Revisiting Security Relations Between Signature Schemes and their Inner Hash Functions

French Saphir Project (Cryptolog, DCSSI, Ecole Normale Supérieure, France Telecom and Gemalto)

Saphir Partners

Ecrypt Hash Workshop

Outline

（1）Hash Functions in Cryptosystems
（2）Security reductions
（3）Hash Functions
（4）Hash－and－Sign Signature Schemes
（5）Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H
（6）Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F
（7）Merkle－Damgård Instantiations

SA円HIR

Hash Functions in Cryptosystems

How do broken hash functions impact cryptosystems?
Let $\mathcal{S}=\mathcal{S}\left[H_{1}, \ldots, H_{n}\right]$ be a cryptosystem based on hash functions H_{1}, \ldots, H_{n}. We want to explore the interplay between the security of \mathcal{S} and the security of H_{1}, \ldots, H_{n}.

Connections between \mathcal{S} and H_{1}, \ldots, H_{n} are usually not understood

SA円HIR

Hash Functions in Cryptosystems

How do broken hash functions impact cryptosystems?
Let $\mathcal{S}=\mathcal{S}\left[H_{1}, \ldots, H_{n}\right]$ be a cryptosystem based on hash functions H_{1}, \ldots, H_{n}. We want to explore the interplay between the security of \mathcal{S} and the security of H_{1}, \ldots, H_{n}.

Connections between \mathcal{S} and H_{1}, \ldots, H_{n} are usually not understood
OAEP padding

Hash Functions in Cryptosystems

How do broken hash functions impact cryptosystems?

Let $\mathcal{S}=\mathcal{S}\left[H_{1}, \ldots, H_{n}\right]$ be a cryptosystem based on hash functions H_{1}, \ldots, H_{n}. We want to explore the interplay between the security of \mathcal{S} and the security of H_{1}, \ldots, H_{n}.

Connections between \mathcal{S} and H_{1}, \ldots, H_{n} are usually not understood

OAEP padding

- used in conjunction with a trapdoor permutation to yield random-oracle secure encryption

Hash Functions in Cryptosystems

How do broken hash functions impact cryptosystems?

Let $\mathcal{S}=\mathcal{S}\left[H_{1}, \ldots, H_{n}\right]$ be a cryptosystem based on hash functions H_{1}, \ldots, H_{n}. We want to explore the interplay between the security of \mathcal{S} and the security of H_{1}, \ldots, H_{n}.

Connections between \mathcal{S} and H_{1}, \ldots, H_{n} are usually not understood

OAEP padding

- used in conjunction with a trapdoor permutation to yield random-oracle secure encryption
- uses two hash functions H_{1}, H_{2}

Hash Functions in Cryptosystems

How do broken hash functions impact cryptosystems?

Let $\mathcal{S}=\mathcal{S}\left[H_{1}, \ldots, H_{n}\right]$ be a cryptosystem based on hash functions H_{1}, \ldots, H_{n}. We want to explore the interplay between the security of \mathcal{S} and the security of H_{1}, \ldots, H_{n}.

Connections between \mathcal{S} and H_{1}, \ldots, H_{n} are usually not understood

OAEP padding

- used in conjunction with a trapdoor permutation to yield random-oracle secure encryption
- uses two hash functions H_{1}, H_{2}
- proven IND-CCA secure \equiv RSA in RO model, unlikely in plain model

Hash Functions in Cryptosystems

How do broken hash functions impact cryptosystems?

Let $\mathcal{S}=\mathcal{S}\left[H_{1}, \ldots, H_{n}\right]$ be a cryptosystem based on hash functions H_{1}, \ldots, H_{n}. We want to explore the interplay between the security of \mathcal{S} and the security of H_{1}, \ldots, H_{n}.

Connections between \mathcal{S} and H_{1}, \ldots, H_{n} are usually not understood

OAEP padding

- used in conjunction with a trapdoor permutation to yield random-oracle secure encryption
- uses two hash functions H_{1}, H_{2}
- proven IND-CCA secure \equiv RSA in RO model, unlikely in plain model
- Question : is OAEP secure when $\operatorname{COL}\left[H_{1}\right] \equiv 0$?

Security Relations between $\mathcal{S}[H]$ and H

$S=S[H]$
We want to determine how the security of H relates to the one of \mathcal{S}

We see 4 types of connections

Security Relations between $\mathcal{S}[H]$ and H

$S=S[H]$

We want to determine how the security of H relates to the one of \mathcal{S}

We see 4 types of connections
Attack a reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$

SAロHIR

Security Relations between $\mathcal{S}[H]$ and H

$\mathcal{S}=S[H]$
We want to determine how the security of H relates to the one of \mathcal{S}

We see 4 types of connections
Attack a reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$（the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way）

SAロHIR

Security Relations between $\mathcal{S}[H]$ and H

$\mathcal{S}=S[H]$
We want to determine how the security of H relates to the one of \mathcal{S}

We see 4 types of connections
Attack a reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$（the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way）
Security Proof a reduction $\operatorname{Break}(H) \Leftarrow \operatorname{Break}(\mathcal{S})$

SAصHIR

Security Relations between $\mathcal{S}[H]$ and H

$\mathcal{S}=S[H]$
We want to determine how the security of H relates to the one of \mathcal{S}

We see 4 types of connections
Attack a reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$（the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way）
Security Proof a reduction $\operatorname{Break}(H) \Leftarrow \operatorname{Break}(\mathcal{S})$
Impossible Attack there is no reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$

Security Relations between $\mathcal{S}[H]$ and H

$\mathcal{S}=S[H]$

We want to determine how the security of H relates to the one of \mathcal{S}

We see 4 types of connections

Attack a reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)
Security Proof a reduction $\operatorname{Break}(H) \Leftarrow \operatorname{Break}(\mathcal{S})$
Impossible Attack there is no reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$
(meta-reduction technique : if $\operatorname{Break}(H) \Rightarrow_{\mathcal{R}} \operatorname{Break}(\mathcal{S})$ then $\mathcal{R} \Rightarrow_{\mathcal{M}} P$ where P is auxiliary)

Security Relations between $\mathcal{S}[H]$ and H

$\mathcal{S}=\mathcal{S}[H]$
We want to determine how the security of H relates to the one of \mathcal{S}

