Cryptanalysis of CubeHash ACNS 2009

Eric Brier and Thomas Peyrin Ingenico

June 4th 2009 - Paris

Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results

Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results

What is a hash function?

Should be resistant to (at least):

- collision attacks ($2^{n / 2}$)
- 2nd preimage attacks $\left(2^{n}\right)$
- preimage attacks (2^{n})

Current state of the art

- MD4, MD5, SHA-0, SHA-1 are broken. SHA-2 is unbroken yet but presents the same "design core" as the MD-SHA family.
- SHA-2 is not resistant to length extension attacks or multicollision attacks (because of Merkle-Damgard).
- NIST response is SHA-3 competition:
- from October 2008 until end 2012.
- 64 submitted candidates.
- 51 accepted for 1st round.
- among them : CubeHash !

CubeHash (Dan Bernstein - 2008)

Good points:

- very easy to understand
- very easy to analyze
- very easy to implement
- very easily tunable
- quite fast depending on the version considered (Cubehash-1/8: $2.5 \mathrm{c} / \mathrm{B}$)

Bad points:

- too simple ?
- too much tunable (too many different versions to analyze)
- originally lacks security analysis
- quite slow depending on the version considered (Cubehash-8/1: $160 \mathrm{c} / \mathrm{B}$)

CubeHash-r/b algorithm

$$
\text { message + padding }=\mathbf{M}=\mathbf{M}_{1}\left\|\mathbf{M}_{2}\right\| \ldots \| \mathbf{M}_{\mathbf{L}}
$$

CubeHash round function

CubeHash security claims and previous work

Known results:

- meet-in-the-middle attack for preimage resistance when b is big (submission document)
- some symmetric states are stable (ACISP 2009)
- fixed points found (ACISP 2009)
- some biases can be detected after 8 rounds (ACISP 2009)
- collision for very reduced variants (NIST forum 2008)

New results:

- collision attacks to many CubeHash variants (some of them slower than 20c/B)

Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results

Truncated differential paths

Derived equations

System 1 (for Δ_{1}):

$$
\begin{array}{ll}
\left(X_{24}+X_{8}\right) \oplus X_{0} \ll 7 & =\left(X_{24}+X^{\prime}{ }_{8}\right) \oplus X^{\prime}{ }_{0} \lll 7 \\
X_{8}+\left[\left(X_{26}+X_{10}\right) \oplus X_{2} \ll 7\right] & =X^{\prime}{ }_{8}+\left[\left(X_{26}+X_{10}\right) \oplus X^{\prime}{ }_{2} \ll 77\right. \\
X_{0}+\left[\left(X_{18}+X_{2}\right) \oplus X_{10}^{\ll 7}\right] & =X^{\prime}{ }_{0}+\left[\left(X_{18}+X^{\prime}{ }_{2}\right) \oplus X_{10}^{\ll 7}\right] \\
X_{2}+\left[\left(X_{16}+X_{0}\right) \oplus X_{8} \ll 7\right] & =X^{\prime}{ }_{2}+\left[\left(X_{16}+X^{\prime}{ }_{0}\right) \oplus X^{\prime}{ }_{8} \ll 7\right]
\end{array}
$$

System $2\left(\right.$ for $\left.\Delta_{2}\right)$:

$$
\begin{aligned}
& \left(X_{30}+X_{14}\right) \oplus X_{6}^{\lll 7} \quad=\left(X_{30}+X^{\prime}{ }_{14}\right) \oplus X_{6}^{\prime}<{ }_{6} \\
& X_{14}+\left[\left(X_{28}+X_{12}\right) \oplus X_{4}^{\ll 7}\right]=X^{\prime}{ }_{14}+\left[\left(X_{28}+X_{12}\right) \oplus X_{4}^{\prime \ll}{ }_{4}\right] \\
& X_{6}+\left[\left(X_{20}+X_{4}\right) \oplus X_{12}^{\ll 7}\right]=X^{\prime}{ }_{6}+\left[\left(X_{20}+X^{\prime}{ }_{4}\right) \oplus X_{12}^{\lll 7}\right] \\
& X_{4}+\left[\left(X_{22}+X_{6}\right) \oplus X_{14}^{\ll 7}\right] \quad=\quad X^{\prime}{ }_{4}+\left[\left(X_{22}+X^{\prime}{ }_{6}\right) \oplus X^{\prime}{ }_{14}{ }^{\ll 7}\right]
\end{aligned}
$$

Solving equations

$$
\begin{aligned}
& \left(A+X_{8}\right) \oplus X_{0} \lll 7=\left(A+X^{\prime}{ }_{8}\right) \oplus X^{\prime}{ }_{0} \lll 7 \\
& X_{8}+\left[(B+C) \oplus X_{2} \mathbb{K}^{<7}\right]=X^{\prime}{ }_{8}+\left[(B+C) \oplus X^{\prime}{ }_{2} \ll 7\right] \\
& X_{0}+\left[\left(D+X_{2}\right) \oplus C^{\lll 7}\right]=X^{\prime} 0+\left[\left(D+X^{\prime}{ }_{2}\right) \oplus C^{\lll 7}\right] \\
& X_{2}+\left[\left(E+X_{0}\right) \oplus X_{8}{ }^{\ll 7}\right]=X^{\prime}{ }_{2}+\left[\left(E+X^{\prime}{ }_{0}\right) \oplus X^{\prime}{ }_{8}{ }^{\ll} 7\right]
\end{aligned}
$$

