Correlation Analysis

Results 000 00000 Conclusion 000

< □ > < @ > < E > < E > E のQ@

Side-channel analysis of six SHA-3 candidates in HMAC scheme

Olivier Benoît and Thomas Peyrin

CHES 2010 Workshop

Santa Barbara - August 18, 2010

ackground	Correlation Analysis	Results	Conclusion
00	00000	000 00000	000

Outline

Background

Correlation Analysis Theory Practice

Results AES-bases candidates Others Candidates

Conclusion

kground	Correlation Analysis	Results	Conclusion
	00000	000 00000	000

Outline

Background

Bac

Correlation Analysis Theory Practice

Results AES-bases candidates Others Candidates

Conclusion

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Background	Correlation Analysis	Results	Conclusion
00	00000	000 00000	000

Introduction

- NIST launched the SHA-3 competition in order to replace the collision-broken SHA-1 function
- 14 candidates are still in the race, the winner will be determined in 2012
- it makes sense to consider side-channel attack on these SHA-3 candidates in the HMAC scheme
- Retrieving the key would lead to the ability to forge correct MAC
- We will therefore analyse a panel of six candidates deemed representative

ECHO Grøstl SHAvite-3 HAMSI BLAKE CubeHash

ackground	Correlation Analysis	Results	Conclusion
•o ⁻	00000	000 00000	000

B

Prior works

- DPA on n-bit sized boolean and arithmetic operations and its application to IDEA, RC6, and HMAC construction (CHES 2005), Lemke *et al.*
- Side channel attacks against HMAC based on block-cipher based hash functions (ACISP 2006), Okeya *et al.*
- DPA of HMAC based on SHA-2, and countermeasures (WISA2007), McEvoy *et al.*
- An update on the side channel cyrptanalysis of MAC based on crytopgaphic hash functions (INDOCRYPT 2007), Gauravaram *et al.*
- Practical Electromagnetic Template Attack on HMAC (CHES 2009), Fouque *et al.*

round	Correlation Analysis	Results	Conclusion
	00000	000 00000	000

HMAC

Backs

 $HMAC(K, M) = H((K \oplus opad)||H((K \oplus ipad)||M))$

• The possible targets of a side-channel analysis attack are:

 K, CV_1^{in} and CV_1^{out}

Background	Correlation Analysis	Results	Conclusion
000	00000	000 00000	000

Outline

Background

Correlation Analysis

Theory Practice

Results AES-bases candidates Others Candidates

Conclusion

Background	
000	

Correlation Analysis	Results	
• 0000	000 00000	

Correlation

- A selection function is defined as w = f(cv, m)
- The theoretical correlation between a data set *x_i* for a key guess *j* and the data set *y_i* for an arbitrary real key *r* is:

$$c(j,r) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \cdot \sqrt{\sum (y_i - \overline{y})^2}}$$

• Assumming a leakage in the Hamming Weight model:

$$x_i = HW(f(j, m_i))$$
 and $y_i = HW(f(r, m_i))$

• Given a selection function, it is possible to compute *c*(*j*, *r*) for all key guess and look a the correlation contrast between the real key and the wrong keys

Correlation Analysis	
00000	

Results 000 00000 Conclusion 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SHA-3 Selection functions

The typical selection functions that will be found in SHA-3 candidates are:

• AES sbox (256 \rightarrow 256 substitution):

$$w = SBOX_{AES}(cv \oplus m)$$

• Modular addition:

 $w = (cv \boxplus m)mod256$

• Exclusive OR logic operation:

 $w = cv \oplus m$

• HAMSI sbox ($16 \rightarrow 16$ substitution):

Correlation Analysis	
00000	

Results 000 00000 Conclusion 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SHA-3 Selection functions

The typical selection functions that will be found in SHA-3 candidates are:

• AES sbox (256 \rightarrow 256 substitution):

$$w = SBOX_{AES}(cv \oplus m)$$

• Modular addition:

