A Forward-Secure Symmetric-Key Derivation Protocol - How to Improve Classical DUKPT

Eric Brier and Thomas Peyrin

Ingenico and NTU

Asiacrypt 2010

Singapore - December 6, 2010

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Optimal-DUKPT

Comparison

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality

Optimal-DUKPT

Comparison

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Motivation

Clients would like to communicate with a server (for example, PIN verification).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Motivation

But attackers can eavesdrop on the communication channels.

Motivation

The channel can be protected using symmetric-key crypto (secret keys need to be shared during the initialization process and since this process is costly, the system should last as long as possible).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Motivation

We would like to cover the cases where the attacker could tamper with clients since they are located in unsecure areas.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Motivation

Thus, we would like the scheme to be forward secure on the client side (not in the server).

▲□▶▲□▶▲□▶▲□▶ □ のQで

Deriving keys

In the following, in order to derive keys we consider that we only have access to a blackbox function *F*:

- that has two inputs: the original key $K \in \mathcal{K}$ and some arbitrary-length salt value *s*
- that outputs a new key $K' \in \mathcal{K}$

In practice, one can use the HKDF proposal (Krawczyk 2010) instantiated with HMAC or CBC-MAC, or directly:

$$K' = F(K, s) = trunc(HMAC(K, s))$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Initialization of the system

We only have to study the problem reduced to one client: we consider that an **initial key** IK_i is derived for each client *i* with $IK_i = F(K, i)$, while the server only stores *K*.

Parameters

We assume that the identity of the client and of the session key are publicly sent with the session protected messages.

Three parameters are important:

- *R*: the number of key registers available in the client's memory
- *N*: the maximal number of calls to *F* the server has to perform in order to retrieve one session key from the client initial key
- *T*: the maximal number of session key the system can handle after an initialization

Trivial cases

We can identify trivial cases:

• *R* = 1

for each session, use the key stored in the client register and self-update it. We have T = N.

• *N* = 1

during the initialization, fill all registers of the client with a different key. Then, for each session, use and erase a key in one of the R register. We have T = R.

More generally:

- initialize all *R* registers with a different key: $K_r = F(IK, r)$
- for a session *j*, we use the key located in register $r = j \pmod{R}$ and self-update this register with $K_r = F(K_r, j)$
- we thus have $T = N \times R$

Our results

In ANSI X9.24 a better solution is described: the algorithm *Derived Unique Key Per Transaction* (DUKPT), very much utilized in the banking industry.

- $R = 21, N = \lfloor R/2 \rfloor = 10$ and $T = 2^{R-1} 1 = 1048575$
- not really scalable

We propose another algorithm, *Optimal-DUKPT*:

- completely scalable
- very simple to understand/implement
- very good performances: $T = \binom{R+N}{N} 1$... actually optimal in *R*, *N* and *T*
- also better performances than DUKPT when *N* is the number of operations on average

Introduction

DUKPT

Optimal-DUKPT

Comparison

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality

э

DUKPT: parameters and key hierarchy

Parameters:

- $T = 2^{20} 1 \simeq 1000000$
- *R* = 21
- N = 10

Key hierarchy:

• For $x \neq 0$, we define $y = \tilde{x}$ to be the value of x with the least significant "1" bit set to zero:

if $x = (10110)_2$ we have $y = \tilde{x} = (10100)_2$ and $\tilde{y} = (10000)_2$.

- DUKPT intrinsically defines a hierarchy between the keys: each key used for session *j* ≠ 0 is the daughter of the key identified by *j*̃: *K_j* = *F*(*K_i*, *j*).
- we only use keys for the sessions *j* such that $HW(j) \le 10$.

DUKPT: an example on the server side

For each session *j*: the server deduces K_j by simply starting from the top node of the tree *IK* and recovers the successive keys during the path to K_j .

▲□▶▲□▶▲□▶▲□▶ □ のQで

For example, if $j = (0 \dots 011010)_2$, the server computes:

- $K_{0...010000} = F(IK, (0...010000)_2)$
- then $K_{0...011000} = F(K_{0...010000}, (0...011000)_2)$
- and finally $K_j = F(K_{0...011000}, (0...011010)_2)$.

Note that we have $N \le 10$ since $HW(j) \le 10$.

DUKPT: an example on the client side

Initialization: all registers R_i are filled with $K_{2^{i-1}} = F(IK, 2^{i-1})$.