We see 4 types of connections

Attack a reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)
Security Proof a reduction $\operatorname{Break}(H) \Leftarrow \operatorname{Break}(\mathcal{S})$
Impossible Attack there is no reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$
(meta-reduction technique : if $\operatorname{Break}(H) \Rightarrow_{\mathcal{R}} \operatorname{Break}(\mathcal{S})$ then $\mathcal{R} \Rightarrow_{\mathcal{M}} P$ where P is auxiliary)
Impossibility of Security Proof no reduction $\operatorname{Break}(H) \Leftarrow \operatorname{Break}(\mathcal{S})$

Security Relations between $\mathcal{S}[H]$ and H

$\mathcal{S}=S[H]$
We want to determine how the security of H relates to the one of \mathcal{S}

We see 4 types of connections

Attack a reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$ (the reduction makes explicit how an attack of a given type on the hash function is enough to break the scheme in a prescribed way)
Security Proof a reduction $\operatorname{Break}(H) \Leftarrow \operatorname{Break}(\mathcal{S})$
Impossible Attack there is no reduction $\operatorname{Break}(H) \Rightarrow \operatorname{Break}(\mathcal{S})$
(meta-reduction technique : if $\operatorname{Break}(H) \Rightarrow_{\mathcal{R}} \operatorname{Break}(\mathcal{S})$
then $\mathcal{R} \Rightarrow_{\mathcal{M}} P$ where P is auxiliary)
Impossibility of Security Proof no reduction $\operatorname{Break}(H) \Leftarrow \operatorname{Break}(\mathcal{S})$
So there are positive security results and negative security results.

What We Do Here

Focus on public-key signatures
Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

What We Do Here

Focus on public-key signatures
Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

- Suitable security notions for hash functions \& HF families

What We Do Here

Focus on public-key signatures
Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H
We clarify everything

- Suitable security notions for hash functions \& HF families
- Crystal clear classification of signatures

What We Do Here

Focus on public-key signatures

Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

- Suitable security notions for hash functions \& HF families
- Crystal clear classification of signatures
- deterministic versus probabilistic hash-and-sign signatures

What We Do Here

Focus on public－key signatures

Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

－Suitable security notions for hash functions \＆HF families
－Crystal clear classification of signatures
－deterministic versus probabilistic hash－and－sign signatures
－primitiveness

What We Do Here

Focus on public-key signatures

Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

- Suitable security notions for hash functions \& HF families
- Crystal clear classification of signatures
- deterministic versus probabilistic hash-and-sign signatures
- primitiveness
- injectivity

What We Do Here

Focus on public-key signatures

Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

- Suitable security notions for hash functions \& HF families
- Crystal clear classification of signatures
- deterministic versus probabilistic hash-and-sign signatures
- primitiveness
- injectivity
- we capture all signature schemes we know of

What We Do Here

Focus on public-key signatures

Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

- Suitable security notions for hash functions \& HF families
- Crystal clear classification of signatures
- deterministic versus probabilistic hash-and-sign signatures
- primitiveness
- injectivity
- we capture all signature schemes we know of
- Merkle-Damgård Instantiations

What We Do Here

Focus on public-key signatures

Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

- Suitable security notions for hash functions \& HF families
- Crystal clear classification of signatures
- deterministic versus probabilistic hash-and-sign signatures
- primitiveness
- injectivity
- we capture all signature schemes we know of
- Merkle-Damgård Instantiations
- identify more specific results in the case of functions such as MD5 and SHA-1

What We Do Here

Focus on public-key signatures

Connections $\mathcal{S}[H] / H$ heavily depend on the way \mathcal{S} makes use of H

We clarify everything

- Suitable security notions for hash functions \& HF families
- Crystal clear classification of signatures
- deterministic versus probabilistic hash-and-sign signatures
- primitiveness
- injectivity
- we capture all signature schemes we know of
- Merkle-Damgård Instantiations
- identify more specific results in the case of functions such as MD5 and SHA-1
- security gain inherent to using probabilistic hash-and-sign paradigm may be lost completely if unwise operating mode

Security Reductions

Different semantics of proofs

- polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting

Security Reductions

Different semantics of proofs

- polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting

Security Reductions

Different semantics of proofs

－polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting
－given problem $P, \mathcal{A}(\tau, \varepsilon)$－solves or (τ, ε)－breaks P if \mathcal{A} outputs a solution of P wrt τ, ε

Security Reductions

Different semantics of proofs

- polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting
- given problem $P, \mathcal{A}(\tau, \varepsilon)$-solves or (τ, ε)-breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
- τ relates to some fixed model of computation

Security Reductions

Different semantics of proofs

－polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting
－given problem $P, \mathcal{A}(\tau, \varepsilon)$－solves or (τ, ε)－breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
－τ relates to some fixed model of computation
－reduction \mathcal{R} between two computational problems P_{1} and P_{2} is a probabilistic algorithm \mathcal{R} which（ $\tau_{1}, \varepsilon_{1}$ ）－solves P_{1} given black－box access to an oracle（ $\tau_{2}, \varepsilon_{2}$ ）－solving P_{2}

Security Reductions

Different semantics of proofs

- polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting
- given problem $P, \mathcal{A}(\tau, \varepsilon)$-solves or (τ, ε)-breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
- τ relates to some fixed model of computation
- reduction \mathcal{R} between two computational problems P_{1} and P_{2} is a probabilistic algorithm \mathcal{R} which ($\tau_{1}, \varepsilon_{1}$)-solves P_{1} given black-box access to an oracle ($\tau_{2}, \varepsilon_{2}$)-solving P_{2}
- $P_{1} \leq_{\mathcal{R}} P_{2}$ when \mathcal{R} is known to reduce P_{1} to P_{2} with $\tau_{1} \simeq \tau_{2}$ and $\varepsilon_{1} \simeq \varepsilon_{2}$

Security Reductions

Different semantics of proofs

- polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting
- given problem $P, \mathcal{A}(\tau, \varepsilon)$-solves or (τ, ε)-breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
- τ relates to some fixed model of computation
- reduction \mathcal{R} between two computational problems P_{1} and P_{2} is a probabilistic algorithm \mathcal{R} which ($\tau_{1}, \varepsilon_{1}$)-solves P_{1} given black-box access to an oracle ($\tau_{2}, \varepsilon_{2}$)-solving P_{2}
- $P_{1} \leq_{\mathcal{R}} P_{2}$ when \mathcal{R} is known to reduce P_{1} to P_{2} with $\tau_{1} \simeq \tau_{2}$ and $\varepsilon_{1} \simeq \varepsilon_{2}$
- black-box or non-black-box

