

Revisiting Security Relations Between Signature Schemes and their Inner Hash Functions

French Saphir Project (Cryptolog, DCSSI, Ecole Normale Supérieure, France Telecom and Gemalto)

Saphir Partners

Ecrypt Hash Workshop

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Outline

- 2 Security reductions
- 3 Hash Functions
- 4 Hash-and-Sign Signature Schemes
- **5** Relations between $S = \langle H, \Sigma \rangle$ and H
- 6 Relations between $S = \langle F, \Sigma \rangle$ and F
- Merkle-Damgård Instantiations

How do broken hash functions impact cryptosystems?

Let $S = S[H_1, \ldots, H_n]$ be a cryptosystem based on hash functions H_1, \ldots, H_n . We want to explore the interplay between the security of S and the security of H_1, \ldots, H_n .

Connections between S and H_1, \ldots, H_n are usually not understood

How do broken hash functions impact cryptosystems?

Let $S = S[H_1, \ldots, H_n]$ be a cryptosystem based on hash functions H_1, \ldots, H_n . We want to explore the interplay between the security of S and the security of H_1, \ldots, H_n .

Connections between S and H_1, \ldots, H_n are usually not understood

How do broken hash functions impact cryptosystems?

Let $S = S[H_1, \ldots, H_n]$ be a cryptosystem based on hash functions H_1, \ldots, H_n . We want to explore the interplay between the security of S and the security of H_1, \ldots, H_n .

Connections between S and H_1, \ldots, H_n are usually not understood

OAEP padding

• used in conjunction with a trapdoor permutation to yield random-oracle secure encryption

How do broken hash functions impact cryptosystems?

Let $S = S[H_1, \ldots, H_n]$ be a cryptosystem based on hash functions H_1, \ldots, H_n . We want to explore the interplay between the security of S and the security of H_1, \ldots, H_n .

Connections between S and H_1, \ldots, H_n are usually not understood

- used in conjunction with a trapdoor permutation to yield random-oracle secure encryption
- uses two hash functions H_1, H_2

How do broken hash functions impact cryptosystems?

Let $S = S[H_1, \ldots, H_n]$ be a cryptosystem based on hash functions H_1, \ldots, H_n . We want to explore the interplay between the security of S and the security of H_1, \ldots, H_n .

Connections between S and H_1, \ldots, H_n are usually not understood

- used in conjunction with a trapdoor permutation to yield random-oracle secure encryption
- uses two hash functions H_1, H_2
- proven IND-CCA secure \equiv RSA in RO model, unlikely in plain model

How do broken hash functions impact cryptosystems?

Let $S = S[H_1, \ldots, H_n]$ be a cryptosystem based on hash functions H_1, \ldots, H_n . We want to explore the interplay between the security of S and the security of H_1, \ldots, H_n .

Connections between S and H_1, \ldots, H_n are usually not understood

- used in conjunction with a trapdoor permutation to yield random-oracle secure encryption
- uses two hash functions H_1, H_2
- proven IND-CCA secure \equiv RSA in RO model, unlikely in plain model
- Question : is OAEP secure when $COL[H_1] \equiv 0$?

$\mathcal{S} = \mathcal{S}[H]$

We want to determine how the security of H relates to the one of S

We see 4 types of connections

$\mathcal{S} = \mathcal{S}[H]$

We want to determine how the security of H relates to the one of S

We see 4 types of connections

Attack a reduction $Break(H) \Rightarrow Break(S)$

$\mathcal{S} = \mathcal{S}[H]$

We want to determine how the security of H relates to the one of S

We see 4 types of connections

Attack a reduction $Break(H) \Rightarrow Break(S)$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)

$\mathcal{S} = \mathcal{S}[H]$

We want to determine how the security of H relates to the one of S

We see 4 types of connections

Attack a reduction $Break(H) \Rightarrow Break(S)$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)

Security Proof a reduction $Break(H) \leftarrow Break(S)$

$\mathcal{S} = \mathcal{S}[H]$

We want to determine how the security of H relates to the one of S

We see 4 types of connections

Attack a reduction $Break(H) \Rightarrow Break(S)$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)

Security Proof a reduction $Break(H) \leftarrow Break(S)$

Impossible Attack there is no reduction $Break(H) \Rightarrow Break(S)$

$\mathcal{S} = \mathcal{S}[H]$

We want to determine how the security of H relates to the one of S

We see 4 types of connections

Attack a reduction $Break(H) \Rightarrow Break(S)$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)

Security Proof a reduction $Break(H) \leftarrow Break(S)$

Impossible Attack there is no reduction $\text{Break}(H) \Rightarrow \text{Break}(S)$ (meta-reduction technique : if $\text{Break}(H) \Rightarrow_{\mathcal{R}} \text{Break}(S)$ then $\mathcal{R} \Rightarrow_{\mathcal{M}} P$ where P is auxiliary)

$\mathcal{S} = \mathcal{S}[H]$

We want to determine how the security of H relates to the one of $\mathcal S$

We see 4 types of connections

Attack a reduction $Break(H) \Rightarrow Break(S)$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)

Security Proof a reduction $Break(H) \leftarrow Break(S)$

Impossibility of Security Proof no reduction $Break(H) \leftarrow Break(S)$

$\mathcal{S} = \mathcal{S}[H]$

We want to determine how the security of H relates to the one of S

We see 4 types of connections

Attack a reduction $Break(H) \Rightarrow Break(S)$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)

Security Proof a reduction $Break(H) \leftarrow Break(S)$

Impossibility of Security Proof no reduction $Break(H) \leftarrow Break(S)$

So there are *positive* security results and *negative* security results.

