
1

Orange Labs

On Building Hash Functions From
Multivariate Quadratic Equations

Olivier Billet, Thomas Peyrin, and Matt Robshaw

Orange Labs
France

02.07.07

MQ-Hash Matt Robshaw (2) Orange Labs

Overview

� Hash Functions

� Multivariate quadratic equations

� Hash functions and multivariate quadratic equations

� Pro's and con's

� Conclusions

MQ-Hash Matt Robshaw (3) Orange Labs

Hash Functions

� We want a fixed-length output from an arbitrary length input

� Classically, good hash functions satisfy three properties
� Pre-image resistant
� Second pre-image resistant
� Collision-free
� However, it is not always clear what we want or what we need

� Typical designs are built around a compression function
� These compress a fixed-length string
� Multiple calls to the compression function allow inputs of (close to)

arbitrary length to be hashed (Merkle-Damgård)

MQ-Hash Matt Robshaw (4) Orange Labs

IV

M1 M2

f f

Mn

f h
c1 c2 cn-1

Compression Functions

optional output
transformation

MQ-Hash Matt Robshaw (5) Orange Labs

Compression Functions (I)

� Typically built around a block cipher

� Sometimes it's a block cipher of dedicated design
� e.g. MD4, MD5, SHA, SHA-1, etc.
� The underlying construct is an (unusual) block cipher

� Sometimes it's an established block cipher (DES or AES)
� e.g. MDC-2, MDC-4

MQ-Hash Matt Robshaw (6) Orange Labs

Compression Functions (II)

� There is much interest in number-theoretic approaches

� Primarily due to the success of VSH

� Other examples include LASH, FSB, …

� Here we try and get good (or reasonable) performance
coupled with an element of "provable security"

2

MQ-Hash Matt Robshaw (7) Orange Labs

In This Paper

� We consider efforts to build a compression function
based on Multivariate Quadratic Equations (MQE)

� Can we get some "provable" security with reasonable
performance ?

MQ-Hash Matt Robshaw (8) Orange Labs

Multivariate Quadratic Equations

� Solving a random system of multivariate quadratic
equations over a field F is (in general) difficult

q1 (x1, … , xn) = Σ1 ≤ i ≤ j ≤ n ai,jxixj + Σ1 ≤ k ≤ n bkxk + c
q2 (x1, … , xn) = …

↓
qm (x1, … , xn) = …

Given y1, … , ym find some x1, … , xn such that
y1 = q1 (x1, … , xn), … , ym = qm (x1, … , xn)

MQ-Hash Matt Robshaw (9) Orange Labs

Multivariate Quadratic Equations

� However, evaluating a set of polynomials is very easy
� There is a very appealing natural one-way quality

� There has been mixed success using this in public key
cryptography

� We need to embed a trapdoor which is not always easy

� But some success in symmetric cryptography (QUAD)

MQ-Hash Matt Robshaw (10) Orange Labs

Starting Out

� It is natural to try and build a hash function from MQE
� We get one-way properties for free

compress: F n → F v

compress(x1, … , xn) = (q1(x1, … , xn), … , qv(x1, … , xn))

farrange the input bits
as n variables in F

v variables in F are the output
from v equations

MQ-Hash Matt Robshaw (11) Orange Labs

Pre-image Resistant, but …

� If there are collisions they will be easy to find

� First order differential of quadratic polynomials is affine

� Our challenge is to find a different way of using MQE

� Provably maintain pre-image resistance property

� Provide (at least) plausible collision-free property

MQ-Hash Matt Robshaw (12) Orange Labs

A Two-Step Approach

� We build a two-step compression function MQ-hash
� Use MQE in both steps

� Use MQE to give some "compression" but apply some
pre-processing

� Pre-processing appears in several guises, but our work is
somewhat related to Aiello, Haber, and Venketasen (FSE 1998)

� Intuition: Collisions might be obvious in the second component
but they hard to extend to the full compression function

3

MQ-Hash Matt Robshaw (13) Orange Labs

MQ-hash= Qg • Qf

f

g

ci

ci-1 Mi

Qf

Qg

n + m

r

r

n

expansion

compression

MQ-Hash Matt Robshaw (14) Orange Labs

Outline of Reasoning

� For MQ-hash to be one-way
� Qg is one-way (this is our starting point)
� The MQE in Qf are "well-behaved"

• We borrow from QUAD for this

� For MQ-hash to be (plausibly) collision-free
� Collisions in Qg cannot be lifted to the compression function

• Qf should be one-way
� Qf should not induce collisions

• Qf stretches the input

MQ-Hash Matt Robshaw (15) Orange Labs

Parameters and Performance

� Qf consists of r equations in n+m variables

� Qg consists of n equations in r variables

� Suppose we seek a security level of 2k operations
� We require that n ≥≥≥≥ 2k
� We can bound the probability that Qf is not an injection
� We require that r ≈≈≈≈ 2(n+m) + k
� At each iteration we hash m bits of message
� For GF(2) we might chose n = 160, m = 32, and r = 464

� … but the performance is (very) poor

MQ-Hash Matt Robshaw (16) Orange Labs

The MQ-hash Proposal

� Pro's:

� Provably pre-image resistant construction
� Conjectured collision-free and second pre-image resistant

� Con's:

� Terrible performance (storage and hashing rate)

MQ-Hash Matt Robshaw (17) Orange Labs

An Alternative Construction

� However MQE are very versatile building blocks
� Perhaps this construction could be of some interest

fg

ci

ci-1

MiQf

Qg

m

n

MQ-Hash Matt Robshaw (18) Orange Labs

Conclusions

� We have explored the use of multivariate quadratic
equations in designing a hash function

� We (successfully) tackled some intricate issues
� Gained additional insight into using MQE

� However, our feeling is that this isn't the way to go

� New research might uncover better ways of using ME
� But we doubt random MQE systems are a practical building

block for a hash function