Security Reductions

Different semantics of proofs

- polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting
- given problem $P, \mathcal{A}(\tau, \varepsilon)$-solves or (τ, ε)-breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
- τ relates to some fixed model of computation
- reduction \mathcal{R} between two computational problems P_{1} and P_{2} is a probabilistic algorithm \mathcal{R} which ($\tau_{1}, \varepsilon_{1}$)-solves P_{1} given black-box access to an oracle ($\tau_{2}, \varepsilon_{2}$)-solving P_{2}
- $P_{1} \leq_{\mathcal{R}} P_{2}$ when \mathcal{R} is known to reduce P_{1} to P_{2} with $\tau_{1} \simeq \tau_{2}$ and $\varepsilon_{1} \simeq \varepsilon_{2}$
- black-box or non-black-box
- constructive or non constructive

Security Reductions

Different semantics of proofs

- polynomial setting $(\kappa \rightarrow \infty)$ or concrete setting
- given problem $P, \mathcal{A}(\tau, \varepsilon)$-solves or (τ, ε)-breaks P if \mathcal{A} outputs a solution of P wrt τ, ε
- τ relates to some fixed model of computation
- reduction \mathcal{R} between two computational problems P_{1} and P_{2} is a probabilistic algorithm \mathcal{R} which ($\tau_{1}, \varepsilon_{1}$)-solves P_{1} given black-box access to an oracle ($\tau_{2}, \varepsilon_{2}$)-solving P_{2}
- $P_{1} \leq_{\mathcal{R}} P_{2}$ when \mathcal{R} is known to reduce P_{1} to P_{2} with $\tau_{1} \simeq \tau_{2}$ and $\varepsilon_{1} \simeq \varepsilon_{2}$
- black-box or non-black-box
- constructive or non constructive

We only care about concrete, black-box, constructive reductions here :

$$
P_{1} \Leftarrow_{R} P_{2}, \quad P_{1} \Leftrightarrow P_{2}, \quad \text { etc. }
$$

Interpreting Security Reductions

Success in breaking P

We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. $\operatorname{Succ}(P, \tau)$ is a function here.

Interpreting Security Reductions

Success in breaking P
We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean?

SAصHIR

Interpreting Security Reductions

Success in breaking P

We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean ?

- take $P_{1}=\operatorname{Break}\left(\mathcal{S}_{1}\right)$ and $P_{2}=\operatorname{Break}\left(\mathcal{S}_{2}\right)$

SAロHIR

Interpreting Security Reductions

Success in breaking P

We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. Succ (P, τ) is a function here.

What does a security reduction mean ?

- take $P_{1}=\operatorname{Break}\left(\mathcal{S}_{1}\right)$ and $P_{2}=\operatorname{Break}\left(\mathcal{S}_{2}\right)$
- assume you find \mathcal{R} such that $\operatorname{Break}\left(\mathcal{S}_{1}\right) \Leftarrow_{\mathcal{R}} \operatorname{Break}\left(\mathcal{S}_{2}\right)$

Interpreting Security Reductions

Success in breaking P

We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. $\operatorname{Succ}(P, \tau)$ is a function here.

What does a security reduction mean ?

- take $P_{1}=\operatorname{Break}\left(\mathcal{S}_{1}\right)$ and $P_{2}=\operatorname{Break}\left(\mathcal{S}_{2}\right)$
- assume you find \mathcal{R} such that $\operatorname{Break}\left(\mathcal{S}_{1}\right) \Leftarrow_{\mathcal{R}} \operatorname{Break}\left(\mathcal{S}_{2}\right)$
- this means Succ $\left(\operatorname{Break}\left(\mathcal{S}_{1}\right), \tau_{1}\right) \geq \operatorname{Succ}\left(\operatorname{Break}\left(\mathcal{S}_{2}\right), \tau_{2}\right)$ for $\tau_{1} \simeq \tau_{2}$

Interpreting Security Reductions

Success in breaking P

We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. $\operatorname{Succ}(P, \tau)$ is a function here.

What does a security reduction mean ?

- take $P_{1}=\operatorname{Break}\left(\mathcal{S}_{1}\right)$ and $P_{2}=\operatorname{Break}\left(\mathcal{S}_{2}\right)$
- assume you find \mathcal{R} such that $\operatorname{Break}\left(\mathcal{S}_{1}\right) \Leftarrow_{\mathcal{R}} \operatorname{Break}\left(\mathcal{S}_{2}\right)$
- this means Succ $\left(\operatorname{Break}\left(\mathcal{S}_{1}\right), \tau_{1}\right) \geq \operatorname{Succ}\left(\operatorname{Break}\left(\mathcal{S}_{2}\right), \tau_{2}\right)$ for $\tau_{1} \simeq \tau_{2}$

What happens if $\operatorname{Break}\left(\mathcal{S}_{1}\right)$ has no solution?

Well then \mathcal{S}_{1} is perfectly (IT) secure, and so must be \mathcal{S}_{2}

Interpreting Security Reductions

Success in breaking P
We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. $\operatorname{Succ}(P, \tau)$ is a function here.

What does a security reduction mean ?

- take $P_{1}=\operatorname{Break}\left(\mathcal{S}_{1}\right)$ and $P_{2}=\operatorname{Break}\left(\mathcal{S}_{2}\right)$
- assume you find \mathcal{R} such that $\operatorname{Break}\left(\mathcal{S}_{1}\right) \Leftarrow_{\mathcal{R}} \operatorname{Break}\left(\mathcal{S}_{2}\right)$
- this means Succ $\left(\operatorname{Break}\left(\mathcal{S}_{1}\right), \tau_{1}\right) \geq \operatorname{Succ}\left(\operatorname{Break}\left(\mathcal{S}_{2}\right), \tau_{2}\right)$ for $\tau_{1} \simeq \tau_{2}$

What happens if $\operatorname{Break}\left(\mathcal{S}_{2}\right)$ has no solution?