 $w = (cv \boxplus m)mod256$

• Exclusive OR logic operation:

 $w = cv \oplus m$

• HAMSI sbox ($16 \rightarrow 16$ substitution):

Correlation Analysis	
00000	

Conclusion 000

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SHA-3 Selection functions

The typical selection functions that will be found in SHA-3 candidates are:

• AES sbox (256 \rightarrow 256 substitution):

$$w = SBOX_{AES}(cv \oplus m)$$

• Modular addition:

 $w = (cv \boxplus m)mod256$

• Exclusive OR logic operation:

 $w = cv \oplus m$

• HAMSI sbox ($16 \rightarrow 16$ substitution):

Correlation Analysis	
00000	

Conclusion 000

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SHA-3 Selection functions

The typical selection functions that will be found in SHA-3 candidates are:

• AES sbox (256 \rightarrow 256 substitution):

$$w = SBOX_{AES}(cv \oplus m)$$

• Modular addition:

 $w = (cv \boxplus m)mod256$

• Exclusive OR logic operation:

 $w = cv \oplus m$

• HAMSI sbox ($16 \rightarrow 16$ substitution):

ackground	Correlation Analysis	Results	Conclusion
00	00000	000	000

Selection function efficiency, r = 8

900

Correlation Analysis

Results 000 00000 Conclusion 000

Selection function efficiency

• Results for the HAMSI sbox selection function:

real and guess key	<i>j</i> = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3
r = 0	+1.00	-0.17	-0.56	-0.87
r = 1	-0.17	+1.00	+0.87	-0.09
r = 2	-0.56	+0.87	+1.00	+0.17
<i>r</i> = 3	-0.87	-0.09	+0.17	+1.00

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Background	
000	

Correlation Analysis	Results
00000	000
00000	00000

Correlation Contrast

• The correlation contrast is computed from the highest correlation for a wrong guess (*c*_w)

selection	AES	modular	HAMSI	VOD		
function	Sbox	addition	Sbox	AUK		
Cw	0.23	0.75	0.87	-1		
C _C	3.34	0.33	0.15	0		

 $c_c = \frac{1 - |c_w|}{|c_w|}$

• The selection function efficiency *E* is linked to the correlation contrast

E(AES Sbox) > E(modular addition) > E(HAMSI Sbox) > E(XOR)

Background	
000	

Correlation Analysis	Results
00000	000 00000

Correlation Contrast

• The correlation contrast is computed from the highest correlation for a wrong guess (*c*_w)

selection function	AES Sbox	<i>modular</i> addition	HAMSI Sbox	XOR	$c = 1 - c_w $
Cw	0.23	0.75	0.87	-1	$c_c = \frac{ c_w }{ c_w }$
C _C	3.34	0.33	0.15	0	

• The selection function efficiency *E* is linked to the correlation contrast

E(AES Sbox) > E(modular addition) > E(HAMSI Sbox) > E(XOR)

Correlation Analysis

Results 000 00000 Conclusion 000

Measurement platform

- Xilinx Spartan FPGA
- Software selection function running on a TSK3000 RISC CPU
- 5 GS/s sampling frequency
- Homemade EMA sensor
- 30db Amplifier (1GHz BdW)
- 100.000 curves
- 10 curves per message

イロト イロト イヨト イヨト ニヨー

500

Background	
000	

Correlation Analysis	Results	Conclus
00000 00000	000 00000	000

Selection functions implementation

```
// XOR sel function
for ( i=0; i<4; i++ )</pre>
  buffer[i] = kev[i] ^ inputbuffer[i];
3
//MOD ADD sel function
for ( i=4; i<8; i++ )</pre>
  buffer[i] = key[i] + inputbuffer[i];
3
// AES SBOX sel function
for ( i=8; i<12; i++ )</pre>
  buffer[i] = AES_SBOX[ key[i] ^ inputbuffer[i] ];
3
// HAMSI SBOX sel function
for ( i=12; i<16; i++ )</pre>
   temp = ((key[i] & 0x02)<<2) | ((inputbuffer[i] & 0x02)<<1) | ((key[i] & 0x01)<<1) | (inputbuffer[i] & 0x01);</pre>
  buffer[i] = HAMSI SBOX[temp];
ι
*HBIO = OxFF;
for ( i=0; i<16; i++ )
   result[i] = buffer[i];
*HBI0 = 0x00;
```