For each session *j*: the client picks and uses the key K_j located in register *r*, where *r* is the bit position of the least significant "1" bit of *j*. Then, before erasing K_j from its memory, the client derives and stores all the r - 1 direct daughters of K_j in the r - 1 least significant registers.

session j	R ₂₁	R ₂₀	R ₁₉		R ₁₂	R ₁₁		R ₅	R ₄	<i>R</i> ₃	R ₂	<i>R</i> ₁
init	220	2 ¹⁹	2 ¹⁸		211	210		16	8	4	2	1
1]]					Х
2				1			1				X	3
3]]					Х
4										Х	6	5
5]]					Х
6											X	7
7]]					Х
8									X	12	10	9
9]]					Х
10											X	11
11]					Х
12]]				14	13
13]]					Х
14]]				X	15

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Optimal-DUKPT

Comparison

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality

Idea to improve DUKPT:

- the implicit key hierarchy tree built by DUKPT is not optimal: many leaves are not a distance *N*
- instead, Optimal-DUKPT will build a tree for which we are ensured that all leaves are at distance N
- this will maximize the total number of nodes in the tree, thus maximize *T*

session j	R_4	<i>R</i> ₃	<i>R</i> ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			Х	3
3				Х
4		Х	6	5
5				Х
6			Х	7
7				Х
8	Х	12	10	9
9				Х
10			Х	11
11				Х

session j	R ₄	R3	R ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			X	3
3				Х
4		Х	6	5
5				Х
6			X	7
7				Х
8	X	12	10	9
9				Х
10			X	11
11				Х

DUKPT (with N = 3)

Optimal-DUKPT (with N = 3)

900

Idea to improve DUKPT:

- the implicit key hierarchy tree built by DUKPT is not optimal: many leaves are not a distance *N*
- instead, Optimal-DUKPT will build a tree for which we are ensured that all leaves are at distance N
- this will maximize the total number of nodes in the tree, thus maximize *T*

session j	R_4	R ₃	<i>R</i> ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			Х	3
3				Х
4		Х	6	5
5				Х
6			Х	7
7				Х
8	Х	12	10	9
9				Х
10			Х	11
11				Х

session j	R_4	R ₃	R ₂	<i>R</i> ₁
init	8	4	2	1
1				1-a
2				X
3			Х	3
4				Х
5		Х	6	5
6				X
7			Х	7
8				X
9	X	12	10	9
10				X
11			Х	11

200

Idea to improve DUKPT:

- the implicit key hierarchy tree built by DUKPT is not optimal: many leaves are not a distance *N*
- instead, Optimal-DUKPT will build a tree for which we are ensured that all leaves are at distance N
- this will maximize the total number of nodes in the tree, thus maximize *T*

session j	R_4	<i>R</i> ₃	<i>R</i> ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			Х	3
3				Х
4		Х	6	5
5				Х
6			Х	7
7				Х
8	Х	12	10	9
9				Х
10			Х	11
11				Х

session j	R_4	R3	R ₂	R_1
init	8	4	2	1
1				1-a
2				1-b
3				Х
4			Х	3
5				Х
6		X	6	5
7				Х
8			Х	7
9				Х
10	X	12	10	9
11				Х

DUKPT (with N = 3)

Optimal-DUKPT (with N = 3)

200

Idea to improve DUKPT:

- the implicit key hierarchy tree built by DUKPT is not optimal: many leaves are not a distance *N*
- instead, Optimal-DUKPT will build a tree for which we are ensured that all leaves are at distance N
- this will maximize the total number of nodes in the tree, thus maximize *T*

session j	R_4	<i>R</i> ₃	<i>R</i> ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			Х	3
3				Х
4		Х	6	5
5				Х
6			Х	7
7				Х
8	Х	12	10	9
9				Х
10			Х	11
11				Х

session j	R_4	R ₃	R ₂	<i>R</i> ₁
init	8	4	2	1
1				1-a
2				1-b
3				Х
4			2-a	3
5				Х
6			Х	
7		Х	6	5
8				X
9			X	7
10				X
11	X	12	10	9

Optimal-DUKPT (with N = 3)

900

Idea to improve DUKPT:

- the implicit key hierarchy tree built by DUKPT is not optimal: many leaves are not a distance *N*
- instead, Optimal-DUKPT will build a tree for which we are ensured that all leaves are at distance N
- this will maximize the total number of nodes in the tree, thus maximize *T*

session j	R_4	<i>R</i> ₃	<i>R</i> ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			Х	3
3				Х
4		Х	6	5
5				Х
6			Х	7
7				Х
8	Х	12	10	9
9				Х
10			Х	11
11				Х

session j	R ₄	R ₃	R ₂	<i>R</i> ₁
init	8	4	2	1
1				1-a
2				1-b
3				Х
4			2-a	3
5				3-a
6				Х
7			Х	
8		Х	6	5
9				Х
10			Х	7
11				Х

200

Idea to improve DUKPT:

- the implicit key hierarchy tree built by DUKPT is not optimal: many leaves are not a distance N
- instead, Optimal-DUKPT will build a tree for which we are ensured that all leaves are at distance N
- this will maximize the total number of nodes in the tree, thus maximize T

session j	R_4	<i>R</i> ₃	<i>R</i> ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			Х	3
3				Х
4		Х	6	5
5				Х
6			Х	7
7				Х
8	Х	12	10	9
9				Х
10			Х	11
11				Х

session j	R_4	R ₃	R ₂	R_1
init	8	4	2	1
1				1-a
2				1-b
3				Х
4			2-a	3
5				3-a
6				Х
7			2-b	3-b
8				Х
9			Х	
10		X	6	5
11				Х

DUKPT (with N = 3)

Optimal-DUKPT (with N = 3)

Idea to improve DUKPT:

- the implicit key hierarchy tree built by DUKPT is not optimal: many leaves are not a distance *N*
- instead, Optimal-DUKPT will build a tree for which we are ensured that all leaves are at distance N
- this will maximize the total number of nodes in the tree, thus maximize *T*

session j	R_4	R ₃	R ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			Х	3
3				Х
4		Х	6	5
5				Х
6			Х	7
7				Х
8	Х	12	10	9
9				Х
10			Х	11
11				Х

session j	R ₄	R ₃	R ₂	<i>R</i> ₁
init	8	4	2	1
1				1-a
2				1-b
3				Х
4			2-a	3
5				3-a
6				X
7			2-b	3-b
8				Х
9			Х	
10		4-a	6	5
11				Х

DUKPT (with N = 3)

Optimal-DUKPT (with N = 3)

900

Idea to improve DUKPT:

- the implicit key hierarchy tree built by DUKPT is not optimal: many leaves are not a distance *N*
- instead, Optimal-DUKPT will build a tree for which we are ensured that all leaves are at distance N
- this will maximize the total number of nodes in the tree, thus maximize *T*

session j	R_4	R ₃	<i>R</i> ₂	<i>R</i> ₁
init	8	4	2	1
1				Х
2			Х	3
3				Х
4		Х	6	5
5				Х
6			Х	7
7				Х
8	Х	12	10	9
9				Х
10			Х	11
11				Х

session j	R_4	R3	R ₂	R_1
init	8	4	2	1
1				1-a
2				1-b
3				Х
4			2-a	3
5				3-a
6				Х
7			2-b	3-b
8				Х
9			Х	
10		4-a	6	5
11				5-a

DUKPT (with N = 3)

Optimal-DUKPT (with N = 3)

200

Tree comparison with R = 3, N = 3

For DUKPT, T = 7:

For Optimal-DUKPT, T = 19:

イロト 不得 とうほう イヨン

Optimal-DUKPT: an example on the server side

For each session *j*:

as for DUKPT, from the key identity *j* sent by the client, the server deduces K_j by simply starting from the top node of the tree *IK* and recovers the successive keys during the path to K_j .