Then the reduction just tells us $\operatorname{Succ}\left(\operatorname{Break}\left(\mathcal{S}_{1}\right)\right) \geq 0$, no big deal

Interpreting Security Reductions

Success in breaking P

We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. $\operatorname{Succ}(P, \tau)$ is a function here.

What does a security reduction mean ?

- take $P_{1}=\operatorname{Break}\left(\mathcal{S}_{1}\right)$ and $P_{2}=\operatorname{Break}\left(\mathcal{S}_{2}\right)$
- assume you find \mathcal{R} such that $\operatorname{Break}\left(\mathcal{S}_{1}\right) \Leftarrow_{\mathcal{R}} \operatorname{Break}\left(\mathcal{S}_{2}\right)$
- this means Succ $\left(\operatorname{Break}\left(\mathcal{S}_{1}\right), \tau_{1}\right) \geq \operatorname{Succ}\left(\operatorname{Break}\left(\mathcal{S}_{2}\right), \tau_{2}\right)$ for $\tau_{1} \simeq \tau_{2}$

Interpreting Security Reductions

Success in breaking P
We define $\operatorname{Succ}(P, \tau)=\max _{\mathcal{A}} \operatorname{Succ}^{P}(\mathcal{A}, \tau)$ taken over all τ-time probabilistic \mathcal{A} 's. $\operatorname{Succ}(P, \tau)$ is a function here.

What does a security reduction mean ?

- take $P_{1}=\operatorname{Break}\left(\mathcal{S}_{1}\right)$ and $P_{2}=\operatorname{Break}\left(\mathcal{S}_{2}\right)$
- assume you find \mathcal{R} such that $\operatorname{Break}\left(\mathcal{S}_{1}\right) \Leftarrow_{\mathcal{R}} \operatorname{Break}\left(\mathcal{S}_{2}\right)$
- this means Succ $\left(\operatorname{Break}\left(\mathcal{S}_{1}\right), \tau_{1}\right) \geq \operatorname{Succ}\left(\operatorname{Break}\left(\mathcal{S}_{2}\right), \tau_{2}\right)$ for $\tau_{1} \simeq \tau_{2}$

What happens if $\operatorname{Break}\left(\mathcal{S}_{1}\right)$ always has a solution?

Then

$$
\operatorname{Succ}\left(\operatorname{Break}\left(\mathcal{S}_{1}\right), \tau\right)=1 \quad \text { for any } \tau
$$

No big deal, restrict maximum on known adversaries \mathcal{A}

Hash Functions

Hash function

A function H is a hash function if it maps $\{0,1\}^{*}$ to $\{0,1\}^{m}$ for some integer $m>0$ called the output size of H.

Compression function

A compression function is a function $f:\{0,1\}^{m} \times\{0,1\}^{b} \rightarrow\{0,1\}^{m}$ where m, b are integers such that $\mathrm{m}>0$ and $\mathrm{b}>0$.

Hash Functions

Hash function

A function H is a hash function if it maps $\{0,1\}^{*}$ to $\{0,1\}^{m}$ for some integer $m>0$ called the output size of H.

Compression function

A compression function is a function $f:\{0,1\}^{m} \times\{0,1\}^{b} \rightarrow\{0,1\}^{m}$ where m, b are integers such that $\mathrm{m}>0$ and $\mathrm{b}>0$.

Iterated hashing allows to build " H from f "

Security Notions for Hash Functions

Collision－resistance $\mathrm{COL}^{n_{1}, n_{2}}[H]$ Find $M_{1} \in\{0,1\}^{n_{1}}$ and $M_{2} \in\{0,1\}^{n_{2}}$ such that $M_{1} \neq M_{2}$ and $H\left(M_{1}\right)=H\left(M_{2}\right)$ ．We know that $\operatorname{Succ}\left(\mathrm{COL}^{n_{1}, n_{2}}[H]\right)=1$ or 0

Security Notions for Hash Functions

Collision－resistance $\mathrm{COL}^{n_{1}, n_{2}}[H]$ Find $M_{1} \in\{0,1\}^{n_{1}}$ and $M_{2} \in\{0,1\}^{n_{2}}$ such that $M_{1} \neq M_{2}$ and $H\left(M_{1}\right)=H\left(M_{2}\right)$ ．We know that Succ $\left(\mathrm{COL}^{n_{1}, n_{2}}[H]\right)=1$ or 0
Second－preimage－resistance $\mathrm{SEC}_{n_{1}}^{n_{2}}[H]$ Given a random $M_{1} \leftarrow\{0,1\}^{n_{1}}$ ， find $M_{2} \in\{0,1\}^{n_{2}}$ such that $H\left(M_{2}\right)=H\left(M_{1}\right)$ and $M_{2} \neq M_{1}$

Security Notions for Hash Functions

Collision-resistance $\mathrm{COL}^{n_{1}, n_{2}}[H]$ Find $M_{1} \in\{0,1\}^{n_{1}}$ and $M_{2} \in\{0,1\}^{n_{2}}$ such that $M_{1} \neq M_{2}$ and $H\left(M_{1}\right)=H\left(M_{2}\right)$. We know that $\operatorname{Succ}\left(\mathrm{COL}^{n_{1}, n_{2}}[H]\right)=1$ or 0
Second-preimage-resistance $\mathrm{SEC}_{n_{1}}^{n_{2}}[H]$ Given a random $M_{1} \leftarrow\{0,1\}^{n_{1}}$, find $M_{2} \in\{0,1\}^{n_{2}}$ such that $H\left(M_{2}\right)=H\left(M_{1}\right)$ and $M_{2} \neq M_{1}$
Preimage-resistance Well, (at least) two notions :

Security Notions for Hash Functions

Collision-resistance $\mathrm{COL}^{n_{1}, n_{2}}[H]$ Find $M_{1} \in\{0,1\}^{n_{1}}$ and $M_{2} \in\{0,1\}^{n_{2}}$ such that $M_{1} \neq M_{2}$ and $H\left(M_{1}\right)=H\left(M_{2}\right)$. We know that $\operatorname{Succ}\left(\mathrm{COL}^{n_{1}, n_{2}}[H]\right)=1$ or 0
Second-preimage-resistance $\mathrm{SEC}_{n_{1}}^{n_{2}}[H]$ Given a random $M_{1} \leftarrow\{0,1\}^{n_{1}}$, find $M_{2} \in\{0,1\}^{n_{2}}$ such that $H\left(M_{2}\right)=H\left(M_{1}\right)$ and $M_{2} \neq M_{1}$
Preimage-resistance Well, (at least) two notions :
$\overline{\mathrm{PRE}}_{n_{1}}^{n_{2}}[H]$ Given a random $M_{1} \leftarrow\{0,1\}^{n_{1}}$, take $m=H\left(M_{1}\right)$ and find an n_{2}-bit string M_{2} such that $H\left(M_{2}\right)=m$

