
Introduction DUKPT Optimal-DUKPT Comparison

A Forward-Secure Symmetric-Key Derivation
Protocol - How to Improve Classical DUKPT

Eric Brier and Thomas Peyrin

Ingenico and NTU

Asiacrypt 2010

Singapore - December 6, 2010



Introduction DUKPT Optimal-DUKPT Comparison

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality



Introduction DUKPT Optimal-DUKPT Comparison

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality



Introduction DUKPT Optimal-DUKPT Comparison

Motivation

Clients would like to communicate with a server
(for example, PIN verification).



Introduction DUKPT Optimal-DUKPT Comparison

Motivation

But attackers can eavesdrop on the communication channels.



Introduction DUKPT Optimal-DUKPT Comparison

Motivation

The channel can be protected using symmetric-key crypto
(secret keys need to be shared during the initialization process and since
this process is costly, the system should last as long as possible).



Introduction DUKPT Optimal-DUKPT Comparison

Motivation

We would like to cover the cases where the attacker could tamper with
clients since they are located in unsecure areas.



Introduction DUKPT Optimal-DUKPT Comparison

Motivation

Thus, we would like the scheme to be forward secure on the client side
(not in the server).



Introduction DUKPT Optimal-DUKPT Comparison

Deriving keys

In the following, in order to derive keys we consider that we only
have access to a blackbox function F:
• that has two inputs: the original key K ∈ K and some

arbitrary-length salt value s
• that outputs a new key K′ ∈ K

In practice, one can use the HKDF proposal (Krawczyk 2010)
instantiated with HMAC or CBC-MAC, or directly:

K′ = F(K, s) = trunc(HMAC(K, s))



Introduction DUKPT Optimal-DUKPT Comparison

Initialization of the system

We only have to study the problem reduced to one client:
we consider that an initial key IKi is derived for each client i with
IKi = F(K, i), while the server only stores K.



Introduction DUKPT Optimal-DUKPT Comparison

Parameters

We assume that the identity of the client and of the session key are
publicly sent with the session protected messages.

Three parameters are important:

• R: the number of key registers available in the client’s memory

• N: the maximal number of calls to F the server has to perform
in order to retrieve one session key from the client initial key

• T: the maximal number of session key the system can handle
after an initialization



Introduction DUKPT Optimal-DUKPT Comparison

Trivial cases

We can identify trivial cases:
• R = 1

for each session, use the key stored in the client register and
self-update it. We have T = N.

• N = 1
during the initialization, fill all registers of the client with a different
key. Then, for each session, use and erase a key in one of the R
register. We have T = R.

More generally:
• initialize all R registers with a different key: Kr = F(IK, r)
• for a session j, we use the key located in register r = j (mod R) and

self-update this register with Kr = F(Kr, j)
• we thus have T = N × R



Introduction DUKPT Optimal-DUKPT Comparison

Our results

In ANSI X9.24 a better solution is described:
the algorithm Derived Unique Key Per Transaction (DUKPT), very
much utilized in the banking industry.
• R = 21, N = bR/2c = 10 and T = 2R−1 − 1 = 1048575
• not really scalable

We propose another algorithm, Optimal-DUKPT:
• completely scalable
• very simple to understand/implement
• very good performances: T =

(R+N
N

)
− 1

... actually optimal in R, N and T
• also better performances than DUKPT when N is the number

of operations on average



Introduction DUKPT Optimal-DUKPT Comparison

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality



Introduction DUKPT Optimal-DUKPT Comparison

DUKPT: parameters and key hierarchy
Parameters:
• T = 220 − 1 ' 1000000
• R = 21
• N = 10

Key hierarchy:
• For x 6= 0, we define y = x̃ to be the value of x with the least significant “1”

bit set to zero:
if x = (10110)2 we have y = x̃ = (10100)2 and ỹ = (10000)2.

• DUKPT intrinsically defines a hierarchy between the keys: each key used
for session j 6= 0 is the daughter of the key identified by j̃: Kj = F(K̃j, j).

• we only use keys for the sessions j such that HW(j) ≤ 10.



Introduction DUKPT Optimal-DUKPT Comparison

DUKPT: an example on the server side

For each session j:
the server deduces Kj by simply
starting from the top node of the
tree IK and recovers the successive
keys during the path to Kj.

For example, if j = (0...011010)2, the server computes:
• K0...010000 = F(IK, (0...010000)2)

• then K0...011000 = F(K0...010000, (0...011000)2)

• and finally Kj = F(K0...011000, (0...011010)2).

Note that we have N ≤ 10 since HW(j) ≤ 10.



Introduction DUKPT Optimal-DUKPT Comparison

DUKPT: an example on the client side

Initialization: all registers Ri are filled with K2i−1 = F(IK, 2i−1).