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

• Suitable security notions for hash functions & HF families

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

- Suitable security notions for hash functions & HF families
- Crystal clear classification of signatures

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

- Suitable security notions for hash functions & HF families
- Crystal clear classification of signatures
 - deterministic versus probabilistic hash-and-sign signatures

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

- Suitable security notions for hash functions & HF families
- Crystal clear classification of signatures
 - deterministic versus probabilistic hash-and-sign signatures
 - primitiveness

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

- Suitable security notions for hash functions & HF families
- Crystal clear classification of signatures
 - deterministic versus probabilistic hash-and-sign signatures
 - primitiveness
 - injectivity

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

- Suitable security notions for hash functions & HF families
- Crystal clear classification of signatures
 - deterministic versus probabilistic hash-and-sign signatures
 - primitiveness
 - injectivity
 - we capture all signature schemes we know of

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

- Suitable security notions for hash functions & HF families
- Crystal clear classification of signatures
 - deterministic versus probabilistic hash-and-sign signatures
 - primitiveness
 - injectivity
 - we capture all signature schemes we know of
- Merkle-Damgård Instantiations

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

- Suitable security notions for hash functions & HF families
- Crystal clear classification of signatures
 - deterministic versus probabilistic hash-and-sign signatures
 - primitiveness
 - injectivity
 - we capture all signature schemes we know of
- Merkle-Damgård Instantiations
 - $\bullet\,$ identify more specific results in the case of functions such as MD5 and SHA-1

Focus on public-key signatures

Connections $\mathcal{S}[H]/H$ heavily depend on the way \mathcal{S} makes use of H

- Suitable security notions for hash functions & HF families
- Crystal clear classification of signatures
 - deterministic versus probabilistic hash-and-sign signatures
 - primitiveness
 - injectivity
 - we capture all signature schemes we know of
- Merkle-Damgård Instantiations
 - $\bullet\,$ identify more specific results in the case of functions such as MD5 and SHA-1
 - security gain inherent to using probabilistic hash-and-sign paradigm may be lost completely if unwise operating mode

Different semantics of proofs

• polynomial setting $(\kappa
ightarrow \infty)$ or concrete setting

Different semantics of proofs

• polynomial setting $(\kappa
ightarrow \infty)$ or concrete setting

- polynomial setting $(\kappa
 ightarrow \infty)$ or concrete setting
 - given problem P, \mathcal{A} (τ, ε) -solves or (τ, ε) -breaks P if \mathcal{A} outputs a solution of P wrt τ, ε

- polynomial setting $(\kappa
 ightarrow \infty)$ or concrete setting
 - given problem P, \mathcal{A} (τ, ε) -solves or (τ, ε) -breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
 - $\bullet \ \tau$ relates to some fixed model of computation

- polynomial setting $(\kappa
 ightarrow \infty)$ or concrete setting
 - given problem P, $\mathcal{A}(\tau, \varepsilon)$ -solves or (τ, ε) -breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
 - $\bullet \ \tau$ relates to some fixed model of computation
 - reduction R between two computational problems P₁ and P₂ is a probabilistic algorithm R which (τ₁, ε₁)-solves P₁ given black-box access to an oracle (τ₂, ε₂)-solving P₂

- polynomial setting $(\kappa
 ightarrow \infty)$ or concrete setting
 - given problem P, \mathcal{A} (τ, ε) -solves or (τ, ε) -breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
 - $\bullet \ \tau$ relates to some fixed model of computation
 - reduction \mathcal{R} between two computational problems P_1 and P_2 is a probabilistic algorithm \mathcal{R} which (τ_1, ε_1) -solves P_1 given black-box access to an oracle (τ_2, ε_2) -solving P_2
 - $P_1 \leq_{\mathcal{R}} P_2$ when \mathcal{R} is known to reduce P_1 to P_2 with $\tau_1 \simeq \tau_2$ and $\varepsilon_1 \simeq \varepsilon_2$

- polynomial setting $(\kappa
 ightarrow \infty)$ or concrete setting
 - given problem P, A (τ, ε)-solves or (τ, ε)-breaks P if A outputs a solution of P wrt τ, ε
 - $\bullet \ \tau$ relates to some fixed model of computation
 - reduction \mathcal{R} between two computational problems P_1 and P_2 is a probabilistic algorithm \mathcal{R} which (τ_1, ε_1) -solves P_1 given black-box access to an oracle (τ_2, ε_2) -solving P_2
 - $P_1 \leq_{\mathcal{R}} P_2$ when \mathcal{R} is known to reduce P_1 to P_2 with $\tau_1 \simeq \tau_2$ and $\varepsilon_1 \simeq \varepsilon_2$
- black-box or non-black-box