Security Notions for Hash Functions

Collision-resistance $\mathrm{COL}^{n_{1}, n_{2}}[H]$ Find $M_{1} \in\{0,1\}^{n_{1}}$ and $M_{2} \in\{0,1\}^{n_{2}}$ such that $M_{1} \neq M_{2}$ and $H\left(M_{1}\right)=H\left(M_{2}\right)$. We know that Succ $\left(\mathrm{COL}^{n_{1}, n_{2}}[H]\right)=1$ or 0
Second-preimage-resistance $\mathrm{SEC}_{n_{1}}^{n_{2}}[H]$ Given a random $M_{1} \leftarrow\{0,1\}^{n_{1}}$, find $M_{2} \in\{0,1\}^{n_{2}}$ such that $H\left(M_{2}\right)=H\left(M_{1}\right)$ and $M_{2} \neq M_{1}$
Preimage-resistance Well, (at least) two notions :
$\overline{\mathrm{PRE}}_{n_{1}}^{n_{2}}[H]$ Given a random $M_{1} \leftarrow\{0,1\}^{n_{1}}$, take $m=H\left(M_{1}\right)$ and find an n_{2}-bit string M_{2} such that $H\left(M_{2}\right)=m$
$\operatorname{PRE}^{n}[H]$ Given a random $m \leftarrow\{0,1\}^{m}$, find an n-bit string M such that $H(M)=m$.

Security Notions for Hash Functions

Collision-resistance $\mathrm{COL}^{n_{1}, n_{2}}[H]$ Find $M_{1} \in\{0,1\}^{n_{1}}$ and $M_{2} \in\{0,1\}^{n_{2}}$ such that $M_{1} \neq M_{2}$ and $H\left(M_{1}\right)=H\left(M_{2}\right)$. We know that $\operatorname{Succ}\left(\mathrm{COL}^{n_{1}, n_{2}}[H]\right)=1$ or 0
Second-preimage-resistance $\mathrm{SEC}_{n_{1}}^{n_{2}}[H]$ Given a random $M_{1} \leftarrow\{0,1\}^{n_{1}}$, find $M_{2} \in\{0,1\}^{n_{2}}$ such that $H\left(M_{2}\right)=H\left(M_{1}\right)$ and $M_{2} \neq M_{1}$
Preimage-resistance Well, (at least) two notions :
$\overline{\mathrm{PRE}}_{n_{1}}^{n_{2}}[H]$ Given a random $M_{1} \leftarrow\{0,1\}^{n_{1}}$, take $m=H\left(M_{1}\right)$ and find an n_{2}-bit string M_{2} such that $H\left(M_{2}\right)=m$
$\operatorname{PRE}^{n}[H]$ Given a random $m \leftarrow\{0,1\}^{m}$, find an n-bit string M such that $H(M)=m$.
Most efficient definition for security statements

Security Profile of a Hash Function

Let $H:\{0,1\}^{*} \rightarrow\{0,1\}^{m}$ be a hash function.

Then for any $n_{1}, n_{2}>0$,

$$
\begin{array}{cc}
\operatorname{COL}^{n_{1}, n_{2}}[H] \Leftarrow \operatorname{SEC}_{n_{1}}^{n_{2}}[H] \Leftarrow{ }^{(1)} \quad \overline{\operatorname{PRE}}_{n_{1}}^{n_{2}}[H] \\
& \\
& \hat{\mathbb{I}}^{(2)} \\
& \operatorname{PRE}^{n_{2}}[H]
\end{array}
$$

(1) only if $n_{2} \gg m$
(2) when H is well-balanced

Hash Function Family

Hash function family

A hash function family F is a function $F:\{0,1\}^{*} \times\{0,1\}^{r} \rightarrow\{0,1\}^{m}$ for integers $m, r>0$

We find definitions of interest for provable security :
$\mathrm{E}-\mathrm{COL}^{n_{1}, n_{2}}[F]$
Find $\left(M_{1}, M_{2}, r\right)$ with $F\left(M_{1}, r\right)=F\left(M_{2}, r\right)$
$\mathrm{U}-\mathrm{COL}^{n_{1}, n_{2}}[F]$
Given $r \leftarrow\{0,1\}^{r}$, find $\left(M_{1}, M_{2}\right)$ with
$F\left(M_{1}, r\right)=F\left(M_{2}, r\right)$
A-COL ${ }^{n_{1}, n_{2}}[F]$
Find $\left(M_{1}, M_{2}\right)$ with $F\left(M_{1}, r\right)=F\left(M_{2}, r\right)$ for any r

Security Notions for HF Families

Forms of second preimage resistance :

$$
\begin{aligned}
& \text { E-SEC } C_{n_{1}}^{n_{2}}[F] \text { Given } M_{1} \leftarrow\{0,1\}^{n_{1}} \text {, find }\left(M_{2}, r\right) \text { with } \\
& F\left(M_{1}, r\right)=F\left(M_{2}, r\right) \\
& \mathrm{U}^{-S_{E C}}{n_{n_{1}}}_{n_{2}}[F] \text { Given } M_{1} \leftarrow\{0,1\}^{n_{1}} \text { and } r \leftarrow\{0,1\}^{r} \text {, find } M_{2} \text { with } \\
& F\left(M_{1}, r\right)=F\left(M_{2}, r\right) \\
& \text { A-SEC } n_{n_{1}}^{n_{2}}[F] \text { Given } M_{1} \leftarrow\{0,1\}^{n_{1}} \text {, find } M_{2} \text { with } F\left(M_{1}, r\right)=F\left(M_{2}, r\right) \\
& \text { for any } r \\
& \text { Forms of preimage resistance : } \\
& \operatorname{E-PRE}^{n}[F] \text { Given } m \leftarrow\{0,1\}^{m} \text {, find }(M, r) \text { such that } F(M, r)=m \\
& \text { U-PRE }{ }^{n}[F] \text { Given } m \leftarrow\{0,1\}^{m} \text { and } r \leftarrow\{0,1\}^{r} \text {, find } M \text { such that } \\
& F(M, r)=m
\end{aligned}
$$

