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Hash Functions in Cryptosystems

How do broken hash functions impact cryptosystems ?

Let S = S[H4, ..., Hy] be a cryptosystem based on hash functions
Hi, ..., H,. We want to explore the interplay between the security of S
and the security of Hy, ..., H,.

Connections between S and Hy, ..., H, are usually not understood

OAEP padding

@ used in conjunction with a trapdoor permutation to yield
random-oracle secure encryption

@ uses two hash functions Hi, H,
@ proven IND-CCA secure = RSA in RO model, unlikely in plain model
@ Question : is OAEP secure when COL[H;] =07
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Security Relations between S[H| and H

We want to determine how the security of H relates to the one of S |

We see 4 types of connections

Attack a reduction Break(H) = Break(S) (the reduction makes
explicit how an attack of a given type on the hash function
is enough to break the scheme in a prescribed way)

Security Proof a reduction Break(H) < Break(S)

Impossible Attack there is no reduction Break(H) = Break(S)
(meta-reduction technique : if Break(H) = Break(S)
then R = o P where P is auxiliary)

Impossibility of Security Proof no reduction Break(H) < Break(S)

So there are positive security results and negative security results.
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Focus on public-key signatures

What We Do Here

Connections S[H]/H heavily depend on the way S makes use of H

We clarify everything
@ Suitable security notions for hash functions & HF families
@ Crystal clear classification of signatures

@ Merkle-Damgard Instantiations

deterministic versus probabilistic hash-and-sign signatures
primitiveness

injectivity

we capture all signature schemes we know of

identify more specific results in the case of functions such as MD5
and SHA-1

security gain inherent to using probabilistic hash-and-sign paradigm
may be lost completely if unwise operating mode
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Security Reductions

Different semantics of proofs

@ polynomial setting (k — 00) or concrete setting

e given problem P, A (7,¢)-solves or (7,e)-breaks P if A outputs a
solution of P wrt 7, ¢

o 7 relates to some fixed model of computation

e reduction R between two computational problems P; and P; is a
probabilistic algorithm R which (71, e1)-solves P; given black-box
access to an oracle (72, e2)-solving P>

o P1 <r P> when R is known to reduce P; to P, with 71 ~ 7 and
&l =2 &

@ black-box or non-black-box

@ constructive or non constructive

We only care about concrete, black-box, constructive reductions here :

Pi<r P, Py P,, etc.
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Interpreting Security Reductions

Success in breaking P

We define Succ (P, 7) = max Succ” (A, 7) taken over all 7-time
probabilistic A's. Succ (P, 7) is a function here.

What does a security reduction mean ?
@ take P; = Break(S:) and P, = Break(S:)
@ assume you find R such that Break(S;) < Break(S:)
o this means Succ (Break(S1), 71) > Succ (Break(Ss), m2) for 74 ~ 7

What happens if Break(S;) always has a solution ?

Then
Succ (Break(S1),7) =1 for any 7

No big deal, restrict maximum on known adversaries A
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Hash Functions

A function H is a hash function if it maps {0,1}* to {0,1}™ for some
integer m > 0 called the output size of H.

Compression function

A compression function is a function f : {0,1}™ x {0,1}®> — {0,1}™
where m, b are integers such that m > 0 and b > 0.

Iterated hashing allows to build “H from £
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Security Notions for Hash Functions

Collision-resistance COL™™ [H] Find My € {0,1}™ and M, € {0,1}™
such that My # M, and H(M;) = H(M,). We know that
Succ (COL™™[H])=1o0r 0

Second-preimage-resistance SEC;? [H] Given a random M; « {0,1}™,
find M, € {0,1}™ such that H(M,) = H(M;) and
M, # My

Preimage-resistance Well, (at least) two notions :

PRE:? [H] Given a random M; «— {0,1}™, take m = H(M,) and find
an np-bit string M such that H(M,) = m

PRE" [H] Given a random m « {0,1}™, find an n-bit string M such
that H(M) = m.
Most efficient definition for security statements
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Security Profile of a Hash Function

Let H:{0,1}* — {0,1}™ be a hash function.