Correlation Analysis

Results 000 00000 Conclusion 000

CEMA results: correlation curves for correct and wrong guess

ackground	Correlation Analysis	Results	Conclusion
00	00000	000	000
	00000	00000	

CEMA results (5 best guess for each target byte)

Correlation: XOR. ADD. AES HAMSI selection function 0..3 4...7 8..11 12..15 Best guess selection criteria : Minimum Previous state range: 0..0 Subkeys range: 0..255 Sample per file: 20000 Sample range: 4150..15349 Working on file ID: 0..9999 Split step: 700 Split slot size: 100 Memory requirement: 213 Mo , press y for cache memory y Index Rank 1 [x,cor] Rank 2 [x,cor] Rank 3 [x,cor] Rank 4 [x,cor] Rank 5 [x,cor] Contrast S00 : 00 [04209,-0.390] 02 [04209,-0.382] 08 [04209,-0.378] OA [04209,-0.371] 10 [04210,-0.304] 1.9% S01 : OB [04910,-0.430] 03 [04909,-0.393] 09 [04909,-0.370] 4B [04910,-0.341] 01 [04908,-0.339] 9.2% 08 [05610,-0.412] OA [05609,-0.371] 02 [05609,-0.334] S02 : 00 [05610,-0.373] 48 [05610,-0.337] 10.5% 03 [06309,-0.384] 4B [06309,-0.333] S03 : OB [06309,-0.417] 09 [06310,-0.406] 01 [06309,-0.380] 2.6% 26.9% S04 : (00) [07010.-0.4091 FE [07010,-0.322] 02 [07010,-0.292] F8 [07010,-0.287] 08 [07010,-0.287] 03 [07710,-0.254] FB [07710,-0.242] F9 [07709,-0.237] S05 : 01 [07709,-0.323] FF [07710,-0.283] 14.0% (08409,-0.361) 04 [08410,-0.312] 00 [08410,-0.311] FA [08410,-0.283] FC [08411,-0.281] 15.8% S06 : 02 S07 : 03 [09109,-0.422] 01 [09110,-0.313] FB [09110,-0.300] OB [09110,-0.294] 83 [09109,-0.275] 34.8% S08 : 00 09810,-0.3991 9C [09810,-0.098] 26 [09810,-0.094] 28 [09808,-0.089] 33 [09810,-0.086] 304.8% 01 10508,-0.3071 32 [10509,-0.076] 301.6% S09 : OB [10507,-0.073] 09 [10509,-0.072] 9D [10508,-0.064] 02 [11209,-0.362] 9E [11209,-0.088] 08 [11210,-0.086] 31 [11209,-0.080] 24 [11212,-0.078] S10 : 313.2% \03/[11910,-0.425] AD [11910,-0.090] 25 [11908,-0.086] CA [11910,-0.080] 9F [11910,-0.079] 374.7% S11 : S12 : 00 [12609,-0.183] 01 [12626,-0.063] 02 [12640,-0.059] 03 [12550,-0.027] 188.5% 22.3% S13 : 02 [13307,-0.326] 01 [13308,-0.266] 03 [13324,-0.093] 00 [13345,-0.006] 03 [14010,-0.130] 01 [14049,-0.049] 00 [14026,-0.047] 02 [14049,-0.041] S14 : 163.0% S15 : 00 [14726,-0.257] 03 [14709,-0.233] 01 [14650,-0.140] 02 [14650,-0.124] 10.3%