For each session j: the client picks and uses the key Kj located in register r, where
r is the bit position of the least significant “1” bit of j. Then, before erasing Kj from
its memory, the client derives and stores all the r− 1 direct daughters of Kj in the
r− 1 least significant registers.

session j R21 R20 R19 R12 R11 R5 R4 R3 R2 R1

init 220 219 218 ... 211 210 ... 16 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X
10 X 11
11 X
12 14 13
13 X
14 X 15



Introduction DUKPT Optimal-DUKPT Comparison

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X
10 X 11
11 X

Optimal-DUKPT (with N = 3)



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 X
3 X 3
4 X
5 X 6 5
6 X
7 X 7
8 X
9 X 12 10 9
10 X
11 X 11

Optimal-DUKPT (with N = 3)



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 X 3
5 X
6 X 6 5
7 X
8 X 7
9 X
10 X 12 10 9
11 X

Optimal-DUKPT (with N = 3)



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 X
6 X
7 X 6 5
8 X
9 X 7
10 X
11 X 12 10 9

Optimal-DUKPT (with N = 3)



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 3-a
6 X
7 X
8 X 6 5
9 X
10 X 7
11 X

Optimal-DUKPT (with N = 3)



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 3-a
6 X
7 2-b 3-b
8 X
9 X
10 X 6 5
11 X

Optimal-DUKPT (with N = 3)



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 3-a
6 X
7 2-b 3-b
8 X
9 X
10 4-a 6 5
11 X

Optimal-DUKPT (with N = 3)



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: improving DUKPT

Idea to improve DUKPT:
• the implicit key hierarchy tree built by DUKPT is not optimal: many

leaves are not a distance N
• instead, Optimal-DUKPT will build a tree for which we are

ensured that all leaves are at distance N
• this will maximize the total number of nodes in the tree, thus

maximize T

session j R4 R3 R2 R1

init 8 4 2 1
1 X
2 X 3
3 X
4 X 6 5
5 X
6 X 7
7 X
8 X 12 10 9
9 X

10 X 11
11 X

DUKPT (with N = 3)

session j R4 R3 R2 R1

init 8 4 2 1
1 1-a
2 1-b
3 X
4 2-a 3
5 3-a
6 X
7 2-b 3-b
8 X
9 X
10 4-a 6 5
11 5-a

Optimal-DUKPT (with N = 3)



Introduction DUKPT Optimal-DUKPT Comparison

Tree comparison with R = 3, N = 3

For DUKPT, T = 7:

For Optimal-DUKPT, T = 19:



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the server side

For each session j:

as for DUKPT, from the key identity j sent by the client, the server
deduces Kj by simply starting from the top node of the tree IK and
recovers the successive keys during the path to Kj.



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X
10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Optimal-DUKPT: an example on the client side (with R = 3 and N = 3)

session j R3 R2 R1
distance

d(R3) d(R2) d(R1)

init K10 K4 K1 1 1 1
1 K2 1 1 2
2 K3 1 1 3
3 X 1 1 X
4 K7 K5 1 2 2
5 K6 1 2 3
6 X 1 2 X
7 K9 K8 1 3 3
8 X 1 3 X
9 X 1 X X

10 K16 K13 K11 2 2 2



Introduction DUKPT Optimal-DUKPT Comparison

Outline

Introduction and motivation

Derived Unique Key Per Transaction (DUKPT)

Optimal-DUKPT

Comparison and Optimality



Introduction DUKPT Optimal-DUKPT Comparison

Comparison DUKPT / Optimal-DUKPT

DUKPT O-DUKPT O-DUKPT O-DUKPT

(R = 21, N = 10) (R = 21, N = 7) (R = 13, N = 10) (R = 17, N = 8)

T 1048575 1184039 1144065 1081574

A(1)/T 2−15.6 2−15.8 2−16.4 2−16.0

A(2)/T 2−12.3 2−12.3 2−13.6 2−12.8

A(3)/T 2−9.6 2−9.4 2−11.3 2−10.1

A(4)/T 2−7.4 2−6.8 2−9.3 2−7.8

A(5)/T 2−5.7 2−4.5 2−7.5 2−5.7

A(6)/T 2−4.3 2−2.4 2−5.9 2−3.9

A(7)/T 2−3.2 2−0.4 2−4.5 2−2.1

A(8)/T 2−2.4 2−3.2 2−0.6

A(9)/T 2−1.8 2−2.0

A(10)/T 2−1.6 2−0.8

CS 8.65 6.68 9.28 7.56

A(i) represents the number of keys at distance i

CS stands for the average number of computations required to derive one
key on the server side



Introduction DUKPT Optimal-DUKPT Comparison

Optimality

Let A be an optimal algorithm, i.e. reaching the maximum value T of
keys handled. Sketch of the optimality proof:

Lemma 1

After the initialization process of A, the R registers of the client are filled with R
new distinct keys.

Lemma 2

When A derives keys on the client side during the registers update, it only
memorizes newly derived keys in empty registers.

Lemma 3

When A derives keys on the client side during the registers update, all previously
empty registers are filled at the end of the process.

Lemma 4

The transaction key chosen by A is always one of the keys at the maximal
available distance from IK (different from N + 1).


	Introduction and motivation
	Derived Unique Key Per Transaction (DUKPT)
	Optimal-DUKPT
	Comparison and Optimality