- polynomial setting $(\kappa
 ightarrow \infty)$ or concrete setting
 - given problem P, A (τ, ε)-solves or (τ, ε)-breaks P if A outputs a solution of P wrt τ, ε
 - $\bullet \ \tau$ relates to some fixed model of computation
 - reduction \mathcal{R} between two computational problems P_1 and P_2 is a probabilistic algorithm \mathcal{R} which (τ_1, ε_1) -solves P_1 given black-box access to an oracle (τ_2, ε_2) -solving P_2
 - $P_1 \leq_{\mathcal{R}} P_2$ when \mathcal{R} is known to reduce P_1 to P_2 with $\tau_1 \simeq \tau_2$ and $\varepsilon_1 \simeq \varepsilon_2$
- black-box or non-black-box
- constructive or non constructive

Different semantics of proofs

- polynomial setting $(\kappa
 ightarrow \infty)$ or concrete setting
 - given problem P, A (τ, ε)-solves or (τ, ε)-breaks P if A outputs a solution of P wrt τ, ε
 - $\bullet \ \tau$ relates to some fixed model of computation
 - reduction \mathcal{R} between two computational problems P_1 and P_2 is a probabilistic algorithm \mathcal{R} which (τ_1, ε_1) -solves P_1 given black-box access to an oracle (τ_2, ε_2) -solving P_2
 - $P_1 \leq_{\mathcal{R}} P_2$ when \mathcal{R} is known to reduce P_1 to P_2 with $\tau_1 \simeq \tau_2$ and $\varepsilon_1 \simeq \varepsilon_2$
- black-box or non-black-box
- constructive or non constructive

We only care about concrete, black-box, constructive reductions here :

$$P_1 \Leftarrow_R P_2$$
, $P_1 \Leftrightarrow P_2$, etc.

Interpreting Security Reductions

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

• take $P_1 = \mathsf{Break}(\mathcal{S}_1)$ and $P_2 = \mathsf{Break}(\mathcal{S}_2)$

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

- take $P_1 = \mathsf{Break}(\mathcal{S}_1)$ and $P_2 = \mathsf{Break}(\mathcal{S}_2)$
- assume you find \mathcal{R} such that $Break(\mathcal{S}_1) \Leftarrow_{\mathcal{R}} Break(\mathcal{S}_2)$

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

- take $P_1 = \mathsf{Break}(\mathcal{S}_1)$ and $P_2 = \mathsf{Break}(\mathcal{S}_2)$
- assume you find \mathcal{R} such that $Break(\mathcal{S}_1) \Leftarrow_{\mathcal{R}} Break(\mathcal{S}_2)$
- this means Succ $(Break(\mathcal{S}_1), \tau_1) \ge Succ (Break(\mathcal{S}_2), \tau_2)$ for $\tau_1 \simeq \tau_2$

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

- take $P_1 = \mathsf{Break}(\mathcal{S}_1)$ and $P_2 = \mathsf{Break}(\mathcal{S}_2)$
- assume you find \mathcal{R} such that $Break(\mathcal{S}_1) \Leftarrow_{\mathcal{R}} Break(\mathcal{S}_2)$
- this means Succ $(Break(\mathcal{S}_1), \tau_1) \ge Succ (Break(\mathcal{S}_2), \tau_2)$ for $\tau_1 \simeq \tau_2$

What happens if $Break(S_1)$ has no solution?

Well then S_1 is perfectly (IT) secure, and so must be S_2

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

- take $P_1 = \mathsf{Break}(\mathcal{S}_1)$ and $P_2 = \mathsf{Break}(\mathcal{S}_2)$
- assume you find \mathcal{R} such that $Break(\mathcal{S}_1) \Leftarrow_{\mathcal{R}} Break(\mathcal{S}_2)$
- this means Succ $(Break(\mathcal{S}_1), \tau_1) \ge Succ (Break(\mathcal{S}_2), \tau_2)$ for $\tau_1 \simeq \tau_2$

What happens if $Break(S_2)$ has no solution?

Then the reduction just tells us Succ $(Break(S_1)) \ge 0$, no big deal

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

- take $P_1 = \mathsf{Break}(\mathcal{S}_1)$ and $P_2 = \mathsf{Break}(\mathcal{S}_2)$
- assume you find \mathcal{R} such that $Break(\mathcal{S}_1) \Leftarrow_{\mathcal{R}} Break(\mathcal{S}_2)$
- this means Succ $(Break(\mathcal{S}_1), \tau_1) \ge Succ (Break(\mathcal{S}_2), \tau_2)$ for $\tau_1 \simeq \tau_2$

Success in breaking P

We define Succ $(P, \tau) = \max_{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ -time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

- take $P_1 = \mathsf{Break}(\mathcal{S}_1)$ and $P_2 = \mathsf{Break}(\mathcal{S}_2)$
- assume you find \mathcal{R} such that $Break(\mathcal{S}_1) \Leftarrow_{\mathcal{R}} Break(\mathcal{S}_2)$
- this means Succ $(Break(\mathcal{S}_1), \tau_1) \ge Succ (Break(\mathcal{S}_2), \tau_2)$ for $\tau_1 \simeq \tau_2$

What happens if $Break(S_1)$ always has a solution?

Then

```
\mathsf{Succ}\,(\mathsf{Break}(\mathcal{S}_1), 	au) = 1 \quad \text{for any } 	au
```

No big deal, restrict maximum on known adversaries \mathcal{A}

Hash Functions

Hash function

A function H is a hash function if it maps $\{0,1\}^*$ to $\{0,1\}^m$ for some integer m > 0 called the output size of H.

