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Motivation

Clients would like to communicate with a server
(for example, PIN verification).
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Motivation

But attackers can eavesdrop on the communication channels.
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Motivation

The channel can be protected using symmetric-key crypto
(secret keys need to be shared during the initialization process and since
this process is costly, the system should last as long as possible).
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Motivation

We would like to cover the cases where the attacker could tamper with
clients since they are located in unsecure areas.
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Motivation

Thus, we would like the scheme to be forward secure on the client side
(not in the server).
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Deriving keys

In the following, in order to derive keys we consider that we only
have access to a blackbox function F:
• that has two inputs: the original key K ∈ K and some

arbitrary-length salt value s
• that outputs a new key K′ ∈ K

In practice, one can use the HKDF proposal (Krawczyk 2010)
instantiated with HMAC or CBC-MAC, or directly:

K′ = F(K, s) = trunc(HMAC(K, s))
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Initialization of the system

We only have to study the problem reduced to one client:
we consider that an initial key IKi is derived for each client i with
IKi = F(K, i), while the server only stores K.
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Parameters

We assume that the identity of the client and of the session key are
publicly sent with the session protected messages.

Three parameters are important:

• R: the number of key registers available in the client’s memory

• N: the maximal number of calls to F the server has to perform
in order to retrieve one session key from the client initial key

• T: the maximal number of session key the system can handle
after an initialization
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Trivial cases

We can identify trivial cases:
• R = 1

for each session, use the key stored in the client register and
self-update it. We have T = N.

• N = 1
during the initialization, fill all registers of the client with a different
key. Then, for each session, use and erase a key in one of the R
register. We have T = R.

More generally:
• initialize all R registers with a different key: Kr = F(IK, r)
• for a session j, we use the key located in register r = j (mod R) and

self-update this register with Kr = F(Kr, j)
• we thus have T = N × R
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Our results

In ANSI X9.24 a better solution is described:
the algorithm Derived Unique Key Per Transaction (DUKPT), very
much utilized in the banking industry.
• R = 21, N = bR/2c = 10 and T = 2R−1 − 1 = 1048575
• not really scalable

We propose another algorithm, Optimal-DUKPT:
• completely scalable
• very simple to understand/implement
• very good performances: T =

(R+N
N

)
− 1

... actually optimal in R, N and T
• also better performances than DUKPT when N is the number

of operations on average
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DUKPT: parameters and key hierarchy
Parameters:
• T = 220 − 1 ' 1000000
• R = 21
• N = 10

Key hierarchy:
• For x 6= 0, we define y = x̃ to be the value of x with the least significant “1”

bit set to zero:
if x = (10110)2 we have y = x̃ = (10100)2 and ỹ = (10000)2.

• DUKPT intrinsically defines a hierarchy between the keys: each key used
for session j 6= 0 is the daughter of the key identified by j̃: Kj = F(K̃j, j).

• we only use keys for the sessions j such that HW(j) ≤ 10.



Introduction DUKPT Optimal-DUKPT Comparison

DUKPT: an example on the server side

For each session j:
the server deduces Kj by simply
starting from the top node of the
tree IK and recovers the successive
keys during the path to Kj.

For example, if j = (0...011010)2, the server computes:
• K0...010000 = F(IK, (0...010000)2)

• then K0...011000 = F(K0...010000, (0...011000)2)

• and finally Kj = F(K0...011000, (0...011010)2).

Note that we have N ≤ 10 since HW(j) ≤ 10.
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DUKPT: an example on the client side

Initialization: all registers Ri are filled with K2i−1 = F(IK, 2i−1).

For each session j: the client picks and uses the key Kj located in register r, where
r is the bit position of the least significant “1” bit of j. Then, before erasing Kj from
its memory, the client derives and stores all the r− 1 direct daughters of Kj in the
r− 1 least significant registers.

session j R21 R20 R19 R12 R11 R5 R4 R3 R2 R1

init 220 219 218 ... 211 210 ... 16 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X
10 X 11
11 X
12 14 13
13 X
14 X 15



Introduction DUKPT Optimal-DUKPT Comparison

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X
10 X 11
11 X

Optimal-DUKPT (with N = 3)
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Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 X
3 X 3
4 X
5 X 6 5
6 X
7 X 7
8 X
9 X 12 10 9
10 X
11 X 11

Optimal-DUKPT (with N = 3)
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Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 X 3
5 X
6 X 6 5
7 X
8 X 7
9 X
10 X 12 10 9
11 X

Optimal-DUKPT (with N = 3)
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Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 X
6 X
7 X 6 5
8 X
9 X 7
10 X
11 X 12 10 9

Optimal-DUKPT (with N = 3)
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Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 3-a
6 X
7 X
8 X 6 5
9 X
10 X 7
11 X

Optimal-DUKPT (with N = 3)
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Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 3-a
6 X
7 2-b 3-b
8 X
9 X
10 X 6 5
11 X

Optimal-DUKPT (with N = 3)
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Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 3-a
6 X
7 2-b 3-b
8 X
9 X
10 4-a 6 5
11 X

Optimal-DUKPT (with N = 3)
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Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 3-a
6 X
7 2-b 3-b
8 X
9 X
10 4-a 6 5
11 5-a

Optimal-DUKPT (with N = 3)
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Tree comparison with R = 3, N = 3

For DUKPT, T = 7:

For Optimal-DUKPT, T = 19:
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Optimal-DUKPT: an example on the server side

For each session j:

as for DUKPT, from the key identity j sent by the client, the server
deduces Kj by simply starting from the top node of the tree IK and
recovers the successive keys during the path to Kj.
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Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2
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Comparison DUKPT / Optimal-DUKPT

DUKPT O-DUKPT O-DUKPT O-DUKPT

(R = 21, N = 10) (R = 21, N = 7) (R = 13, N = 10) (R = 17, N = 8)

T 1048575 1184039 1144065 1081574

A(1)/T 2−15.6 2−15.8 2−16.4 2−16.0

A(2)/T 2−12.3 2−12.3 2−13.6 2−12.8

A(3)/T 2−9.6 2−9.4 2−11.3 2−10.1

A(4)/T 2−7.4 2−6.8 2−9.3 2−7.8

A(5)/T 2−5.7 2−4.5 2−7.5 2−5.7

A(6)/T 2−4.3 2−2.4 2−5.9 2−3.9

A(7)/T 2−3.2 2−0.4 2−4.5 2−2.1

A(8)/T 2−2.4 2−3.2 2−0.6

A(9)/T 2−1.8 2−2.0

A(10)/T 2−1.6 2−0.8

CS 8.65 6.68 9.28 7.56

A(i) represents the number of keys at distance i

CS stands for the average number of computations required to derive one
key on the server side
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Optimality

Let A be an optimal algorithm, i.e. reaching the maximum value T of
keys handled. Sketch of the optimality proof:

Lemma 1

After the initialization process of A, the R registers of the client are filled with R
new distinct keys.

Lemma 2

When A derives keys on the client side during the registers update, it only
memorizes newly derived keys in empty registers.

Lemma 3

When A derives keys on the client side during the registers update, all previously
empty registers are filled at the end of the process.

Lemma 4

The transaction key chosen by A is always one of the keys at the maximal
available distance from IK (different from N + 1).
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