Can make use of [RS04] where $M \leftarrow\{0,1\}^{*}$ and $m=H(M)$ is given to adversary

Security Profile of a Hash Function Family

$$
\begin{aligned}
& E-\operatorname{PRE}^{n_{2}}[F] \Leftarrow \quad \Leftarrow-\operatorname{PRE}^{n_{2}}[F] \\
& \Downarrow^{(1)} \\
& \mathrm{E}_{-1} \mathrm{SEC}_{n_{1}}^{n_{2}}[F] \Leftarrow \mathrm{U}-\mathrm{SEC}_{n_{1}}^{n_{2}}[F] \Leftarrow \mathrm{A}-\mathrm{SEC}_{n_{1}}^{n_{2}}[F] \\
& \Downarrow \\
& \mathrm{E}_{\mathrm{-COL}}{ }^{n_{1}, n_{2}}[F] \Leftarrow \mathrm{U}-\mathrm{COL}^{n_{1}, n_{2}}[F] \Leftarrow \mathrm{A}-\mathrm{COL}^{n_{1}, n_{2}}[F]
\end{aligned}
$$

(1) if F is well balanced on average over $r \leftarrow\{0,1\}^{r}$

Signature Schemes

$\mathcal{S} \triangleq(\mathcal{S}$. Gen, \mathcal{S}.Sign, \mathcal{S}. Ver $)$ with message space $\mathcal{M} \subseteq\{0,1\}^{*}:$

Key Gen. (pk, sk) $\leftarrow \mathcal{S}$.Gen ()
Sign. given message $M \in \mathcal{M}$

$$
\text { pick } u \leftarrow\{0,1\}^{u} \quad \text { then } \quad \sigma=\mathcal{S} . \operatorname{Sign}(\text { sk, } M, u)
$$

Verify. $\mathcal{S} . \operatorname{Ver}(\mathrm{pk}, M, \sigma)$ outputs $0 / 1$

Message space can be

- $\mathcal{M}=\{0,1\}^{m}$ or
- $\mathcal{M}=\{0,1\}^{*}$

Security Notions

Forms of Unforgeability :
UF_{n}-KOA $[\mathcal{S}]$ Given $\mathrm{pk} \leftarrow \mathcal{S}$.Gen() and $M \leftarrow\{0,1\}^{n}$, get $\sigma=\mathcal{S} . \operatorname{Sign}($ sk, $M, u)$
$\operatorname{EF}^{n}-\mathrm{KOA}[\mathcal{S}]$ Given $\mathrm{pk} \leftarrow \mathcal{S}$.Gen(), get (M, σ) where $M \in\{0,1\}^{n}$ and $\sigma=\mathcal{S} . \operatorname{Sign}($ sk, $M, u)$
KMA_{n} You are given a list of $\left(M_{i}, \sigma_{i}\right)$ where $M_{i} \leftarrow\{0,1\}^{n}$ and $u_{i} \leftarrow\{0,1\}^{u}$
CMA You have access to signing oracle

Forms of Non-Repudiation :

$$
\begin{aligned}
& \operatorname{ER}_{n_{1}}^{n_{2}}[\mathcal{S}] \text { Given }(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{S} . \operatorname{Gen}(), \text { find }\left(M_{1}, M_{2}, \sigma_{1}=\sigma_{2}\right) \\
& U R_{n_{1}}^{n_{2}}[\mathcal{S}] \text { Given }(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{S} . \operatorname{Gen}() \text { and } M_{1} \leftarrow\{0,1\}^{n_{1}} \text {, find } \\
& M_{2} \in\{0,1\}^{n_{2}} \text { and } \sigma
\end{aligned}
$$

Security Profile of Signatures

$$
\begin{array}{ccc}
\mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] & \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\Downarrow & \Downarrow \\
\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] & \mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}]
\end{array}
$$

$$
\begin{gathered}
\mathrm{UR}_{n_{1}}^{n_{2}}[\mathcal{S}], \mathrm{UR}_{n_{2}}^{n_{1}}[\mathcal{S}] \\
\Downarrow \\
\mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}]
\end{gathered}
$$

Deterministic Hash-and-Sign Signatures

Given

- Σ signing m-bit messages under u bits of randomness

Deterministic Hash-and-Sign Signatures

Given

- Σ signing m-bit messages under u bits of randomness
- a hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{m}$

Deterministic Hash-and-Sign Signatures

Given

- Σ signing m-bit messages under u bits of randomness
- a hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{m}$
we construct $\mathcal{S}=\langle H, \Sigma\rangle$ where

Deterministic Hash-and-Sign Signatures

Given

- Σ signing m-bit messages under u bits of randomness
- a hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{m}$
we construct $\mathcal{S}=\langle H, \Sigma\rangle$ where

> Key Gen. \mathcal{S}.Gen $\triangleq \Sigma$.Gen
> Sign. given $M \in\{0,1\}^{*}$

- pick $u \leftarrow\{0,1\}^{u}$
- $m=H(M)$
- $\sigma=\Sigma . \operatorname{Sign}(\mathrm{sk}, m, u)$

Verify. $\mathcal{S} . \operatorname{Ver}(\mathrm{pk}, \mathrm{M}, \sigma)$ outputs $\Sigma . \operatorname{Ver}(\mathrm{pk}, H(M), \sigma)$

Two-Step Signatures

Σ can be split into four functions

$$
\Sigma_{1}, \Sigma_{2}, \Upsilon_{1}, \Upsilon_{2}
$$

To sign :

$$
\begin{array}{cl}
\text { pick } u \leftarrow\{0,1\}^{u} \\
\text { Step 1. } & (r, \text { aux })=\Sigma_{1}(\mathrm{sk}, u) \\
\text { Step 2. } & \sigma=\Sigma_{2}(\mathrm{sk}, m, r, \text { aux })
\end{array}
$$