Then for any ny, np > 0,

COL™™[H] <« SECZ2[H] «<W PRE, [H]
1@
PRE™ [H]

(1) only if n > m
(2) when H is well-balanced

10
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Hash Function Family

Hash function family

A hash function family F is a function F : {0,1}* x {0,1}" — {0,1}™ for
integers m,r > 0

We find definitions of interest for provable security :
E-COL™ "™ [F]
Find (My, My, r) with F(My,r) = F(Ma, r)
U-COL™ "™ [F]
Given r « {0,1}", find (M1, M>) with
F(Ml, r) = F(Mz, I’)
A-COL™™ [F]
Find (My, M) with F(My,r) = F(Ma, r) for any r

11
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Security Notions for HF Families

Forms of second preimage resistance :
E-SEC): [F] Given My «+— {0,1}™, find (Ma, r) with
F(Mh r) = F(Mz, r)

U-SEC)? [F] Given My < {0,1}™ and r « {0,1}", find M with
F(Mh r) = F(MQ, r)

A-SEC}? [F] Given My « {0,1}™, find My with F(My,r) = F(My,r)
for any r

Forms of preimage resistance :

E-PRE" [F] Given m < {0,1}™, find (M, r) such that F(M,r) = m

U-PRE" [F] Given m < {0,1}™ and r < {0,1}", find M such that
F(M,r)=m

Can make use of [RS04] where M « {0,1}* and m = H(M) is given to
adversary

12
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Security Profile of a Hash Function Family

E-PRE™[F] <« U-PRE™[F]

@(1) @(1)
E—SECZf [F] <= U—SECZf [F] <= A—SEC’,Z,f [F]
U U U

E-COL™™[F] <« U-COL™™[F] <« A-COL™™[F]

(1) if F is well balanced on average over r — {0,1}"

13
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Signature Schemes

S £ (S.Gen, S.Sign, S.Ver) with message space M C {0,1}* :

Key Gen. (pk,sk) <« S.Gen()
Sign. given message M € M

pick u < {0,1}" then o = S.Sign(sk, M, u)

Verify. S.Ver(pk, M, o) outputs 0/1

Message space can be
o M ={0,1}" or
o M ={0,1}*

14
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Security Notions

Forms of Unforgeability :

UF,-KOA [S] Given pk « §.Gen() and M — {0,1}", get
o = §8.Sign(sk, M, u)

EF"-KOA[S] Given pk « S.Gen(), get (M, o) where M € {0,1}" and
o = §.Sign(sk, M, u)

KMA, You are given a list of (M;, o;) where M; — {0,1}" and
up <— {0, 1}“
CMA You have access to signing oracle

Forms of Non-Repudiation :
ER? [S] Given (pk,sk) < S.Gen(), find (My, M2,01 = 02)

UR} [S] Given (pk,sk) < S.Gen() and M; « {0,1}™, find
M, € {0,1}™ and o

15
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Security Profile of Signatures

UFn-CMA[S] < UF,-KMA,, [S] < UF, -KOA[S]

J U N3
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOA[S]

URY: [S], URY: [S]
U
ER™™ [S]

16
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Deterministic Hash-and-Sign Signatures

Given

@ ¥ signing m-bit messages under u bits of
randomness

@ a hash function H:{0,1}* — {0,1}™

——

we construct § = (H, X) where
Key Gen. S.Gen £ ¥ .Gen
Sign. given M € {0,1}*
o pick v« {0,1}"

> e m= H(M)

e o = X.Sign(sk, m, u)
i Verify. S§.Ver(pk, M, o) outputs

Y Ver(pk, H(M), o)

17
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Two-Step Signatures

Y can be split into four functions

u Z17 Z27 Tla TQ
To sign :
pick u < {0,1}"
= Step 1. (r,aux) = Xq(sk, u)
Step 2. o = X(sk, m, r,aux)
r aux
To verify :
. Step 1. # = T1(pk, o)
m 2 Step 2. output To(pk, m, o, ?)
i If o is valid then 7 = r is unique and r
must be uniform over {0,1}" if u is

o uniform over {0, 1}"