Compression function

A compression function is a function $f : \{0,1\}^m \times \{0,1\}^b \rightarrow \{0,1\}^m$ where m, b are integers such that m > 0 and b > 0.

Hash Functions

Hash function

A function H is a hash function if it maps $\{0,1\}^*$ to $\{0,1\}^m$ for some integer m > 0 called the output size of H.

Compression function

A compression function is a function $f : \{0,1\}^m \times \{0,1\}^b \rightarrow \{0,1\}^m$ where m, b are integers such that m > 0 and b > 0.

Iterated hashing allows to build "H from f"

Collision-resistance $\text{COL}^{n_1,n_2}[H]$ Find $M_1 \in \{0,1\}^{n_1}$ and $M_2 \in \{0,1\}^{n_2}$ such that $M_1 \neq M_2$ and $H(M_1) = H(M_2)$. We know that Succ $(\text{COL}^{n_1,n_2}[H]) = 1$ or 0

Collision-resistance $\text{COL}^{n_1,n_2}[H]$ Find $M_1 \in \{0,1\}^{n_1}$ and $M_2 \in \{0,1\}^{n_2}$ such that $M_1 \neq M_2$ and $H(M_1) = H(M_2)$. We know that Succ $(\text{COL}^{n_1,n_2}[H]) = 1$ or 0

Second-preimage-resistance $SEC_{n_1}^{n_2}[H]$ Given a random $M_1 \leftarrow \{0,1\}^{n_1}$, find $M_2 \in \{0,1\}^{n_2}$ such that $H(M_2) = H(M_1)$ and $M_2 \neq M_1$

Collision-resistance $\text{COL}^{n_1,n_2}[H]$ Find $M_1 \in \{0,1\}^{n_1}$ and $M_2 \in \{0,1\}^{n_2}$ such that $M_1 \neq M_2$ and $H(M_1) = H(M_2)$. We know that Succ $(\text{COL}^{n_1,n_2}[H]) = 1$ or 0

Second-preimage-resistance SEC^{n_2}_{n_1}[H] Given a random $M_1 \leftarrow \{0, 1\}^{n_1}$, find $M_2 \in \{0, 1\}^{n_2}$ such that $H(M_2) = H(M_1)$ and $M_2 \neq M_1$

Preimage-resistance Well, (at least) two notions :

Collision-resistance $\text{COL}^{n_1,n_2}[H]$ Find $M_1 \in \{0,1\}^{n_1}$ and $M_2 \in \{0,1\}^{n_2}$ such that $M_1 \neq M_2$ and $H(M_1) = H(M_2)$. We know that Succ $(\text{COL}^{n_1,n_2}[H]) = 1$ or 0

Second-preimage-resistance $SEC_{n_1}^{n_2}[H]$ Given a random $M_1 \leftarrow \{0, 1\}^{n_1}$, find $M_2 \in \{0, 1\}^{n_2}$ such that $H(M_2) = H(M_1)$ and $M_2 \neq M_1$

Preimage-resistance Well, (at least) two notions :

 $\overline{\mathsf{PRE}}_{n_1}^{n_2}[H] \text{ Given a random } M_1 \leftarrow \{0,1\}^{n_1} \text{, take } m = H(M_1) \text{ and find} \\ \text{an } n_2 \text{-bit string } M_2 \text{ such that } H(M_2) = m$

Collision-resistance $\text{COL}^{n_1,n_2}[H]$ Find $M_1 \in \{0,1\}^{n_1}$ and $M_2 \in \{0,1\}^{n_2}$ such that $M_1 \neq M_2$ and $H(M_1) = H(M_2)$. We know that Succ $(\text{COL}^{n_1,n_2}[H]) = 1$ or 0

Second-preimage-resistance $SEC_{n_1}^{n_2}[H]$ Given a random $M_1 \leftarrow \{0, 1\}^{n_1}$, find $M_2 \in \{0, 1\}^{n_2}$ such that $H(M_2) = H(M_1)$ and $M_2 \neq M_1$

Preimage-resistance Well, (at least) two notions :

- $\frac{\mathsf{PRE}_{n_1}^{n_2}[H]}{\mathsf{an}} \text{ Given a random } M_1 \leftarrow \{0,1\}^{n_1}, \text{ take } m = H(M_1) \text{ and find} \\ \text{an } n_2\text{-bit string } M_2 \text{ such that } H(M_2) = m$
- $\begin{array}{l} \mathsf{PRE}^n\left[H\right] \text{ Given a random } m \leftarrow \{0,1\}^m \text{, find an } n\text{-bit string } M \text{ such } \\ \text{ that } H(M) = m. \end{array}$

Collision-resistance $\text{COL}^{n_1,n_2}[H]$ Find $M_1 \in \{0,1\}^{n_1}$ and $M_2 \in \{0,1\}^{n_2}$ such that $M_1 \neq M_2$ and $H(M_1) = H(M_2)$. We know that Succ $(\text{COL}^{n_1,n_2}[H]) = 1$ or 0

Second-preimage-resistance SEC^{n_2}_{n_1}[H] Given a random $M_1 \leftarrow \{0, 1\}^{n_1}$, find $M_2 \in \{0, 1\}^{n_2}$ such that $H(M_2) = H(M_1)$ and $M_2 \neq M_1$

Preimage-resistance Well, (at least) two notions :

- $\frac{\mathsf{PRE}_{n_1}^{n_2}[H]}{\mathsf{an } n_2\mathsf{-bit string } M_2 \mathsf{ such that } H(M_2) = m}$
- $\begin{array}{l} \mathsf{PRE}^n\left[H\right] \text{ Given a random } m \leftarrow \{0,1\}^m \text{, find an } n\text{-bit string } M \text{ such } \\ \text{ that } H(M) = m. \\ \text{ Most efficient definition for security statements} \end{array}$

Security Profile of a Hash Function

Let $H: \{0,1\}^* \to \{0,1\}^m$ be a hash function.

