Cryptanalysis of CubeHash
ACNS 2009

Eric Brier and Thomas Peyrin
Ingenico

June 4th 2009 - Paris
Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results
Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results
What is a hash function?

Should be resistant to (at least):

- collision attacks \(2^{n/2}\)
- 2nd preimage attacks \(2^n\)
- preimage attacks \(2^n\)
Current state of the art

- MD4, MD5, SHA-0, SHA-1 are broken. SHA-2 is unbroken yet but presents the same "design core" as the MD-SHA family.

- SHA-2 is not resistant to length extension attacks or multicollision attacks (because of Merkle-Damgard).

- NIST response is **SHA-3 competition**:
 - from October 2008 until end 2012.
 - 64 submitted candidates.
 - 51 accepted for 1st round.
 - among them : CubeHash!
CubeHash (Dan Bernstein - 2008)

Good points:
- very easy to understand
- very easy to analyze
- very easy to implement
- very easily tunable
- quite fast depending on the version considered (Cubehash-1/8: 2.5 c/B)

Bad points:
- too simple ?
- too much tunable (too many different versions to analyze)
- originally lacks security analysis
- quite slow depending on the version considered (Cubehash-8/1: 160 c/B)
message + padding = M = M₁ || M₂ || … || Mₖ

CubeHash-r/b algorithm

IV = 1024 bits

Perm. (r rounds) → Perm. (r rounds) → … → Perm. (r rounds)

H₁ → H₂ → … → Hₖ

H(M) → Truncation → Blank rounds (10*r rounds) → H₁
CubeHash round function
CubeHash security claims and previous work

Known results:

- meet-in-the-middle attack for preimage resistance when b is big (submission document)
- some symmetric states are stable (ACISP 2009)
- fixed points found (ACISP 2009)
- some biases can be detected after 8 rounds (ACISP 2009)
- collision for very reduced variants (NIST forum 2008)

New results:

- collision attacks to many CubeHash variants (some of them slower than 20c/B)
Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results
Truncated differential paths
Derived equations

System 1 (for Δ_1):

\[
(X_{24} + X_8) \oplus X_0 \ll 7 = (X_{24} + X'_8) \oplus X'_0 \ll 7
\]
\[
X_8 + [(X_{26} + X_{10}) \oplus X_2 \ll 7] = X'_8 + [(X_{26} + X_{10}) \oplus X'_2 \ll 7]
\]
\[
X_0 + [(X_{18} + X_2) \oplus X_{10} \ll 7] = X'_0 + [(X_{18} + X'_2) \oplus X_{10} \ll 7]
\]
\[
X_2 + [(X_{16} + X_0) \oplus X_8 \ll 7] = X'_2 + [(X_{16} + X'_0) \oplus X'_8 \ll 7]
\]

System 2 (for Δ_2):

\[
(X_{30} + X_{14}) \oplus X_6 \ll 7 = (X_{30} + X'_14) \oplus X'_6 \ll 7
\]
\[
X_{14} + [(X_{28} + X_{12}) \oplus X_4 \ll 7] = X'_14 + [(X_{28} + X_{12}) \oplus X'_4 \ll 7]
\]
\[
X_6 + [(X_{20} + X_4) \oplus X_{12} \ll 7] = X'_6 + [(X_{20} + X'_4) \oplus X_{12} \ll 7]
\]
\[
X_4 + [(X_{22} + X_6) \oplus X_{14} \ll 7] = X'_4 + [(X_{22} + X'_6) \oplus X'_{14} \ll 7]
\]
Solving equations

\[(A + X_8) \oplus X_0 \ll 7 = (A' + X'_8) \oplus X'_0 \ll 7\]
\[X_8 + [(B + C) \oplus X_2 \ll 7] = X'_8 + [(B + C) \oplus X'_2 \ll 7]\]
\[X_0 + [(D + X_2) \oplus C \ll 7] = X'_0 + [(D + X'_2) \oplus C \ll 7]\]
\[X_2 + [(E + X_0) \oplus X_8 \ll 7] = X'_2 + [(E + X'_0) \oplus X'_8 \ll 7]\]
Solving equations

\[(A + X_8) \oplus X_0 \ll 7 = (A + X'_8) \oplus X'_0 \ll 7\]
\[X_8 + [(B + C) \oplus X_2 \ll 7] = X'_8 + [(B + C) \oplus X'_2 \ll 7]\]
\[X_0 + [(D + X_2) \oplus C \ll 7] = X'_0 + [(D + X'_2) \oplus C \ll 7]\]

- Pick random values for \(X_2\) and \(X'_2\)
- We set \(X'_8 - X_8 = \Delta_8\) and \(X'_0 - X_0 = \Delta_0\)
- We set \(Y = X_8 + A\) and \(Y' = X'_8 + A\)
- We get: \(Y \oplus (\Delta_8 + Y) = X_0 \ll 7 \oplus (\Delta_0 + X_0) \ll 7\).