Solving equations

$$
\begin{array}{ll}
\left(A+X_{8}\right) \oplus X_{0} \lll 7 & =\left(A+X^{\prime}{ }_{8}\right) \oplus X^{\prime}{ }_{0} \lll 7 \\
X_{8}+\left[(B+C) \oplus X_{2} \ll 7\right] & =X_{8}^{\prime}+\left[(B+C) \oplus X^{\prime} \lll 7\right] \\
X_{0}+\left[\left(D+X_{2}\right) \oplus C^{\ll 7}\right] & =X^{\prime}{ }_{0}+\left[\left(D+X^{\prime}{ }_{2}\right) \oplus C^{\lll 7}\right]
\end{array}
$$

- Pick random values for X_{2} and $X^{\prime}{ }_{2}$
- We set $X^{\prime}{ }_{8}-X_{8}=\Delta_{8}$ and $X^{\prime}{ }_{0}-X_{0}=\Delta_{0}$
- We set $Y=X_{8}+A$ and $Y^{\prime}=X^{\prime}{ }_{8}+A$
- We get: $Y \oplus\left(\Delta_{8}+Y\right)=X_{0}^{\lll 7} \oplus\left(\Delta_{0}+X_{0}\right)^{\ll 7}$.
$x \oplus(x+k)$ is always equal to $0 x f f f f f f f f$ when $x=\bar{k} / 2$ and when the least significant bit of k is equal to one.

Truncated differential attack results

Results:

- a collision for CubeHash-1/36 in 2^{32} operations.
- a collision for CubeHash-2/36 in 2^{96} operations.
- ... seems hard to go further !

Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results

Linear differential paths

- try to linearize the scheme ... well, simply replace additions by XORs (only two addition phases per round).
- hopefully, when the round number per iteration is a power of two, very good differential paths exist !
- mutiblock technique: don't limitate yourself to only one iteration, but aim for a differential path using several message blocks.
- the collision attack: once a differential path found (with success probability P), simply choose $1 / P$ random message pairs with the appropriate difference mask.

Complexity computation

- two situations have to be considered in order to compute the success probability of the differential path in the non-linearized case (both with probability $1 / 2$):
- move: a perturbation at a certain bit position is added to another bit containing no difference.
- correction: a perturbation at a certain bit position is added to another bit containing a difference.
- for the addition of two words $A+B$, the probability of a linear behavior is $\operatorname{HW}\left(\Delta_{A} \vee \Delta_{B}\right)$.
- the probability can be further increased since the carry created at the MSB of $A+B$ can be ignored, i.e. $\operatorname{HW}\left(\left(\Delta_{A} \vee \Delta_{B}\right) \wedge 0 \times 7 \mathrm{fffffff}\right)$.

Example for CubeHash-2/4

1111111111	

- add a one bit difference on X_{0} (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at positions $\mathrm{i}+4, \mathrm{i}+14, \mathrm{i}+22)$.
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at position i+4).

Example for CubeHash-2/4

- add a one bit difference on X_{0} (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at positions $i+4, i+14, i+22)$.
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at position $\mathrm{i}+4$).

Example for CubeHash-2/4

- add a one bit difference on X_{0} (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at positions $i+4, i+14, i+22)$.
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at position $\mathrm{i}+4$).

Example for CubeHash-2/4

- add a one bit difference on X_{0} (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at positions $i+4, i+14, i+22)$.
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at position i+4).

Example for CubeHash-2/4

- add a one bit difference on X_{0} (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at positions $\mathrm{i}+4, \mathrm{i}+14, \mathrm{i}+22)$.
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at position $i+4$).

Example for CubeHash-2/4

- add a one bit difference on X_{0} (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at positions $\mathrm{i}+4, \mathrm{i}+14, \mathrm{i}+22)$.
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at position $i+4$).

Example for CubeHash-2/4

- add a one bit difference on X_{0} (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at positions $i+4, i+14, i+22)$.
- do one iteration (2 rounds).
- erase all the differences in X_{0} (at position i+4).

Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results

CubeHash collision attack results

r	b	max nb. it.	probability
1	64	3	2^{3}
	32	5	2^{32}
	16	5	
	8	5	
	4	5	
	2	7	2^{221}
	1	15	2^{1225}
2	64	3	2^{32}
	32	3	
	16	3	
	8	3	
	4	3	
	2	4	2^{221}
	1	8	2^{1225}

r	b	max nb. it.	probability
4	64	3	2^{189}
	32	3	
	16	3	
	8	3	
	4	3	
	2	4	2^{964}
	1	9	2^{2614}
8	64	3	2^{650}
	32	3	2^{830}
	16	3	
	8	3	2^{1009}
	4	3	
	2	5	2^{2614}
	1	5	

Parameter map

Number of inserted bytes

Parameter map

Number of inserted bytes

- Aumasson (NIST Hash Forum, 2008)

Parameter map

Number of inserted bytes

- Dai (NIST Hash Forum, 2008)

Parameter map

Number of inserted bytes

- Brier and Peyrin (ACNS 2009)

New results?

Number of inserted bytes

- Brier, Khazaei, Peyrin and Meier (yet unpublished)

