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SPN-Hash: Improving the Provable 
Resistance Against Collision Attacks 

 



What is SPN Hash? 

 A  Hash Function based on well-studied SPN structure. 
 

 Generalized the optimal diffusion of SPN structure  
 So that more block sizes with good differential bounds can be 

constructed. 

 
 First provable bound for true differential collision 

probability. 
 

 Speed comparable to Grostl in software. 
 

 Much lighter than SHA-3 candidates in hardware 
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SPN Hash – Mode of Operation 

1. Uses the JH mode of operation. 
 

2. It is a sponge variant. 
 

3. (a) Sponge:Mi only XORed to input. 
 

 (b) JH: Mi is XORed to both input 
and output. 

 
4. Reason for using JH: 
 (a) DC of P  collision resistance 

(similar to sponge). 
 

 (b) Pre-image resistant (similar to 
sponge). 

 

 (c) 2nd pre-image attack on sponge. 
No effective 2nd pre-image attack on 
JH. 

 
 



SPN Hash - Permutation P 

1. P iterates SPN structure 10 rounds. 
 

2. The substitution layer uses the AES 
S-box. 
 

3. SPN similar to that used in AES: 
 (a) There are m MDS’s 
 (b) Each MDS takes in n S-boxes 

 
3. Known AES result, m=n.  

 
4. In SPN hash, m divides n.  

 
 We design new component 

Generalized Optimal Diffusion 
to achieve non-square block size. 

 



SPN Hash - Permutation P 

 Q: Why consider SPN design with non-square block size? 

 A: So that we can design more block sizes. 

 

 

 

 
MDS 
Size (n) 

Block Size 
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Size 
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SPN Hash - Permutation P 

 Q: Why consider SPN design with non-square block size? 

 A: So that we can design more block sizes. 

 

 

 

 
MDS 
Size (n) 

Block Size 
(n×n) 
Square SPN 

Hash 
Size 

Block Size 
(m×n), m divides n 
Our SPN 

Hash 
Size 
 

8 bytes 8×8 = 64 bytes 
= 512 bit 

256 bit 2×8 = 16 bytes=128 bit 64 bit 

4×8 = 32 bytes=256 bit 128 bit 

8×8 = 64 bytes=512 bit 256 bit 

16 bytes 16×16=256 bytes 
= 2048 bit 

1024 bit 2×16 = 32 bytes=256 bit 128 bit 

4×16 = 64 bytes=512 bit 256 bit 

8×16 = 128 bytes=1024 bit 512 bit 

16×16 = 256 bytes=2048 bit 1024 bit 



How to Construct Non-Square Block Size 

Rijmen-Daemen’s Construction (optimal diffusion) 

Our Construction (generalized optimal diffusion) 

m=8 

n=4 

n=8 

m=4 

S-box, 
MDS 

ShiftRow 
(generalized 
optimal 
diffusion) 



Differential Results on our SPN 

 Q: Why care about differential 
probability? 

 A: Collision  Zero Output Differential. 

 

 Rijmen-Daemen result: m≥n. 

 Every 4 rounds  (n+1)2 active S-boxes 
 

 Our construction: m divides n.  

 Every 4 rounds  (m+1)×(n+1) active 
S-boxes 

 

 Example: Construct 32-byte block. 

 AES Result(m=8,n=4): 25 active S-box. 

 Our Result (m=4,n=8): 45 active S-box 

 

 

 



Differential Results on our SPN 

 Counting Active S-boxes  Characteristic 
Differential Probability (Uses Wide-trail strategy of 
Rijmen-Daemen in [IMA Conference on Crypto and 
Coding 2001, Springer LNCS 2260, pp.222]) 

 

 We want:  

 True Differential Probability  Actual Collision 
Probability (Uses Park et al.’s SDS result [FSE 2003, 
Springer LNCS 2887, pp. 247]) 



True Differential of SPN Hash 

 SPN Hash-128:  Block size = 256 bit. Hash output = 128-bit.  

 n=8, m=4 [32 AES S-box , Four 88 MDS].  

 True differential probability (256-bit block) ≤ 2-214.7. 

 Differential collision probability ≤ 2128 × 2-214.7 = 2-86.7 < 2-64. 
 

 SPN Hash-256: Block size = 512 bit. Hash output = 256-bit. 

 n=8, m=8 [64 AES S-box, Eight 88 MDS] 

 True differential probability (512-bit block) ≤ 2-429.5. 

 Differential collision probability ≤ 2256 × 2-429.5 = 2-173.5 < 2-128. 
 

 SPN Hash-512: Block size = 1024 bit. Hash output = 512-bit. 

 n=16, m=8 [128 AES S-box, Eight 1616 MDS]. 