18
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Probabilistic Hash-and-Sign Signatures

We assemble ¥ and F to build

u S=(F,%)
To sign :

M pick u < {0,1}"

1 Step 1. (r,aux) = Xq(sk, u)

m=F(M,r)

F |< r aux Step 2. 0 = ¥5(sk, m, r,aux)
L 5 5, To verify :
m Step 1. # = T1(pk,o)

i = F(M,?)

Step 2. output To(pk, m, o, ?)

19
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Primitiveness of S = (F, ¥)

u
We know a probabilistic algorithm S.Prim
\Ir which
v, e for any key pair (pk, sk)
@ given pk only
p AUx @ generates a random pair
(m,o = ¥.Sign(sk, m, u))
m —x X e mis uniformly distributed over {0,1}™
@ u is uniformly distributed over {0, 1}"

20



>

3,

Injectivity of S = (F, X)

aux

S is injective when
o for any key pair (pk, sk)
e forany o € {0,1}°

@ there exists at most one pair
(m,r) e {0,1}™ x {0,1}"

such that

@ 0 = Y(sk, m, r,aux) and
(r,aux) = X1(sk, u) for some u,aux

21



% SarHIR

Classifying Common Signature Schemes

SIGNATURE SCHEME| Det. H&S Prob. H&S S .
Primitive Injective

Schnorr X X

FDH X

PFDH X

PSS X

EMSA-PSS

X| X[ X|X|X|X

BLS

Generic DSA

XX |[X|X|X]|X[X

GHR

XXX X]|X

CS

22



% SAPHIR

Relations between S = (H,X) and H

Breaking S by breaking H : attacks

UFn,-CMA[S] < UF,-KMA,, [S] < UF, -KOA([S]

3 U 3
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOA[S]
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% SAPHIR

Relations between S = (H,X) and H

Breaking S by breaking H : attacks

UFn,-CMA[S] < UF,-KMA,, [S] < UF, -KOA([S]

3 U 3
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOA[S]
f

COL™"™ [H]
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% SAPHIR

Relations between S = (H,X) and H

Breaking S by breaking H : attacks

SEC,: [H]
\

UF,,-CMA[S] <= UF,-KMA,, [S] < UF,,-KOA[S]
\ 4 \
EF"-CMA[S] < EF™-KMA,, [S] < EF"-KOA[S]

f

COL™"™ [H]
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% SAPHIR

Relations between S = (H,X) and H

Breaking S by breaking H : attacks

SEC,: [H]
\

UF,-CMA[S] < UF,-KMA,, [S] < UF,,-KOA[S]
\ 4 \
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOAIS]

f f

coL™™ [H] SEC™ [H]
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% SAPHIR

Relations between S = (H,X) and H

Breaking S by breaking H : attacks

SEC]: [H]

3
UF,-CMA[S] < UF,-KMA,, [S] < UF,,-KOA[S]
3 U 3
EF-CMA[S] < EF™-KMA,, [S] < EF"-KOA[S]
f f (I
COL™"™ [H] SEC™ [H] PRE™ [H]

(1) if S is primitive
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% SaPHIR

Relations between S = (H,X) and H

Breaking S by breaking H : attacks

SEC™ [H] PRE™ [H] PRE™ [H]
Il 722 727
UFn,-CMA[S] < UF,-KMA,, [S] < UF, -KOA[S]
\ 4 \
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOA[S]
f f 1
COL™"™ [H] SEC™ [H] PRE™ [H]

(1) if S is primitive
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% SAPHINR

Relations between S = (H,X) and H

Repudiation : attacks. ..

URZ: [S]
I
ER™"™ [S]
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% SAPHINR

Relations between S = (H,X) and H

Repudiation : attacks. ..

URZ: [S]
I
ER™"™ [S]

f
COL™™ [H]
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% SAPHINR

Relations between S = (H,X) and H

Repudiation : attacks. ..

