
Revisiting Security Relations
Between Signature Schemes

and their Inner Hash Functions

French Saphir Project (Cryptolog, DCSSI, Ecole
Normale Supérieure, France Telecom and Gemalto)

Saphir Partners

Ecrypt Hash Workshop



Outline

1 Hash Functions in Cryptosystems

2 Security reductions

3 Hash Functions

4 Hash-and-Sign Signature Schemes

5 Relations between S = 〈H,Σ〉 and H

6 Relations between S = 〈F ,Σ〉 and F

7 Merkle-Damg̊ard Instantiations

2



Hash Functions in Cryptosystems

How do broken hash functions impact cryptosystems ?

Let S = S[H1, . . . ,Hn] be a cryptosystem based on hash functions
H1, . . . ,Hn. We want to explore the interplay between the security of S
and the security of H1, . . . ,Hn.

Connections between S and H1, . . . ,Hn are usually not understood

OAEP padding

used in conjunction with a trapdoor permutation to yield
random-oracle secure encryption

uses two hash functions H1,H2

proven IND-CCA secure ≡ RSA in RO model, unlikely in plain model

Question : is OAEP secure when COL [H1] ≡ 0 ?
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Security Relations between S[H] and H

S = S[H]

We want to determine how the security of H relates to the one of S

We see 4 types of connections

Attack a reduction Break(H)⇒ Break(S)

(the reduction makes
explicit how an attack of a given type on the hash function
is enough to break the scheme in a prescribed way)

Security Proof a reduction Break(H)⇐ Break(S)

Impossible Attack there is no reduction Break(H)⇒ Break(S)
(meta-reduction technique : if Break(H)⇒R Break(S)
then R ⇒M P where P is auxiliary)

Impossibility of Security Proof no reduction Break(H)⇐ Break(S)

So there are positive security results and negative security results.
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What We Do Here

Focus on public-key signatures

Connections S[H]/H heavily depend on the way S makes use of H

We clarify everything

Suitable security notions for hash functions & HF families

Crystal clear classification of signatures

deterministic versus probabilistic hash-and-sign signatures
primitiveness
injectivity
we capture all signature schemes we know of

Merkle-Damg̊ard Instantiations

identify more specific results in the case of functions such as MD5
and SHA-1
security gain inherent to using probabilistic hash-and-sign paradigm
may be lost completely if unwise operating mode
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Security Reductions

Different semantics of proofs

polynomial setting (κ→∞) or concrete setting

given problem P, A (τ, ε)-solves or (τ, ε)-breaks P if A outputs a
solution of P wrt τ, ε
τ relates to some fixed model of computation
reduction R between two computational problems P1 and P2 is a
probabilistic algorithm R which (τ1, ε1)-solves P1 given black-box
access to an oracle (τ2, ε2)-solving P2

P1 ≤R P2 when R is known to reduce P1 to P2 with τ1 ' τ2 and
ε1 ' ε2

black-box or non-black-box

constructive or non constructive

We only care about concrete, black-box, constructive reductions here :

P1 ⇐R P2 , P1 ⇔ P2 , etc .
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Interpreting Security Reductions

Success in breaking P

We define Succ (P, τ) = maxA SuccP (A, τ) taken over all τ -time
probabilistic A’s. Succ (P, τ) is a function here.

What does a security reduction mean ?

take P1 = Break(S1) and P2 = Break(S2)

assume you find R such that Break(S1)⇐R Break(S2)

this means Succ (Break(S1), τ1) ≥ Succ (Break(S2), τ2) for τ1 ' τ2
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assume you find R such that Break(S1)⇐R Break(S2)

this means Succ (Break(S1), τ1) ≥ Succ (Break(S2), τ2) for τ1 ' τ2

What happens if Break(S1) has no solution ?

Well then S1 is perfectly (IT) secure, and so must be S2
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assume you find R such that Break(S1)⇐R Break(S2)

this means Succ (Break(S1), τ1) ≥ Succ (Break(S2), τ2) for τ1 ' τ2

What happens if Break(S1) always has a solution ?

Then
Succ (Break(S1), τ) = 1 for any τ

No big deal, restrict maximum on known adversaries A
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Hash Functions

Hash function

A function H is a hash function if it maps {0, 1}∗ to {0, 1}m for some
integer m > 0 called the output size of H.

Compression function

A compression function is a function f : {0, 1}m × {0, 1}b → {0, 1}m
where m, b are integers such that m > 0 and b > 0.