Then for any $n_1, n_2 > 0$,

$$COL^{n_1,n_2}[H] \iff SEC^{n_2}_{n_1}[H] \iff^{(1)} \overline{\mathsf{PRE}}^{n_2}_{n_1}[H]$$
$$\uparrow^{(2)}$$
$$\mathsf{PRE}^{n_2}[H]$$

(1) only if n₂ ≫ m
 (2) when H is well-balanced

Hash Function Family

Hash function family

A hash function family F is a function $F:\{0,1\}^*\times\{0,1\}^r\to \{0,1\}^m$ for integers m,r>0

```
We find definitions of interest for provable security :

E-COL^{n_1,n_2}[F]
Find (M_1, M_2, r) with F(M_1, r) = F(M_2, r)

U-COL^{n_1,n_2}[F]
Given r \leftarrow \{0,1\}^r, find (M_1, M_2) with

F(M_1, r) = F(M_2, r)

A-COL<sup>n_1,n_2</sup>[F]

Find (M_1, M_2) with F(M_1, r) = F(M_2, r) for any r
```


Security Notions for HF Families

Forms of second preimage resistance :

Forms of preimage resistance :

E-PRE^{*n*}[*F*] Given $m \leftarrow \{0,1\}^m$, find (M, r) such that F(M, r) = mU-PRE^{*n*}[*F*] Given $m \leftarrow \{0,1\}^m$ and $r \leftarrow \{0,1\}^r$, find *M* such that F(M, r) = m

Can make use of [RS04] where $M \leftarrow \{0,1\}^*$ and m = H(M) is given to adversary

Security Profile of a Hash Function Family

$$\begin{array}{rcl} \mathsf{E}\operatorname{-}\mathsf{PRE}^{n_2}\left[F\right] & \Leftarrow & \mathsf{U}\operatorname{-}\mathsf{PRE}^{n_2}\left[F\right] \\ & & & \downarrow^{(1)} & & \downarrow^{(1)} \end{array}$$

$$\begin{array}{rcl} \mathsf{E}\operatorname{-}\mathsf{SEC}^{n_2}_{n_1}\left[F\right] & \Leftarrow & \mathsf{U}\operatorname{-}\mathsf{SEC}^{n_2}_{n_1}\left[F\right] & \Leftarrow & \mathsf{A}\operatorname{-}\mathsf{SEC}^{n_2}_{n_1}\left[F\right] \\ & & \downarrow & & \downarrow & \downarrow \end{array}$$

$$\begin{array}{rcl} \mathsf{E}\operatorname{-}\mathsf{COL}^{n_1,n_2}\left[F\right] & \Leftarrow & \mathsf{U}\operatorname{-}\mathsf{COL}^{n_1,n_2}\left[F\right] & \Leftarrow & \mathsf{A}\operatorname{-}\mathsf{COL}^{n_1,n_2}\left[F\right] \end{array}$$

(1) if F is well balanced on average over $r \leftarrow \{0,1\}^r$

Signature Schemes

 $\mathcal{S} \triangleq (\mathcal{S}.\mathsf{Gen}, \mathcal{S}.\mathsf{Sign}, \mathcal{S}.\mathsf{Ver})$ with message space $\mathcal{M} \subseteq \{0, 1\}^*$:

```
Key Gen. (pk, sk) \leftarrow S.Gen()
Sign. given message M \in \mathcal{M}
pick u \leftarrow \{0,1\}^u then \sigma = S.Sign(sk, M, u)
Verify. S.Ver(pk, M, \sigma) outputs 0/1
```

Message space can be

- $\mathcal{M} = \{0,1\}^m$ or
- $\mathcal{M} = \{0,1\}^*$

Security Notions

Forms of Unforgeability :

 $\begin{array}{l} \mathsf{UF}_n\text{-}\mathsf{KOA}\left[\mathcal{S}\right] \text{ Given } \mathsf{pk} \leftarrow \mathcal{S}.\mathsf{Gen}() \text{ and } M \leftarrow \{0,1\}^n \text{, get} \\ \sigma = \mathcal{S}.\mathsf{Sign}(\mathsf{sk}, M, u) \end{array}$

- $\begin{array}{l} \mathsf{EF}^{n}\operatorname{\mathsf{-KOA}}\left[\mathcal{S}\right] \mbox{ Given pk} \leftarrow \mathcal{S}.\mathsf{Gen}(), \mbox{ get } (M,\sigma) \mbox{ where } M \in \{0,1\}^{n} \mbox{ and } \\ \sigma = \mathcal{S}.\mathsf{Sign}(\mathsf{sk}, M, u) \end{array}$
 - $\begin{array}{l} \mathsf{KMA}_n \ \, \mathsf{You} \ \, \mathsf{are given a list of} \ \, (M_i,\sigma_i) \ \, \mathsf{where} \ \, M_i \leftarrow \{0,1\}^n \ \, \mathsf{and} \\ u_i \leftarrow \{0,1\}^\mathsf{u} \end{array}$

