Boomerang Connectivity Table: A New Cryptanalysis Tool

Carlos Cid ${ }^{1}$, Tao Huang ${ }^{2}$, Thomas Peyrin², Yu Sasaki ${ }^{3}$ and Ling Song ${ }^{2,4}$

1. Royal Holloway, University of London, UK
2. Nanyang Technological University, Singapore
3. NTT Secure Platform Laboratories, Japan
4. Chinese Academy of Sciences, China

02 May 2018 Eurocrypt @ Tel Aviv

Differential Cryptanalysis

[Biham-Shamir1990]

- Prepare two input values P_{1}, P_{2} with (usually) small difference $\Delta P=P_{1} \oplus P_{2}$.
- Expecting some output differences $\Delta C=C_{1} \oplus C_{2}$ with a high probability.

Solid methods to evaluate probability are evaluated.

Differential Cryptanalysis

[Biham-Shamir1990]

- Prepare two input values P_{1}, P_{2} with (usually) small difference $\Delta P=P_{1} \oplus P_{2}$.
- Expecting some output differences $\Delta C=C_{1} \oplus C_{2}$ with a high probability.

Solid methods to evaluate probability are evaluated.

Boomerang Attacks

Proposed by [Wag99] to combine independent two characteristics.

- $E_{0}: \operatorname{Pr}\left[\Delta_{i} \rightarrow \Delta_{o}\right]=p$
- $E_{1}: \operatorname{Pr}\left[\nabla_{i} \rightarrow \nabla_{o}\right]=q$

Two pairs are analyzed. Distinguish probability:

$$
p^{2} q^{2}
$$

Two Trails in Boomerang Attacks

[Wag99]: Assumed two trails are independent. not always correct

- Dependency can help attackers.
[BDD03]: Middle-round S-box trick
[BK09]: Boomerang switch
Ladder switch / Feistel switch / S-box switch
- Dependency can spoil attacks.
[Mer09]: Incompatible trails

Ladder Switch

Ladder Switch

1/1

SB

E_{0} : Columns 3: no active S-box for E_{0} E_{1} : Columns 0: no active S-box for E_{1} © ntt

Feistel Switch / S-box Switch

prob to be a right quartet is $p\left(\operatorname{not} p^{2}\right)$

Sandwich Attacks [DKS10]

Generalized framework including dependency of two trails:

$$
E=E_{1} \circ E_{m} \circ E_{0}
$$

Distinguish probability is $p^{2} q^{2} r$, with some probability r for E_{m}.

Probability for E_{m}

$r=\frac{\#\left\{x \in\{0,1\}^{n} \mid E_{m}^{-1}\left(E_{m}(x) \oplus \nabla_{i}\right) \oplus E_{m}^{-1}\left(E_{m}\left(x \oplus \Delta_{o}\right) \oplus \nabla_{i}\right)=\Delta_{o}\right\}}{2^{n}}$

Probability space is only the size of E_{m}, not its square.

Ladder Switch $r=1 \quad$ S-box Switch $r=p$

- r is for a quartet, not for a pair in the standard differential cryptanalysis. How to evaluate it?
- Our focus: E_{m} is a single S-box layer
- a new form to easily evaluate r for S-box

Adv. 1: new switching effect (r is surprisingly high)
Adv. 2: quantitating the strength of S-box against sandwich attack (a new S-box design criterion)

- We reveal several relationships between the standard probability in DDT and r.

DDT: Differential Distribution Table

$$
\begin{aligned}
& \#\left\{x \in\{0,1\}^{n} \mid S(x) \oplus S\left(x \oplus \Delta_{i}\right)=\Delta_{o}\right\} \\
& \#\left\{x \in\{0,1\}^{n} \mid S(x) \oplus S\left(x \oplus \Delta_{i}\right)=\Delta_{o}\right\}
\end{aligned}
$$

BCT: Boomerang Connectivity Table

$\#\left\{x \in\{0,1\}^{n} \mid S^{-1}\left(S(x) \oplus \nabla_{o}\right) \oplus S^{-1}\left(S\left(x \oplus \Delta_{i}\right) \oplus \nabla_{o}\right)=\Delta_{i}\right\}$

Observations of BCT (1/3)

Observations of BCT (2/3)

S-box Switch: $\quad \operatorname{Pr}[\Delta \xrightarrow{S} \nabla]=\boldsymbol{p} " \Rightarrow \boldsymbol{p}^{\boldsymbol{S}}=\boldsymbol{p} "$

Lemma 1 For any choice of $\left(\Delta_{i}, \Delta_{o}\right)$, the value in the BCT is greater than or equal to the one in the DDT.