Iterated hashing allows to build “H from f ”

8
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Security Notions for Hash Functions

Collision-resistance COLn1,n2 [H] Find M1 ∈ {0, 1}n1 and M2 ∈ {0, 1}n2

such that M1 6= M2 and H(M1) = H(M2). We know that
Succ (COLn1,n2 [H]) = 1 or 0

Second-preimage-resistance SECn2
n1

[H] Given a random M1 ← {0, 1}n1 ,
find M2 ∈ {0, 1}n2 such that H(M2) = H(M1) and
M2 6= M1

Preimage-resistance Well, (at least) two notions :
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Security Profile of a Hash Function

Let H : {0, 1}∗ → {0, 1}m be a hash function.

Then for any n1, n2 > 0,

COLn1,n2 [H] ⇐ SECn2
n1

[H] ⇐(1) PRE
n2

n1
[H]

m(2)

PREn2 [H]

(1) only if n2 � m

(2) when H is well-balanced
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Hash Function Family

Hash function family

A hash function family F is a function F : {0, 1}∗ × {0, 1}r → {0, 1}m for
integers m, r > 0

We find definitions of interest for provable security :

E-COLn1,n2 [F ]
Find (M1,M2, r) with F (M1, r) = F (M2, r)

U-COLn1,n2 [F ]
Given r ← {0, 1}r, find (M1,M2) with
F (M1, r) = F (M2, r)

A-COLn1,n2 [F ]
Find (M1,M2) with F (M1, r) = F (M2, r) for any r
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Security Notions for HF Families

Forms of second preimage resistance :

E-SECn2
n1

[F ] Given M1 ← {0, 1}n1 , find (M2, r) with
F (M1, r) = F (M2, r)

U-SECn2
n1

[F ] Given M1 ← {0, 1}n1 and r ← {0, 1}r, find M2 with
F (M1, r) = F (M2, r)

A-SECn2
n1

[F ] Given M1 ← {0, 1}n1 , find M2 with F (M1, r) = F (M2, r)
for any r

Forms of preimage resistance :

E-PREn [F ] Given m← {0, 1}m, find (M, r) such that F (M, r) = m

U-PREn [F ] Given m← {0, 1}m and r ← {0, 1}r, find M such that
F (M, r) = m

Can make use of [RS04] where M ← {0, 1}∗ and m = H(M) is given to
adversary
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Security Profile of a Hash Function Family

E-PREn2 [F ] ⇐ U-PREn2 [F ]

⇓(1) ⇓(1)

E-SECn2
n1

[F ] ⇐ U-SECn2
n1

[F ] ⇐ A-SECn2
n1

[F ]

⇓ ⇓ ⇓
E-COLn1,n2 [F ] ⇐ U-COLn1,n2 [F ] ⇐ A-COLn1,n2 [F ]

(1) if F is well balanced on average over r ← {0, 1}r
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Signature Schemes

S , (S.Gen,S.Sign,S.Ver) with message space M⊆ {0, 1}∗ :

Key Gen. (pk, sk)← S.Gen()

Sign. given message M ∈M

pick u ← {0, 1}u then σ = S.Sign(sk,M, u)

Verify. S.Ver(pk,M, σ) outputs 0/1

Message space can be

M = {0, 1}m or

M = {0, 1}∗
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Security Notions

Forms of Unforgeability :

UFn-KOA [S] Given pk← S.Gen() and M ← {0, 1}n, get
σ = S.Sign(sk,M, u)

EFn-KOA [S] Given pk← S.Gen(), get (M, σ) where M ∈ {0, 1}n and
σ = S.Sign(sk,M, u)

KMAn You are given a list of (Mi , σi ) where Mi ← {0, 1}n and
ui ← {0, 1}u

CMA You have access to signing oracle

Forms of Non-Repudiation :

ERn2
n1

[S] Given (pk, sk)← S.Gen(), find (M1,M2, σ1 = σ2)

URn2
n1

[S] Given (pk, sk)← S.Gen() and M1 ← {0, 1}n1 , find
M2 ∈ {0, 1}n2 and σ
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Security Profile of Signatures

UFn1 -CMA [S] ⇐ UFn1 -KMAn2 [S] ⇐ UFn1-KOA [S]

⇓ ⇓ ⇓
EFn1 -CMA [S] ⇐ EFn1-KMAn2 [S] ⇐ EFn1-KOA [S]

URn2
n1

[S] ,URn1
n2

[S]

⇓
ERn1,n2 [S]

16



Deterministic Hash-and-Sign Signatures

m

Σ

σ

Given

Σ signing m-bit messages under u bits of
randomness

a hash function H : {0, 1}∗ → {0, 1}m

we construct S = 〈H,Σ〉 where

Key Gen. S.Gen , Σ.Gen

Sign. given M ∈ {0, 1}∗

pick u ← {0, 1}u
m = H(M)
σ = Σ.Sign(sk,m, u)