CMA You have access to signing oracle

Forms of Non-Repudiation :

$$\begin{array}{l} \mathsf{ER}_{n_1}^{n_2}\left[\mathcal{S}\right] \mbox{ Given (pk,sk)} \leftarrow \mathcal{S}.\mathsf{Gen}(), \mbox{ find } (M_1,M_2,\sigma_1=\sigma_2) \\ \mathsf{UR}_{n_1}^{n_2}\left[\mathcal{S}\right] \mbox{ Given (pk,sk)} \leftarrow \mathcal{S}.\mathsf{Gen}() \mbox{ and } M_1 \leftarrow \{0,1\}^{n_1}, \mbox{ find } \\ M_2 \in \{0,1\}^{n_2} \mbox{ and } \sigma \end{array}$$

Security Profile of Signatures

 $\begin{array}{c} \mathsf{UR}_{n_1}^{n_2}\left[\mathcal{S}\right], \mathsf{UR}_{n_2}^{n_1}\left[\mathcal{S}\right] \\ \downarrow \\ \mathsf{ER}^{n_1, n_2}\left[\mathcal{S}\right] \end{array}$

Given

• $\boldsymbol{\Sigma}$ signing m-bit messages under u bits of randomness

Given

- Σ signing m-bit messages under u bits of randomness
- \bullet a hash function $H:\{0,1\}^* \to \{0,1\}^m$

М Н т Σ

 σ

Given

- $\boldsymbol{\Sigma}$ signing m-bit messages under u bits of randomness
- a hash function $H: \{0,1\}^* \to \{0,1\}^m$

we construct $\mathcal{S} = \langle H, \Sigma \rangle$ where

Given

• $\boldsymbol{\Sigma}$ signing m-bit messages under u bits of randomness

• a hash function $H: \{0,1\}^* \rightarrow \{0,1\}^m$

we construct $S = \langle H, \Sigma \rangle$ where

Key Gen. S.Gen $\triangleq \Sigma$.Gen

Sign. given $M \in \{0,1\}^*$

• pick
$$u \leftarrow \{0, 1\}^u$$

• $m = H(M)$
• $\sigma = \Sigma$.Sign(sk, m, u)

Verify. S.Ver(pk, M, σ) outputs Σ .Ver(pk, $H(M), \sigma$)

Two-Step Signatures

 $\boldsymbol{\Sigma}$ can be split into four functions

 $\Sigma_1, \Sigma_2, \Upsilon_1, \Upsilon_2$

To sign :

 $\begin{array}{l} \mbox{pick } u \leftarrow \{0,1\}^u\\ \mbox{Step 1. } (r,\mbox{aux}) = \Sigma_1(\mbox{sk},u)\\ \mbox{Step 2. } \sigma = \Sigma_2(\mbox{sk},m,r,\mbox{aux}) \end{array}$

To verify :

Step 1. $\hat{r} = \Upsilon_1(pk, \sigma)$ Step 2. output $\Upsilon_2(pk, m, \sigma, \hat{r})$

If σ is valid then $\hat{r} = r$ is unique and rmust be uniform over $\{0,1\}^r$ if u is uniform over $\{0,1\}^u$

Probabilistic Hash-and-Sign Signatures

и М Σ_1 aux r F Σ_2 m σ

We assemble Σ and F to build $S = \langle F, \Sigma \rangle$ **To sign :** pick $u \leftarrow \{0, 1\}^u$

Step 1.
$$(r, aux) = \Sigma_1(sk, u)$$

 $m = F(M, r)$
Step 2. $\sigma = \Sigma_2(sk, m, r, aux)$

To verify : Step 1. $\hat{r} = \Upsilon_1(pk, \sigma)$ $\hat{m} = F(M, \hat{r})$ Step 2. output $\Upsilon_2(pk, m, \sigma, \hat{r})$

Primitiveness of $S = \langle F, \Sigma \rangle$

We know a probabilistic algorithm $\ensuremath{\mathcal{S}}.\ensuremath{\mathsf{Prim}}$ which

- for any key pair (pk, sk)
- given pk only
- generates a random pair

$$(m, \sigma = \Sigma.Sign(sk, m, u))$$

- *m* is uniformly distributed over $\{0,1\}^m$
- u is uniformly distributed over $\{0,1\}^u$

Injectivity of $S = \langle F, \Sigma \rangle$

 $\ensuremath{\mathcal{S}}$ is injective when

- for any key pair (pk,sk)
- for any $\sigma \in \{0,1\}^{\rm s}$
- there exists at most one pair

$$(m,r) \in \{0,1\}^m \times \{0,1\}^r$$

such that

• $\sigma = \Sigma_2(sk, m, r, aux)$ and $(r, aux) = \Sigma_1(sk, u)$ for some u, aux