< ロト < 団 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Correlation Analysis ○○○○○ ○○○○● Conclusion 000

CEMA results versus number of curves

Files		S00	S01	S02	S03	I	S04	S05	S06	S07	I	S08	S09	S10	S 11	I	S12	S13	S14	S15	T	contrast
00050		5E	73	DA	11	I	02	30	02	72	T	F6	47	91	03	T	00	02	01	00		12.2
00100	:	00	01	48	03	i.	00	DF	02	3D	i	00	A3	02	03	i.	00	02	03	00	i	9.5
00150	:	00	03	08	0B	i.	02	FB	02	FB	i	00	65	02	03	i	00	02	03	00	i	17.6
00200	:	00	03	08	0B	Í.	00	FB	00	FB	Í	00_	65	02	03	İ	00	02	03	00	i	25.5
00250	:	00	03	08	0B	i.	00	FF	00	FB	j	00	01	02	03	i	00	02	03	00	i	32.3
00300	:	00	03	08	0B	İ.	00	FF	00	03	i	00	01	02	03	i	00	02	03	00	i	53.6
00350		00	03	08	0B	i.	00	FF	00	03	i	00	01	02	03	i.	00	02	03	00	i	49.9
00400	:	00	03	08	0B	i.	00	01	00	03	i	00	01	02	03	i	00	02	03	00	i	57.6
00450	:	00	03	08	0B	İ.	00	01	00	03	i	00	01	02	03	i	00	02	03	00	i	58.7
00500	:	00	03	08	0B	i¢	00	01	02	03 >	i	00	01	02	03	i.	00	02	03	00	i	56.0
00600	:	02	03	08	0B	İ.	00	01	02	03	i	00	01	02	03	i	00	02	03	03	i	58.1
00700	:	00	0B	08	0B	Ĺ	00	01	02	03	Í	00	01	02	03	İ	00	02	03	00	i	64.4
00800	:	08	0B	08	0B	i.	00	01	02	03	i	00	01	02	03	i	00	02	00	00	i	66.1
00900	:	0A	0B	08	0B	İ.	00	01	02	03	i	00	01	02	03	i	00	02	00	00	i	62.4
01000	:	08	0B	08	0B	Ĺ	00	01	02	03	Í	00	01	02	03	Ĺ	00	02	00	00	- İ	76.0
02000	:	00	0B	08	0B	i.	00	01	02	03	i	00	01	02	03	i	00	02	03	00	i	88.4
03000	:	00	0B	08	0B	İ.	00	01	02	03	İ	00	01	02	03	i	00	02	03	00	i	114.2
04000	:	00	0B	08	0B	Ĺ	00	01	02	03	Í	00	01	02	03	Ĺ	00	02	03	00	- İ	120.1
05000	:	08	0B	08	0B	İ.	00	01	02	03	i	00	01	02	03	i	00	02	03	00	i	127.6
06000	:	08	0B	08	0B	Ĺ	00	01	02	03	Í	00	01	02	03	İ	00	02	03	00	i	123.9
07000	:	00	0B	08	0B	i.	00	01	02	03	i	00	01	02	03	i	00	02	03	00	i	129.6
08000	:	00	0B	08	0B	Ĺ	00	01	02	03	i	00	01	02	03	i	00	02	03	00	i	126.8
09000	:	00	0B	08	0B	Ĺ	00	01	02	03	i	00	01	02	03	i.	00	02	03	00	i	136.4
10000	:	00	0B	08	0B	Ĺ	00	01	02	03	i	00	01	02	03	i	00	02	03	00	i	146.7

ackground	Correlation Analysis	Results	Conclusion
00	00000	000 00000	000

Outline

Background

Correlation Analysis Theory Practice

Results

AES-bases candidates Others Candidates

Conclusion

Correlation Analysis 00000 00000 Results

ECHO side channel analysis

• Internal state at the end of the first round:

 $w_{i_0}[b] = \alpha \cdot cv'_{i_1}[b] \oplus \beta \cdot m'_{i_2}[b] \oplus \gamma \cdot m'_{i_3}[b] \oplus \delta \cdot m'_{i_4}[b]$

- Internal state in second round, after AES Sbox operation: $w_i'[b] = Sbox(w_i[b] \oplus t_i[b])$
- 64 AES Sbox side-channel attacks to retrieve *CV*
- For each $cv'_{i'}$ four selection functions can be exploits

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Grøstl side channel analysis

• Internal state after the AES Sbox operation during first round of P_G

 $w'[b] = Sbox(m[b] \oplus CV[b])$

- In this case, CPA is straightforward
- 64 AES Sbox side-channel attacks to retrieve *CV*
- It is possible to speed up the attack by a factor 64 by choosing all *m*[*b*] equals

SHAvite-3 side channel analysis

• Internal state after the AES Sbox operation during first round of *E*^S

 $w'[b] = Sbox(CV^{R}[b] \oplus m_0^1[b])$

• Internal state after the AES Sbox operation during second round of *E*^S

 $z'[b] = Sbox(CV^{L}[b] \oplus w''[b] \oplus m_0^2[b])$

- 32 AES Sbox side-channel attacks to retrieve *CV*
- In order to retrieve CV^L , the right part CV^R must be found without errors

ground	Correlation Analysis	Results	Conclusion
	00000	000 ●0000	000

BLAKE description

- Overview: $CV_{i+1} = final(E^B_{M_i}(init(CV_i)), CV_i)$
- *E^B* is a block cipher composed of 10 rounds, each consisting of the application of eight 128-bit sub-functions *G_i*

Background	
000	

Correlation Analysis
00000
00000

Results ○○○ ○●○○○

BLAKE description

• One round of *E^B* computes:

$G_0(v_0, v_4, v_8, v_{12})$	$G_1(v_1, v_5, v_9, v_{13})$	$G_2(v_2, v_6, v_{10}, v_{14})$	$G_3(v_3, v_7, v_{11}, v_{15})$
$G_4(v_0, v_5, v_{10}, v_{15})$	$G_5(v_1, v_6, v_{11}, v_{12})$	$G_6(v_2, v_7, v_8, v_{13})$	$G_7(v_3, v_4, v_9, v_{14})$

• The function *G_s*(*a*, *b*, *c*, *d*) processes the following steps:

$$a \leftarrow (a \boxplus b) \boxplus (m_i \oplus k_j)$$

$$d \leftarrow (d \oplus a) \gg 16$$

$$c \leftarrow (c \boxplus d)$$

$$d \leftarrow (b \oplus c) \gg 12$$

$$a \leftarrow (a \boxplus b) \boxplus (m_j \oplus k_i)$$

$$d \leftarrow (d \oplus a) \gg 8$$

$$c \leftarrow (c \boxplus d)$$

$$d \leftarrow (b \oplus c) \gg 7$$

< □ > < @ > < E > < E > E のQ@

Background	
000	

Correlation Analysis	
00000	
00000	

Results 000 00000

BLAKE side channel analysis

• the first four execution of *G*_s manipulates the secret chaining variable:

$G_0(cv_0, cv_4, t_0, t_4)$	$G_1(cv_1, cv_5, t_1, t_5)$
$G_2(\mathbf{cv}_2,\mathbf{cv}_6,t_2,t_6)$	$G_3(cv_3, cv_7, t_3, t_7)$