	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7
0	16	0	0	0	0	0	0	0	0	16	16	16	16	16	16	16	16
1	0	0	0	4	0	0	0	4	1	16	0	4	4	0	16	4	4
2	0	0	0	2	0	4	2	0	2	16	0	0	6	0	4	6	0
3	0	2	0	2	2	0	4	2	3	16	2	0	6	2	4	4	2
4	0	0	0	0	0	4	2	2	4	16	0	0	0	0	4	2	2
DDT									ВСТ								

S-box switch is the equal case of Lem. 1

Observations of BCT (3/3)

Values in BCT can be bigger than DDT.

	0	1	2	3	4	5	6	7
0	16	0	0	0	0	0	0	0
1	0	0	0	4	0	0	0	4
2	0	0	0	2	0	4	2	0
3	0	2	0	2	2	0	4	2
4	0	0	0	0	0	4	2	2

	0	1	2	3	4	5	6	7
0	16	16	16	16	16	16	16	16
1	16	0	4	4	0	16	4	4
2	16	0	0	6	0	4	6	0
3	16	2	0	6	2	4	4	2
4	16	0	0	0	0	4	2	2
BCT								

Comparison of DDT and BCT for AES S-box

Value	256	6	4	2	0
DDT	1	-	255	32130	33150
BCT	511	510	255	31620	32640

Generalized Switching Effect

- Focus on $\left(\Delta_{i}, \Delta_{o}\right)$ whose DDT entry is 4.
- 2 pairs satisfying those diff propagation

How can we define ∇ s.t. a quartet is formed?

Generalized Switching Effect

- 3 ways to define ∇, one is known as S-box switch

Generalized Switching Effect

- 3 ways to define ∇, one is known as S-box switch

Lemma 2 For any fixed Δ_{i}, for each entry with ' 4 ' in the DDT, the value of two positions in the BCT will increase by 4.
(O) NTT

Generalized Switch for 6-uniform DDT

We can make 3 distinct quartets. Each increases the value of BCT in 2 positions.
x_{5}

Applications so far

Related-tweakey boomerang distinguisher on 8round Deoxys-384:

- Prev: 2^{-6} (single S-box switch)
- New: $2^{-5.4}$ (single generalized switch)
- 9R and 10R distinguishers are also improved.

Related-tweakey rectangle attacks on SKINNY

- Prev: prob was experimentally evaluated
- New: theoretical analysis of the probability

Extension to ARX Construction

Similar analysis can be applied to modular addition.
(

Case Study: 3-bit Addition $\left(\Delta_{i}=0\right)$

DD										BC					∇ o				
	0	1	2	3	4	5	6	7			0	1	2		4	5	6		7
0	64	0	0	0	0	0	0	0		0	64	464	464	46	64	64	464	4	64
1	0	32	0	16	0	0	0	16		1	64	0) 32	0	64	0	32		0
2	0	0	32	0	0	0	32	0		2	64	$4 \overline{64}$	40	0	64	64	40		0
$\Delta_{i}^{\prime} 3$	0	16	0	16	0	16	0	16	Δ_{i}^{\prime}	3	64	40	32	0	64	0	32		0
4	0	0	0	0	64	0	0	0		4	64	464	464	464	64	64	64		64
5	0	0	0	16	0	32	0	16		5	64	40	32	20	64	0	32		0
6	0	0	32	0	0	0	32	0		6	64	464	40	0	64	64	40		0
	0	16	0	16	0	16	0	16		7	64	40	32	20	64	0	32		0

- BCT < DDT (S-box switch does not work)
- MSB switch

Concluding Remarks

BCT: precomp table of r in the sandwich attack Adv. 1: new switching effect (r is surprisingly high) Adv. 2: quantitating the strength of S-box against sandwich attack (S-box design criteria)

Problems to investigate

- improving previous boomerang attacks
- extending E_{m} (more than single S-layer)
- comprehensive study for modular addition