Classifying Common Signature Schemes

SIGNATURE SCHEME	Det. H&S	Prob. H&S	Primitive	Injective
Schnorr		×	×	×
FDH	×		×	×
PFDH		×	×	×
PSS		×	×	×
EMSA-PSS	×		×	×
BLS	×		Х	Х
Generic DSA	×			×
GHR	×			Х
CS	×			

Breaking S by breaking H : attacks

Breaking S by breaking H : attacks

Breaking S by breaking H : attacks

Breaking S by breaking H : attacks

Breaking S by breaking H : attacks

 $\begin{array}{c} \mathsf{SEC}_{n_1}^{n_2}[H] \\ \downarrow \\ \mathsf{UF}_{n_1}\mathsf{-}\mathsf{CMA}[\mathcal{S}] &\Leftarrow \mathsf{UF}_{n_1}\mathsf{-}\mathsf{KMA}_{n_2}[\mathcal{S}] &\Leftarrow \mathsf{UF}_{n_1}\mathsf{-}\mathsf{KOA}[\mathcal{S}] \\ \downarrow & \downarrow & \downarrow \\ \mathsf{EF}^{n_1}\mathsf{-}\mathsf{CMA}[\mathcal{S}] &\Leftarrow \mathsf{EF}^{n_1}\mathsf{-}\mathsf{KMA}_{n_2}[\mathcal{S}] &\Leftarrow \mathsf{EF}^{n_1}\mathsf{-}\mathsf{KOA}[\mathcal{S}] \\ & & \uparrow & \uparrow^{(1)} \\ \mathsf{COL}^{n_1,n_2}[H] & \mathsf{SEC}_{n_2}^{n_1}[H] & \mathsf{PRE}^{n_1}[H] \end{array}$

Breaking S by breaking H : attacks

 $\begin{array}{c|c} \mathsf{SEC}_{n_1}^{n_2}[H] & \mathsf{PRE}^{n_1}[H] & \mathsf{PRE}^{n_1}[H] \\ & \downarrow & \downarrow ??? & \downarrow ??? \\ \mathsf{UF}_{n_1}\mathsf{-}\mathsf{CMA}[\mathcal{S}] & \leftarrow \mathsf{UF}_{n_1}\mathsf{-}\mathsf{KMA}_{n_2}[\mathcal{S}] & \leftarrow \mathsf{UF}_{n_1}\mathsf{-}\mathsf{KOA}[\mathcal{S}] \\ & \downarrow & \downarrow & \downarrow \\ \mathsf{EF}^{n_1}\mathsf{-}\mathsf{CMA}[\mathcal{S}] & \leftarrow \mathsf{EF}^{n_1}\mathsf{-}\mathsf{KMA}_{n_2}[\mathcal{S}] & \leftarrow \mathsf{EF}^{n_1}\mathsf{-}\mathsf{KOA}[\mathcal{S}] \\ & \uparrow & \uparrow^{(1)} \\ \mathsf{COL}^{n_1,n_2}[H] & \mathsf{SEC}_{n_2}^{n_1}[H] & \mathsf{PRE}^{n_1}[H] \end{array}$

Repudiation : attacks...

 $\begin{array}{c} \mathsf{UR}_{n_1}^{n_2}[\mathcal{S}] \\ \downarrow \\ \mathsf{ER}^{n_1,n_2}[\mathcal{S}] \end{array}$

Repudiation : attacks...

 $UR_{n_{1}}^{n_{2}}[S]$ \Downarrow $ER^{n_{1},n_{2}}[S]$ \Uparrow $COL^{n_{1},n_{2}}[H]$

Repudiation : attacks...

```
SEC_{n_1}^{n_2}[H]
            ∜
    \mathsf{UR}_{n_1}^{n_2}[\mathcal{S}]
            1
  \mathsf{ER}^{n_1,n_2}[\mathcal{S}]
            ↑
COL^{n_1, n_2}[H]
```


(2) if \mathcal{S} is injective

 $\begin{array}{c} \uparrow^{(2)} \\
 \mathsf{UR}_{n_{1}}^{n_{2}}\left[\mathcal{S}\right] \\
 \downarrow \\
 \mathsf{ER}^{n_{1},n_{2}}\left[\mathcal{S}\right] \\
 \uparrow^{(2)} \\
 \mathsf{COL}^{n_{1},n_{2}}\left[\mathcal{H}\right]
\end{array}$

 $\operatorname{SEC}_{n_1}^{n_2}[H]$

Relations between $\mathcal{S} = \langle H, \Sigma \rangle$ and H

 $Repudiation: attacks... and security \ proofs$

Breaking ${\mathcal S}$ by breaking ${\mathcal F}$: attacks again

$$\begin{aligned} \mathsf{UF}_{n_1}\text{-}\mathsf{CMA}[\mathcal{S}] &\Leftarrow \mathsf{UF}_{n_1}\text{-}\mathsf{KMA}_{n_2}[\mathcal{S}] &\Leftarrow \mathsf{UF}_{n_1}\text{-}\mathsf{KOA}[\mathcal{S}] \\ & & & & & \\ & & & & & \\ \mathsf{EF}^{n_1}\text{-}\mathsf{CMA}[\mathcal{S}] &\Leftarrow \mathsf{EF}^{n_1}\text{-}\mathsf{KMA}_{n_2}[\mathcal{S}] &\Leftarrow \mathsf{EF}^{n_1}\text{-}\mathsf{KOA}[\mathcal{S}] \end{aligned}$$

