 
DNNs. Our TT-rules models were trained with a final linear regression with weights as floating 
points.  The higher the AUC the better. Means are reported from 5-fold cross validation.

TT-rules
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This model has 24 rules only

On the same test set, Random forest had 200 trees with 
lower accuracy: 0.993 vs 0.957

Use Case: Breast Cancer Wisconsin dataset [5]

Rule 1 is:
(Bland Chromatin id = 10) | (Bare Nuclei id = 8 && Mitoses id ≠ 3) | (Bare Nuclei id ≠ 8 && Clump Thickness id ≠ 4)

TT-rules

An output example of TT-rules
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In the melanoma cancer setup, we trained on the head and neck dataset [7] and tested on the melanoma 
dataset [8] following established literature [9, 10, 11, 12].

Four different example settings:
- TCCA Lung Cancer [6]: https://bit.ly/tcga_lung_rna
- Melanoma: single-cell RNA-seq analysis datasets for head and neck cancer[7], melanoma cancer [8] 

https://bit.ly/neck_head_rna and https://bit.ly/melanoma_rna

- Breast Cancer Wisconsin [5] : https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
- Diabetes 130 US Hospitals [5] : https://bit.ly/diabetes_130_uci

Two DNA datasets with a lot of features (>20k), and two Machine Learning datasets with few features (<300)

Example settings

Results
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Comparison of our method to Linear/Logistic Regression[1], Decision Trees (DT)[1], 
Random Forest[1], GL[2] and DNNs. The lower RMSE the better, the higher AUC/Accuracy 
the better. ​Means and standard deviations are reported from 5-fold cross validation.

Results table

Results
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Our approach scales

It reduces the input feature set → feature selection method:

- Regression Problem : we generated a set of 1064 rules out of 20530 features

- Binary Classification: we generated 9472 rules, more than halved the input size from 23689 to 9472.

→ drastic reduction in complexity

Results

Comparison of our method to Linear/Logistic Regression[1], Random Forest[1] and 
DNNs. The lower RMSE the better, the higher AUC/Accuracy the better. Means and 
standard deviations are reported from 5-fold cross validation.

Results table
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Conclusion

• We obtain all the rules describing our model
• A Rule Model that scales to 10k+ features and 100GB of data
• TT-rules is a new tool for Explainability and Decision-making in healthcare

Perspectives

• Able to dig into the learnings of a Neural Network
• Compute the Sufficient Reasons and Necessary Reasons for a decision [13]
• Give the most important rules
• Presenting global and/or local explanations for diagnosis and improvement with human feedbacks

Contact us for collaborations on new medical datasets : 
adrien002@e.ntu.edu.sg, guer0001@e.ntu.edu.sg, thomas.peyrin@ntu.sg 16
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