\(x \oplus (x + k)\) is always equal to \(0xffffffff\) when \(x = \bar{k}/2\) and when the least significant bit of \(k\) is equal to one.
Truncated differential attack results

Results:

- a collision for CubeHash-1/36 in 2^{32} operations.
- a collision for CubeHash-2/36 in 2^{96} operations.
- ... seems hard to go further!
Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results
Linear differential paths

- try to **linearize** the scheme ... well, simply replace additions by XORs (only two addition phases per round).

- hopefully, when the round number per iteration is a power of two, very good differential paths exist!

- **mutiblock technique:** don’t limitate yourself to only one iteration, but aim for a differential path using several message blocks.

- **the collision attack:** once a differential path found (with success probability P), simply choose $1/P$ random message pairs with the appropriate difference mask.
Complexity computation

- **two situations** have to be considered in order to compute the success probability of the differential path in the non-linearized case (both with probability $1/2$):
 - **move**: a perturbation at a certain bit position is added to another bit containing no difference.
 - **correction**: a perturbation at a certain bit position is added to another bit containing a difference.

- for the addition of two words $A + B$, the probability of a linear behavior is $\text{HW}(\Delta_A \lor \Delta_B)$.

- the probability can be further increased since the carry created at the MSB of $A + B$ can be ignored, i.e. $\text{HW}((\Delta_A \lor \Delta_B) \land 0x7fffffff)$.
Example for CubeHash-2/4

- add a one bit difference on X_0 (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at positions $i+4$, $i+14$, $i+22$).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at position $i+4$).
Example for CubeHash-2/4

- add a one bit difference on X_0 (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at positions $i+4$, $i+14$, $i+22$).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at position $i+4$).
Example for CubeHash-2/4

- add a one bit difference on X_0 (at position i).
- do one iteration (2 rounds).
 - erase all the differences in X_0 (at positions $i+4$, $i+14$, $i+22$).
 - do one iteration (2 rounds).
 - erase all the differences in X_0 (at position $i+4$).
Example for CubeHash-2/4

- add a one bit difference on X_0 (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at positions $i+4$, $i+14$, $i+22$).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at position $i+4$).
Example for CubeHash-2/4

- add a one bit difference on X_0 (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at positions $i+4$, $i+14$, $i+22$).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at position $i+4$).
Example for CubeHash-2/4

- add a one bit difference on X_0 (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at positions $i+4$, $i+14$, $i+22$).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at position $i+4$).
Example for CubeHash-2/4

- add a one bit difference on X_0 (at position i).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at positions $i+4$, $i+14$, $i+22$).
- do one iteration (2 rounds).
- erase all the differences in X_0 (at position $i+4$).
Outline

Introduction to CubeHash

Truncated differentials paths

Linear differential paths

Results
CubeHash collision attack results

<table>
<thead>
<tr>
<th>r</th>
<th>b</th>
<th>max nb. it.</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
<td>3</td>
<td>2^3</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5</td>
<td>2^{32}</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>2^{221}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15</td>
<td>2^{1225}</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>3</td>
<td>2^{32}</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>2^{221}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8</td>
<td>2^{1225}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r</th>
<th>b</th>
<th>max nb. it.</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>64</td>
<td>3</td>
<td>2^{189}</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>2^{964}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>2^{2614}</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>3</td>
<td>2^{650}</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>2^{1009}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>2^{2614}</td>
</tr>
</tbody>
</table>
Parameter map

Number of inserted bytes

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter map

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Aumasson (NIST Hash Forum, 2008)
Parameter map

<table>
<thead>
<tr>
<th>Number of inserted bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

- Dai (NIST Hash Forum, 2008)
Parameter map

Number of inserted bytes

- Brier and Peyrin (ACNS 2009)
New results?

<table>
<thead>
<tr>
<th>Number of inserted bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

- Brier, Khazaei, Peyrin and Meier (yet unpublished)