Breaking ${\mathcal S}$ by breaking ${\mathcal F}$: attacks again

$$UF_{n_{1}}-CMA[S] \leftarrow UF_{n_{1}}-KMA_{n_{2}}[S] \leftarrow UF_{n_{1}}-KOA[S]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$EF^{n_{1}}-CMA[S] \leftarrow EF^{n_{1}}-KMA_{n_{2}}[S] \leftarrow EF^{n_{1}}-KOA[S]$$

$$\uparrow$$

$$A-COL^{n_{1},n_{2}}[F]$$

Breaking S by breaking F : attacks again

Breaking S by breaking F : attacks again

Breaking S by breaking F : attacks again

 $\begin{array}{c} \mathsf{A}\operatorname{-}\mathsf{SEC}_{n_1}^{n_2}[F] \\ \downarrow \\ \mathsf{UF}_{n_1}\operatorname{-}\mathsf{CMA}[\mathcal{S}] &\Leftarrow \mathsf{UF}_{n_1}\operatorname{-}\mathsf{KMA}_{n_2}[\mathcal{S}] &\Leftarrow \mathsf{UF}_{n_1}\operatorname{-}\mathsf{KOA}[\mathcal{S}] \\ \downarrow & \downarrow & \downarrow \\ \mathsf{EF}^{n_1}\operatorname{-}\mathsf{CMA}[\mathcal{S}] &\Leftarrow \mathsf{EF}^{n_1}\operatorname{-}\mathsf{KMA}_{n_2}[\mathcal{S}] &\Leftarrow \mathsf{EF}^{n_1}\operatorname{-}\mathsf{KOA}[\mathcal{S}] \\ & & \uparrow & \uparrow^{(1)} \\ \mathsf{A}\operatorname{-}\operatorname{COL}^{n_1,n_2}[F] & \mathsf{U}\operatorname{-}\operatorname{SEC}_{n_2}^{n_1}[F] & \mathsf{U}\operatorname{-}\operatorname{PRE}^{n_1}[F] \end{array}$

Breaking S by breaking F : attacks again

A-SEC $_{n_1}^{n_2}[F]$ U-PRE $^{n_1}[F]$ U-PRE $^{n_1}[F]$ ψ ψ ??? ψ ??? UF_{n_1} -CMA [S] \in UF $_{n_1}$ -KMA $_{n_2}[S]$ \in UF $_{n_1}$ -KOA [S] ψ ψ ψ EF^{n_1} -CMA [S] \in EF n_1 -KMA $_{n_2}[S]$ \in EF n_1 -KOA [S] \uparrow \uparrow \uparrow \wedge $\uparrow^{(1)}$ A-COL $^{n_1,n_2}[F]$ U-SEC $_{n_2}^{n_1}[F]$ U-PRE $^{n_1}[F]$

Repudiation : attacks...

 $\begin{array}{c} \mathsf{UR}_{n_1}^{n_2}\left[\mathcal{S}\right] \\ \downarrow \\ \mathsf{ER}^{n_1,n_2}\left[\mathcal{S}\right] \end{array}$

Repudiation : attacks...

 $UR_{n_{1}}^{n_{2}}[S]$ \Downarrow $ER^{n_{1},n_{2}}[S]$ \Uparrow $U-COL^{n_{1},n_{2}}[F]$

Repudiation : attacks...

Repudiation : attacks... + security proofs

 $U-SEC_{n_{1}}^{n_{2}}[F]$ \Downarrow $E-SEC_{n_{1}}^{n_{2}}[F] \iff UR_{n_{1}}^{n_{2}}[S]$ \Downarrow $E-COL^{n_{1},n_{2}}[F] \iff ER^{n_{1},n_{2}}[S]$ \uparrow $U-COL^{n_{1},n_{2}}[F]$

Merkle-Damgård Instantiations

What is done in practice

- Tempting to build F from H in practice...
- Tempting to build H from f using iteration

Take fixed compression function f and $IV_0 \in \{0, 1\}^m$.

- let H_0 = iterated f without MD strengthening
- let H_S = iterated f with MD strengthening

$F(m,r) = H_s(m\|r)$

Terrible, since for any signature scheme $\boldsymbol{\Sigma}$

$$\langle F, \Sigma \rangle = \langle H_0, \Sigma' \rangle$$

The security gain inherent to using the probabilistic hash-and-sign paradigm collapses. More precisely, for any n > 0

$$\begin{array}{rcl} \text{A-SEC}_{n}^{n}[F] & \Leftarrow & \text{SEC}_{n}^{n}[H_{s}] & \Leftarrow & \text{SEC}_{n}^{n}[H_{0}] \\ & & & & & & \\ & & & & & & \\ \text{A-COL}^{n,n}[F] & \leftarrow & \text{COL}^{n,n}[H_{s}] & \leftarrow & \text{COL}^{n,n}[H_{0}] \end{array}$$

$F(m,r) = H_s(r||m)$

No known way to break $\ensuremath{\mathcal{S}}$ in any sense even if

 $\operatorname{COL}^{n,n}[H_0]$, $\operatorname{SEC}_n^n[H_0]$ and $\operatorname{PRE}^n[H_0]$

are all easy

Concrete estimations of τ for $\varepsilon \simeq 1$ given in paper