SECP [H]
I
UR?: [S]
I
ER™"™ [S]

f
COL™™ [H]
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% SAPHINR

Relations between S = (H,X) and H

Repudiation : attacks. . .and security proofs

SEC [H]
1}(2)
UR:: [S]
U
ER™"™ [S]

@(2)
COL™"™ [H]

(2) if S is injective
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% SAPHIR

Relations between S = (F,¥) and F

Breaking S by breaking F : attacks again

UFn,-CMA[S] < UF,-KMA,, [S] < UF, -KOA([S]

3 U 3
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOA[S]
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% SAPHIR

Relations between S = (F,¥) and F

Breaking S by breaking F : attacks again

A-SEC™ [F]
\

UF,,-CMA[S] < UF,-KMA,, [S] < UF,-KOA[S]
\ 4 \
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOAIS]

f

A-COL™"™ [F]
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% SAPHIR

Relations between S = (F,¥) and F

Breaking S by breaking F : attacks again

A-SEC™ [F]
\

UF,-CMA[S] < UF,-KMA,, [S] < UF, -KOA[S]
\ 4 \
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOAIS]

f ()

A-COL"™"™ [F] U-SEC? [F]
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% SAPHIR

Relations between S = (F,¥) and F

Breaking S by breaking F : attacks again

A-SEC™ [F]

\

UFn-CMA[S] < UF,-KMA,, [S] < UF,-KOA[S]
\ 4 \
EF"-CMA[S] < EF™-KMA,, [S] < EF"-KOA[S]
f () 1
A-COL™™ [F] U-SEC™ [F] U-PRE™ [F]

(1) if S is primitive
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% SaPHIR

Relations between S = (F,¥) and F

Breaking S by breaking F : attacks again

A-SEC™ [F] U-PRE™ [F] U-PRE™ [F]
Il 17 47272
UF,-CMA[S] < UF,-KMA,, [S] < UF,-KOA[S]
3 U 3
EF"-CMA[S] < EF™-KMA,, [S] < EF™-KOA[S]
f () 1
A-COL™™ [F] U-SEC™ [F] U-PRE™ [F]

(1) if S is primitive
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% SAPHINR

Relations between S = (F.X) and F

Repudiation : attacks. ..

UR:: 5]
!
ER™"™ [S]
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% SAPHINR

Relations between S = (F,¥) and F

Repudiation : attacks. ..

UR:: 5]
!
ER™"™ [S]

T
U-COL™™ [F]
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% SAPHINR

Relations between S = (F,¥) and F

Repudiation : attacks. ..

U-SEC?2 [F]
4
UR?: [S]
\
ER™™ [S]

T
U-COL™"™ [F]
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% SAPHIR

Relations between S = (F,¥) and F

Repudiation : attacks. .. + security proofs

U-SEC™ [F]

4
E-SECZ[F] «  URZIS]

4
E-COL™™ [F] < ER™"™[S]

T

U-COL™"™ [F]
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# SAPHINR

Merkle-Damgard Instantiations

What is done in practice

@ Tempting to build F from H in practice. ..
@ Tempting to build H from f using iteration

Take fixed compression function f and IV € {0,1}™.

o let Hy = iterated f without MD strengthening
o let Hs = iterated f with MD strengthening

27 & =



% SarHIR

F(m,r) = Hs(ml|r)

Terrible, since for any signature scheme X
(F,x) = (Ho, ')

The security gain inherent to using the probabilistic hash-and-sign
paradigm collapses. More precisely, for any n > 0

A-SEC"[F] <« SEC![H)] <« SEC"[Ho]
U I 3
A-COL™"[F] <« COL™[H,] < COL™"[Ho]

28



% SAPHIR

F(m,r) = Hs(r||m)

No known way to break S in any sense even if
COL™"[Ho], SEC;[Ho] and PRE"[Ho]

are all easy

Concrete estimations of 7 for € ~ 1 given in paper
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