To verify :

$$
\begin{aligned}
& \text { Step 1. } \hat{r}=\Upsilon_{1}(\mathrm{pk}, \sigma) \\
& \text { Step 2. output } \Upsilon_{2}(\mathrm{pk}, m, \sigma, \hat{r})
\end{aligned}
$$

If σ is valid then $\hat{r}=r$ is unique and r must be uniform over $\{0,1\}^{r}$ if u is uniform over $\{0,1\}^{u}$

Probabilistic Hash-and-Sign Signatures

We assemble Σ and F to build
$\mathcal{S}=\langle F, \Sigma\rangle$
To sign :

pick $u \leftarrow\{0,1\}^{u}$	
Step 1	$(r$, aux $)=\Sigma_{1}(\mathrm{sk}, u)$
	$m=F(M, r)$
Step 2.	$\sigma=\Sigma_{2}(\mathrm{sk}, m, r$, aux $)$

To verify :
Step 1. $\hat{r}=\Upsilon_{1}(\mathrm{pk}, \sigma)$
$\hat{m}=F(M, \hat{r})$
Step 2. output $\Upsilon_{2}(\mathrm{pk}, m, \sigma, \hat{r})$

Primitiveness of $\mathcal{S}=\langle F, \Sigma\rangle$

We know a probabilistic algorithm \mathcal{S}.Prim which

- for any key pair (pk, sk)
- given pk only
- generates a random pair

$$
(m, \sigma=\Sigma \cdot \operatorname{Sign}(\mathrm{sk}, m, u))
$$

- m is uniformly distributed over $\{0,1\}^{m}$
- u is uniformly distributed over $\{0,1\}^{u}$

Injectivity of $\mathcal{S}=\langle F, \Sigma\rangle$

Classifying Common Signature Schemes

Signature Scheme	Det. H\&S	Prob. H\&S	Primitive	Injective
Schnorr		\times	\times	\times
FDH	\times		\times	\times
PFDH		\times	\times	\times
PSS		\times	\times	\times
EMSA-PSS	\times		\times	\times
BLS	\times		\times	\times
Generic DSA	\times		\times	
GHR	\times		\times	
CS	\times			

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Breaking \mathcal{S} by breaking H : attacks

$$
\begin{array}{ccc}
\mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] & \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\Downarrow & \Downarrow & \Downarrow \\
\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow & \mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}]
\end{array}
$$

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Breaking \mathcal{S} by breaking H : attacks

$$
\begin{gathered}
\mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\Downarrow \\
\Downarrow \\
\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\Uparrow \\
\Uparrow \\
\mathrm{COL}^{n_{1}, n_{2}}[\mathrm{H}]
\end{gathered}
$$

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Breaking \mathcal{S} by breaking H : attacks

$$
\begin{aligned}
& \mathrm{SEC}_{n_{1}}^{n_{2}}[H] \\
& \Downarrow \\
& \mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
& \Downarrow \\
& \forall \\
& \mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
& \quad \begin{array}{l}
\text { (}
\end{array} \\
& \mathrm{COL}^{n_{1}, n_{2}}[H]
\end{aligned}
$$

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Breaking \mathcal{S} by breaking H ：attacks

$$
\begin{array}{cc}
\mathrm{SEC}_{n_{1}}^{n_{2}}[H] \\
\Downarrow \\
\mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\Downarrow & \Downarrow \\
\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow & \mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\Uparrow & \Uparrow \\
\mathrm{COL}^{n_{1}, n_{2}}[H] & \operatorname{SEC}_{n_{2}}^{n_{1}}[H]
\end{array}
$$

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Breaking \mathcal{S} by breaking H : attacks

(1) if \mathcal{S} is primitive

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Breaking \mathcal{S} by breaking H : attacks

$\mathrm{SEC}_{n_{1}}^{n_{2}}[H]$	$\operatorname{PRE}^{n_{1}}[H]$	$\mathrm{PRE}^{n_{1}}[H]$
\Downarrow	$\Downarrow ? ? ?$	$\Downarrow ? ? ?$
$\mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}]$		
\Downarrow	\Downarrow	\Downarrow
$\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow$	$\mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow$	$\mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}]$
$\mathrm{COL}^{n_{1}, n_{2}}[H]$	\Uparrow	$\mathrm{SEC}_{n_{2}}^{n_{1}}[H]$

(1) if \mathcal{S} is primitive

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Repudiation: attacks...

$$
\begin{gathered}
\mathrm{UR}_{n_{1}}^{n_{2}}[\mathcal{S}] \\
\Downarrow \\
\mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}]
\end{gathered}
$$

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Repudiation: attacks...
$\mathrm{UR}_{n_{1}}^{n_{2}}[\mathcal{S}]$
\Downarrow
$\mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}]$
\Uparrow
$\mathrm{COL}^{n_{1}, n_{2}}[H]$

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Repudiation: attacks...
$\mathrm{SEC}_{n_{1}}^{n_{2}}[H]$
\Downarrow
$\mathrm{UR}_{n_{1}}^{n_{2}}[\mathcal{S}]$
\Downarrow
$\mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}]$
\Uparrow
$\operatorname{COL}^{n_{1}, n_{2}}[H]$

Relations between $\mathcal{S}=\langle H, \Sigma\rangle$ and H

Repudiation: attacks...and security proofs
$\operatorname{SEC}_{n_{1}}^{n_{2}}[H]$
$\mathbb{i}^{(2)}$
$\mathrm{UR}_{n_{1}}^{n_{2}}[\mathcal{S}]$
\Downarrow
$\mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}]$
$\mathbb{i}^{(2)}$
$\operatorname{COL}^{n_{1}, n_{2}}[H]$
(2) if \mathcal{S} is injective

Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Breaking \mathcal{S} by breaking F : attacks again

$$
\begin{array}{cc}
\mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\Downarrow & \Downarrow \\
\forall & \Downarrow \\
\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}]
\end{array}
$$

Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Breaking \mathcal{S} by breaking F : attacks again

$$
\begin{gathered}
\mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\Downarrow \\
\Downarrow \\
\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}] \\
\quad \Uparrow \\
{\mathrm{A}-\mathrm{COL}^{n_{1}, n_{2}}[F]}^{l}
\end{gathered}
$$

Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Breaking \mathcal{S} by breaking F : attacks again

```
A-SEC }\mp@subsup{n}{\mp@subsup{n}{1}{}}{\mp@subsup{n}{2}{}}[F
    \Downarrow
UF
    \Downarrow \Downarrow \Downarrow
EF }\mp@subsup{}{}{\mp@subsup{n}{1}{}}-\textrm{CMA}[\mathcal{S}]\Leftarrow\mp@subsup{\textrm{EF}}{}{\mp@subsup{n}{1}{}}-\mp@subsup{\textrm{KMA}}{\mp@subsup{n}{2}{}}{2}[\mathcal{S}]\Leftarrow\mp@subsup{\textrm{EF}}{}{\mp@subsup{n}{1}{}}-\textrm{KOA}[\mathcal{S}
    介
A-COL }\mp@subsup{}{}{\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}}[F
```


Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Breaking \mathcal{S} by breaking F ：attacks again

```
A-SEC \({ }_{n_{1}}^{n_{2}}[F]\)
    \(\Downarrow\)
\(\mathrm{UF}_{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{UF}_{n_{1}}-\mathrm{KOA}[\mathcal{S}]\)
    \(\Downarrow \quad \Downarrow \quad \Downarrow\)
\(\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KMA}_{n_{2}}[\mathcal{S}] \Leftarrow \mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}]\)
    介
\(\mathrm{A}-\mathrm{COL}^{n_{1}, n_{2}}[F] \quad \mathrm{U}-\mathrm{SEC}_{n_{2}}^{n_{1}}[F]\)
```


Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Breaking \mathcal{S} by breaking F : attacks again

(1) if \mathcal{S} is primitive

Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Breaking \mathcal{S} by breaking F : attacks again

A-SEC ${ }_{n_{1}}^{n_{2}}[F]$	U-PRE ${ }^{n_{1}}[F]$	U-PRE ${ }^{n_{1}}[F]$
\Downarrow	$\Downarrow ? ? ?$	$\downarrow ? ? ?$
UF $n_{n_{1}}$ CMA $[\mathcal{S}]$	$F_{n_{1}}-\mathrm{KMA}_{n_{2}}$	$\mathrm{F}_{n_{1}}-\mathrm{KOA}[\mathcal{S}]$
\downarrow	\Downarrow	\Downarrow
$\mathrm{EF}^{n_{1}}-\mathrm{CMA}[\mathcal{S}]$	$\mathrm{F}^{n_{1}}-\mathrm{KMA}_{n_{2}}$	$\mathrm{EF}^{n_{1}}-\mathrm{KOA}[\mathcal{S}]$
介	介	$\Uparrow^{(1)}$
$\mathrm{A}-\mathrm{COL}^{n_{1}, n_{2}}[F]$	U-SEC ${ }_{n_{2}}^{n_{1}}[F]$	U-PRE ${ }^{n_{1}}[F]$

(1) if \mathcal{S} is primitive

Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Repudiation : attacks...
$\mathrm{UR}_{n_{1}}^{n_{2}}[\mathcal{S}]$
\Downarrow
$\mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}]$

Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Repudiation : attacks...
$\mathrm{UR}_{n_{1}}^{n_{2}}[\mathcal{S}]$
\Downarrow
$\mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}]$
\Uparrow
$\mathrm{U}^{\boldsymbol{- C O L}}{ }^{n_{1}, n_{2}}[F]$

Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Repudiation : attacks...
$\mathrm{U}-\mathrm{SEC}_{n_{1}}^{n_{2}}[F]$
\Downarrow
$\mathrm{UR}_{n_{1}}^{n_{2}}[\mathcal{S}]$
\Downarrow
$\mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}]$
\Uparrow
$\mathrm{U}^{\left(\mathrm{COL}^{n_{1}, n_{2}}\right.}[F]$

Relations between $\mathcal{S}=\langle F, \Sigma\rangle$ and F

Repudiation : attacks... + security proofs

$$
\begin{aligned}
& \mathrm{U}-\mathrm{SEC}_{n_{1}}^{n_{2}}[F] \\
& \Downarrow \\
& E-\operatorname{SEC}_{n_{1}}^{n_{2}}[F] \Leftarrow \operatorname{UR}_{n_{1}}^{n_{2}}[\mathcal{S}] \\
& \Downarrow \\
& \mathrm{E}-\mathrm{COL}^{n_{1}, n_{2}}[F] \Leftarrow \mathrm{ER}^{n_{1}, n_{2}}[\mathcal{S}] \\
& \mathrm{U}-\mathrm{COL}^{n_{1}, n_{2}}[F]
\end{aligned}
$$

Merkle-Damgård Instantiations

What is done in practice

- Tempting to build F from H in practice...
- Tempting to build H from f using iteration

Take fixed compression function f and $I V_{0} \in\{0,1\}^{m}$.

- let $H_{0}=$ iterated f without MD strengthening
- let $H_{S}=$ iterated f with MD strengthening

$$
F(m, r)=H_{s}(m \| r)
$$

Terrible，since for any signature scheme Σ

$$
\langle F, \Sigma\rangle=\left\langle H_{0}, \Sigma^{\prime}\right\rangle
$$

The security gain inherent to using the probabilistic hash－and－sign paradigm collapses．More precisely，for any $n>0$

$$
\begin{array}{cccc}
\mathrm{A}-\mathrm{SEC}_{n}^{n}[F] & \Leftarrow \mathrm{SEC}_{n}^{n}\left[H_{s}\right] & \Leftarrow \operatorname{SEC}_{n}^{n}\left[H_{0}\right] \\
\Downarrow & \Downarrow & & \Downarrow \\
{\mathrm{A}-\mathrm{COL}^{n, n}[F]}^{\Downarrow} & \mathrm{COL}^{n, n}\left[H_{s}\right] \Leftarrow \operatorname{COL}^{n, n}\left[H_{0}\right]
\end{array}
$$

$$
F(m, r)=H_{s}(r \| m)
$$

No known way to break \mathcal{S} in any sense even if

$$
\operatorname{COL}^{n, n}\left[H_{0}\right], \quad \operatorname{SEC}_{n}^{n}\left[H_{0}\right] \quad \text { and } \operatorname{PRE}^{n}\left[H_{0}\right]
$$

are all easy

Concrete estimations of τ for $\varepsilon \simeq 1$ given in paper