session i	P.	P.	P		distance	
session	^{K3}	^{K2}	^{K1}	$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	<i>K</i> ₄	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K7	K5	1	2	2
5			K ₆	1	2	3
6			Х	1	2	Х
7		K9	K ₈	1	3	3
8			Х	1	3	Х
9		X		1	Х	Х
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

session i	P.	P.	P		distance	
session	^{K3}	^{K2}	^{K1}	$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			<i>K</i> ₂	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K7	K5	1	2	2
5			K ₆	1	2	3
6			Х	1	2	Х
7		K9	K ₈	1	3	3
8			Х	1	3	Х
9		X		1	Х	Х
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

session i	P.	P-	P		distance	
session	^{K3}	K2	^{K1}	$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K ₇	K5	1	2	2
5			K ₆	1	2	3
6			Х	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		X		1	X	Х
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

session j R ₃	P.	P-	P		distance	
	K3	K2	R1	$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			X	1	1	Х
4		K ₇	K ₅	1	2	2
5			K ₆	1	2	3
6			X	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		Х		1	Х	Х
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

session i	P.	P-	P		distance	
session	^{K3}	K2	^{K1}	$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K ₇	K ₅	1	2	2
5			K ₆	1	2	3
6			X	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		Х		1	Х	Х
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

session i	P.	P-	P		distance	
session	K3	K2	^{K1}	$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K ₇	K5	1	2	2
5			<i>K</i> ₆	1	2	3
6			X	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		Х		1	Х	Х
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

session i	P.	P-	P		distance	
session	K3	K2	^{K1}	$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K ₇	K5	1	2	2
5			K ₆	1	2	3
6			Х	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		Х		1	Х	Х
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

session j	R ₃	R ₂	<i>R</i> ₁	distance		
				$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K ₇	K5	1	2	2
5			K ₆	1	2	3
6			X	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		Х		1	Х	Х
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

session j	R ₃	R ₂	<i>R</i> ₁	distance		
				$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K ₇	K5	1	2	2
5			K ₆	1	2	3
6			X	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		X		1	X	X
10	K ₁₆	K ₁₃	K ₁₁	2	2	2

session j	R ₃	R ₂	R_1	distance		
				$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K ₇	K5	1	2	2
5			K ₆	1	2	3
6			X	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		X		1	Х	Х
10	K16	K ₁₃	K ₁₁	2	2	2

session j	R ₃	R ₂	<i>R</i> ₁	distance		
				$d(R_3)$	$d(R_2)$	$d(R_1)$
init	K ₁₀	K4	<i>K</i> ₁	1	1	1
1			K2	1	1	2
2			K3	1	1	3
3			Х	1	1	Х
4		K ₇	K5	1	2	2
5			K ₆	1	2	3
6			X	1	2	Х
7		K9	K ₈	1	3	3
8			X	1	3	Х
9		X		1	X	Х
10	K ₁₆	K ₁₃	<i>K</i> ₁₁	2	2	2

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Comparison DUKPT / Optimal-DUKPT

	DUKPT	O-DUKPT	O-DUKPT	O-DUKPT
	(R = 21, N = 10)	(R = 21, N = 7)	(R = 13, N = 10)	(R = 17, N = 8)
Т	1048575	1184039	1144065	1081574
A(1)/T	2 ^{-15.6}	$2^{-15.8}$	2 ^{-16.4}	2 ^{-16.0}
A(2)/T	2 ^{-12.3}	$2^{-12.3}$	2 ^{-13.6}	2 ^{-12.8}
A(3)/T	2 ^{-9.6}	2 ^{-9.4}	2-11.3	2-10.1
A(4)/T	2-7.4	2-6.8	2 ^{-9.3}	2-7.8
A(5)/T	2-5.7	2-4.5	2-7.5	2-5.7
A(6)/T	2-4.3	$2^{-2.4}$	2-5.9	2 ^{-3.9}
A(7)/T	2 ^{-3.2}	$2^{-0.4}$	2-4.5	2 ^{-2.1}
A(8)/T	2 ^{-2.4}		2 ^{-3.2}	2 ^{-0.6}
A(9)/T	2 ^{-1.8}		2 ^{-2.0}	
A(10)/T	2-1.6		2 ^{-0.8}	
CS	8.65	6.68	9.28	7.56

A(i) represents the number of keys at distance i

 C_S stands for the average number of computations required to derive one key on the server side

Optimal-DUKPT

Comparison

Optimality

Let A be an optimal algorithm, i.e. reaching the maximum value T of keys handled. Sketch of the optimality proof:

Lemma 1

After the initialization process of A, the R registers of the client are filled with R new distinct keys.

Lemma 2

When A derives keys on the client side during the registers update, it only memorizes newly derived keys in empty registers.

Lemma 3

When A derives keys on the client side during the registers update, all previously empty registers are filled at the end of the process.

Lemma 4

The transaction key chosen by A is always one of the keys at the maximal available distance from *IK* (different from N + 1).