• The function $G_s(a, b, c, d)$ processes the following steps:

$$a_{1} = (a_{0} \boxplus b_{0}) \boxplus m_{k}$$

$$d_{1} = (d_{0} \oplus a_{1}) \gg 16$$

$$c_{1} = c_{0} \boxplus d_{1}$$

$$b_{1} = (b_{0} \oplus c_{1}) \gg 12$$

$$a_{2} = a_{1} \boxplus b_{1} \boxplus m_{l}$$

 The two selection functions are based on the Modular Addition operation

ackground	Correlation Analysis	Results	Conclusion
000	00000	000	000
	00000	00000	

CubeHash side channel analysis

• Overview: $CV_{i+1} = P_C(CV_i \oplus (M_i || \{0\}^{768}))$

- Two selection functions based on the XOR operation
- Two selection functions based on the Modular Addition operation

イロト イポト イヨト イヨト 三日

Sac

ground	Correlation Analysis	Results	Conclusion
	00000	000	000

HAMSI side channel analysis

• Generic selection function:

 $w = Sbox(m'_{i}[b] || cv'_{i+2}[b] || m'_{i+4}[b] || cv'_{i+6}[b])$ or

 $w = Sbox(cv'_{i}[b] || m'_{i+2}[b] || cv'_{i+4}[b] || m'_{i+6}[b])$

- Two bits of *CV* recovered at a time with a total of 128 HAMSI Sbox side-channel attacks (4 guess each)
- Could be enhanced by selecting multiple sbox at the same time, but must be coherant with implementation

Background	Correlation Analysis	Results	Conclusion
000	00000	000 00000	000

Outline

Background

Correlation Analysis Theory Practice

Results AES-bases candidates Others Candidates

Conclusion

Correlation Analysis 00000 00000 Results 000 00000 Conclusion •00

Results summary

Candidates	Selection function	Correlation analysis
ECHO	SBOX _{AES}	64 analysis at byte level (x4 possibilities)
Grøstl	SBOX _{AES}	64 analysis at byte level
SHAvite-3	SBOX _{AES}	16 + 16 analysis at byte level
BLAKE	Modular addition	32 analysis at byte level
CubeHash	Modular addition and XOR	64 ADD + 64 XOR analysis at byte level
HAMSI	SBOX _{HAMSI}	128 analysis at 2-bit level

Background	
000	

Conclusion

- AES-based candidates (ECHO SHAvite-3 and Grøstl)
 - Provide the same vulnerability to SCA as the AES block cipher
 - Can take advantage of protection inherited from hardware AES
- ARX candidates (BLAKE and CubeHash)
 - SCA will be less efficient (especially for CubeHash and its XOR selection function)
 - Less efficient to protect: require to constantly switch from arithmetic to boolean masking
- HAMSI candidate is quite exotic, a deeper study will be required if this candidate is choosen at the end of the SHA-3 contest

Background	
000	

Conclusion

- AES-based candidates (ECHO SHAvite-3 and Grøstl)
 - Provide the same vulnerability to SCA as the AES block cipher
 - Can take advantage of protection inherited from hardware AES
- ARX candidates (BLAKE and CubeHash)
 - SCA will be less efficient (especially for CubeHash and its XOR selection function)
 - Less efficient to protect: require to constantly switch from arithmetic to boolean masking
- HAMSI candidate is quite exotic, a deeper study will be required if this candidate is choosen at the end of the SHA-3 contest

Background	
000	

Conclusion

- AES-based candidates (ECHO SHAvite-3 and Grøstl)
 - Provide the same vulnerability to SCA as the AES block cipher
 - Can take advantage of protection inherited from hardware AES
- ARX candidates (BLAKE and CubeHash)
 - SCA will be less efficient (especially for CubeHash and its XOR selection function)
 - Less efficient to protect: require to constantly switch from arithmetic to boolean masking
- HAMSI candidate is quite exotic, a deeper study will be required if this candidate is choosen at the end of the SHA-3 contest

Correlation Analysis

Results 000 00000 Conclusion 000

Thank you for your attention Any questions?

olivier.benoit@ingenico.com thomas.peyrin@ingenico.com