 True differential probability (1024-bit block) ≤ 2-816. 

 Differential collision probability ≤ 2512 × 2-816 = 2-304 < 2-256. 

 

 

 

 

 

 

 

 

 



SPN Hash-512 ECHO-512 

Block Size 1024 bit 2048 bit 

True Diff Probability of Block 2-816 2-452 

Output (after truncation) 512 bit 512 bit 

True Differential Collision 
Probability (after truncation) 

2-304  
(truncate 1024512) 

- 
(truncate 2048512) 

 

Comparison with Existing Hash 

 Among SHA-2 and SHA-3 hashes, only one have true 
differential bound and that is ECHO. 

• True differential of ECHO block 
worse than SPN-hash block. 

• ECHO truncate more bits, 
differential probability suffer even 
more. 

 Why no collision prob 
for ECHO? 



Rebound Attack – Overview 

 Divide an attack into two phases: Controlled rounds and 
Uncontrolled rounds 

 

 

 Controlled rounds 

 Efficient meet-in-the-middle 

 Exploits available freedom degrees in the middle of a differential path 

  Non Full Super-Sbox Analysis 
 

 Uncontrolled rounds 

 Mainly probabilistic 

 Solutions of the controlled rounds are computed backwards and 
forwards 
 

 Can result in a distinguishing attack 

 

 

 

Controlled 
rounds 

Uncontrolled 
rounds 

Uncontrolled 
rounds 



Rebound Attack 

 View 512-bit and 1024-bit internal state of P as a 8  8 and 16  8 
matrix of bytes 

 8-round differential paths  

 Coloured cell: active byte;  

 White cell: passive byte 

 

512-bit P 

1024-bit P 



Rebound Attack- Non-Full Active Super-Sbox 

 The non-full active Super-Sbox method allows attacker to control 3 
rounds in the middle (controlled rounds):  A starting point can 
be obtained with time 1 on average and 28 memory (512-bit P) / 216 
memory (1024-bit P)  

 

 The rest of the path is fulfilled probabilistically (uncontrolled 
rounds):  In the example of 512-bit P below, we have to pay a 
probability of approximately 248  

 

 Need to ensure enough freedom degrees to find a pair of values 
following the path: In example, need 248 starting points but can choose 
272 differences at the start of controlled rounds  

8-round differential path for 512-bit P 

round  
     1 

round  
     2 

round  
     3 

round  
     4 

round  
     5 

round  
     6 

round  
     7 

round  
     8 



Rebound Attack 

 Q: How does this translate to a distinguishing attack? 

 A: We obtained distinguishers: 

 512-bit P: Finding a valid pair for the whole 8-round path 
requires 248 operations and 28 memory.  Ideal case 
requires 296 computations. 

 

 1024-bit P: Finding a valid pair for the whole 8-round 
path requires 288 operations and 216 memory.  Ideal case 
requires 2256 computations. 
 

 Secure against rebound attack since P comprises 10 
round functions. 

 

 

 



Hardware Implementation 

 Implement lightweight SPN Hash 128-bit and 256-bit. 

 

 Optimization: Serialize the 8 by 8 MDS matrix over GF(28). 

 

 Problem: Not easy to find byte-based serialized 8 by 8 MDS 
matrix, by using method of PHOTON hash design. 

 

 Our Solution: Use parallel copies of the PHOTON 8 by 8 MDS 
matrix over GF(24). 

 

 



Serialized matrix over GF(28) 

X = (X1||X2)  (Q X1|| Q X2), 
  

where XGF(28),X1,X2 GF(24) 



Lightweight implementation 

 Besides Serialized MDS, we also use other optimizations like 
compact AES S-box, efficient use of registers, etc… 

 

 Comparison with SHA-3 candidates: 



Software Implementation 

 Expect speed of SPN-Hash 256 comparable to 
Grostl-256 (22 cycles/byte). 
 

 Use same number of AES S-boxes. 

 T-Table implementation independent of MDS coefficients. 

 ShiftByte is done implicitly in T-table look-up. 

 SPN-Hash process 256-bit message in 10 rounds compared to 
Grostl-256 which process 512-bit message in 20 rounds. 

 

 SPN-Hash 128 should run at similar speed.  

 Takes half the message bit, process half the operations. 

 



Conclusion 

 We have designed new hash function SPN-hash. 
 Output Sizes: 128-bit, 256-bit, 512-bit 
 

 Provable differential collision bound for all these sizes. 
 

 Also secure against pre-image, 2nd pre-image and 
rebound attacks. 
 

 Much lighter than existing SHA-3 candidates in 
Hardware.  
 

 Efficiency comparable to Grostl in Software. 
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