Verify. S.Ver(pk,M, σ) outputs
Σ.Ver(pk,H(M), σ)
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Two-Step Signatures

u

Σ1

r aux

Σ2m

σ

Σ can be split into four functions

Σ1,Σ2,Υ1,Υ2

To sign :

pick u ← {0, 1}u

Step 1. (r , aux) = Σ1(sk, u)

Step 2. σ = Σ2(sk,m, r , aux)

To verify :

Step 1. r̂ = Υ1(pk, σ)

Step 2. output Υ2(pk,m, σ, r̂)

If σ is valid then r̂ = r is unique and r
must be uniform over {0, 1}r if u is
uniform over {0, 1}u
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Probabilistic Hash-and-Sign Signatures

u

Σ1

r aux

Σ2

m

σ

F

M

We assemble Σ and F to build
S = 〈F ,Σ〉

To sign :

pick u ← {0, 1}u

Step 1. (r , aux) = Σ1(sk, u)

m = F (M, r)

Step 2. σ = Σ2(sk,m, r , aux)

To verify :

Step 1. r̂ = Υ1(pk, σ)

m̂ = F (M, r̂)

Step 2. output Υ2(pk,m, σ, r̂)
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Primitiveness of S = 〈F , Σ〉

u

Σ1

r aux

Σ2m

σ

We know a probabilistic algorithm S.Prim
which

for any key pair (pk, sk)

given pk only

generates a random pair(
m, σ = Σ.Sign(sk,m, u)

)
m is uniformly distributed over {0, 1}m

u is uniformly distributed over {0, 1}u
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Injectivity of S = 〈F , Σ〉

u

Σ1

r aux

Σ2m

σ

S is injective when

for any key pair (pk, sk)

for any σ ∈ {0, 1}s

there exists at most one pair

(m, r) ∈ {0, 1}m × {0, 1}r

such that

σ = Σ2(sk,m, r , aux) and
(r , aux) = Σ1(sk, u) for some u, aux

21



Classifying Common Signature Schemes

Signature Scheme Det. H&S Prob. H&S
Primitive Injective

Schnorr × × ×
FDH × × ×

PFDH × × ×
PSS × × ×

EMSA-PSS × × ×
BLS × × ×

Generic DSA × ×
GHR × ×
CS ×
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Relations between S = 〈H , Σ〉 and H

Breaking S by breaking H : attacks

UFn1 -CMA [S] ⇐ UFn1 -KMAn2 [S] ⇐ UFn1 -KOA [S]

⇓ ⇓ ⇓
EFn1 -CMA [S] ⇐ EFn1 -KMAn2 [S] ⇐ EFn1-KOA [S]

(1) if S is primitive
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Relations between S = 〈H , Σ〉 and H

Repudiation : attacks. . .

URn2
n1

[S]

⇓
ERn1,n2 [S]

(2) if S is injective
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Relations between S = 〈H , Σ〉 and H

Repudiation : attacks. . .and security proofs

SECn2
n1

[H]

m(2)

URn2
n1

[S]

⇓
ERn1,n2 [S]

m(2)

COLn1,n2 [H]

(2) if S is injective
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Relations between S = 〈F , Σ〉 and F

Breaking S by breaking F : attacks again
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⇓ ⇓ ⇓
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Relations between S = 〈F , Σ〉 and F

Repudiation : attacks. . .

E-SECn2
n1

[F ] ⇐ URn2
n1

[S]

⇓
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Relations between S = 〈F , Σ〉 and F

Repudiation : attacks. . . + security proofs

U-SECn2
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E-SECn2

n1
[F ] ⇐ URn2

n1
[S]

⇓
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⇑
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Merkle-Damg̊ard Instantiations

What is done in practice

Tempting to build F from H in practice. . .

Tempting to build H from f using iteration

Take fixed compression function f and IV0 ∈ {0, 1}m.

let H0 = iterated f without MD strengthening

let HS = iterated f with MD strengthening
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F (m, r) = Hs(m‖r)

Terrible, since for any signature scheme Σ

〈F ,Σ〉 = 〈H0,Σ
′〉

The security gain inherent to using the probabilistic hash-and-sign
paradigm collapses. More precisely, for any n > 0

A-SECn
n [F ] ⇐ SECn

n [Hs ] ⇐ SECn
n [H0]

⇓ ⇓ ⇓
A-COLn,n [F ] ⇐ COLn,n [Hs ] ⇐ COLn,n [H0]
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F (m, r) = Hs(r‖m)

No known way to break S in any sense even if

COLn,n [H0] , SECn
n [H0] and PREn [H0]

are all easy

Concrete estimations of τ for ε ' 1 given in paper
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