

Boomerang Connectivity Table: A New Cryptanalysis Tool

Carlos Cid¹, Tao Huang², Thomas Peyrin², <u>Yu Sasaki³</u> and Ling Song^{2,4}

- 1. Royal Holloway, University of London, UK
- 2. Nanyang Technological University, Singapore
- 3. NTT Secure Platform Laboratories, Japan
- 4. Chinese Academy of Sciences, China

02 May 2018 Eurocrypt @ Tel Aviv

[Biham-Shamir1990]

- Prepare two input values P_1, P_2 with (usually) small difference $\Delta P = P_1 \bigoplus P_2$.
- Expecting some output differences $\Delta C = C_1 \bigoplus C_2$ with a high probability.

Solid methods to evaluate probability are evaluated.

[Biham-Shamir1990]

- Prepare two input values P_1, P_2 with (usually) small difference $\Delta P = P_1 \bigoplus P_2$.
- Expecting some output differences $\Delta C = C_1 \bigoplus C_2$ with a high probability.

Solid methods to evaluate probability are evaluated.

Boomerang Attacks

Proposed by [Wag99] to combine independent two characteristics.

- $E_0: \Pr[\Delta_i \to \Delta_o] = p$
- $E_1: \Pr[\nabla_i \to \nabla_o] = q$

Two pairs are analyzed. Distinguish probability: p^2q^2

[Wag99]: Assumed two trails are independent.

• Dependency can help attackers.

[BDD03]: Middle-round S-box trick

[BK09]: Boomerang switch

Ladder switch / Feistel switch / S-box switch

• Dependency can spoil attacks.

[Mer09]: Incompatible trails

Ladder Switch

Ladder Switch

SB

 E_0 : Columns 3: no active S-box for E_0 E_1 : Columns 0: no active S-box for E_1

Feistel Switch / S-box Switch

prob to be a right quartet is p (not p^2)

Sandwich Attacks [DKS10]

Generalized framework including dependency of two trails:

$$E = E_1 \circ E_m \circ E_0$$

Distinguish probability is $p^2 q^2 r$, with some probability r for E_m .

Probability space is only the size of E_m , not its square. **NTT** View of Boomerang Switch in Sandwich Attack

novative R&D by N

- **r** is for a quartet, not for a pair in the standard differential cryptanalysis. How to evaluate it?
- Our focus: E_m is a single S-box layer
- a new form to easily evaluate *r* for S-box
 Adv. 1: new switching effect (*r* is surprisingly high)
 Adv. 2: quantitating the strength of S-box against sandwich attack (a new S-box design criterion)
- We reveal several relationships between the standard probability in DDT and *r*.

DDT: Differential Distribution Table

 $#\{x \in \{0,1\}^n | S(x) \oplus S(x \oplus \Delta_i) = \Delta_o\}$ Δ_o f b d а С е $\mathbf{2}$ $\mathbf{2}$ Δ_i $\mathbf{2}$ $\mathbf{2}$ а $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ b $\mathbf{2}$ С $\mathbf{2}$ $\mathbf{2}$ d $\mathbf{2}$ $\mathbf{2}$ е f

PRESENT S-box

BCT: Boomerang Connectivity Table

 $#\{x \in \{0,1\}^n | S^{-1}(S(x) \oplus \nabla_o) \oplus S^{-1}(S(x \oplus \Delta_i) \oplus \nabla_o) = \Delta_i\}$

 ∇_o

		0	1	2	3	4	5	6	7	8	9	a	b	с	d	е	f
Δ_i	0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
	1	16	0	4	4	0	16	4	4	4	4	0	0	4	4	0	0
	2	16	0	0	6	0	4	6	0	0	0	2	0	2	2	2	0
	3	16	2	0	6	2	4	4	2	0	0	2	2	0	0	0	0
	4	16	0	0	0	0	4	2	2	0	6	2	0	6	0	2	0
	5	16	2	0	0	2	4	0	0	0	6	2	2	4	2	0	0
	6	16	4	2	0	4	0	2	0	2	0	0	4	2	0	4	8
	7	16	4	2	0	4	0	2	0	2	0	0	4	2	0	4	8
	8	16	4	0	2	4	0	0	2	0	2	0	4	0	2	4	8
	9	16	4	2	0	4	0	2	0	2	0	0	4	2	0	4	8
	а	16	0	2	2	0	4	0	0	6	0	2	0	0	6	2	0
	b	16	2	0	0	2	4	0	0	4	2	2	2	0	6	0	0
	С	16	0	6	0	0	4	0	6	2	2	2	0	0	0	2	0
	d	16	2	4	2	2	4	0	6	0	0	2	2	0	0	0	0
	е	16	0	2	2	0	0	2	2	2	2	0	0	2	2	0	0
	f	16	8	0	0	8	0	0	0	0	0	0	8	0	0	8	16

PRESENT S-box

Observations of BCT (1/3)

S-box Switch: " $\Pr[\Delta \xrightarrow{S} \nabla] = p$ " \Rightarrow "r = p"

Lemma 1 For any choice of (Δ_i, Δ_o) , the value in the BCT is greater than or equal to the one in the DDT.

S-box switch is the equal case of Lem. 1

Values in BCT can be bigger than DDT.

DDT

BCT

Comparison of DDT and BCT for AES S-box

Value	256	6	4	2	0
DDT	1	-	255	32130	33150
BCT	511	510	255	31620	32640

Generalized Switching Effect

- Focus on (Δ_i, Δ_o) whose DDT entry is 4.
- 2 pairs satisfying those diff propagation

How can we define ∇ s.t. a quartet is formed?

• 3 ways to define ∇ , one is known as S-box switch

 χ_4

S

 y_4

• 3 ways to define ∇ , one is known as S-box switch

Lemma 2 For any fixed Δ_i , for each entry with '4' in the DDT, the value of two positions in the BCT will increase by 4.

novative B&D by N

We can make 3 distinct quartets. Each increases the value of BCT in 2 positions. x_5

nnovative R&D by NT

Related-tweakey boomerang distinguisher on 8round Deoxys-384:

- Prev: 2⁻⁶ (single S-box switch)
- New: $2^{-5.4}$ (single generalized switch)
- 9R and 10R distinguishers are also improved.

Related-tweakey rectangle attacks on SKINNY

- Prev: prob was experimentally evaluated
- New: theoretical analysis of the probability

Similar analysis can be applied to modular addition.

Innovative R&D by NT

Case Study: 3-bit Addition ($\Delta_i = 0$)

- BCT < DDT (S-box switch does not work)
- MSB switch

Innovative R&D by NTT

BCT: precomp table of *r* in the sandwich attack
Adv. 1: new switching effect (*r* is surprisingly high)
Adv. 2: quantitating the strength of S-box against sandwich attack (S-box design criteria)

Problems to investigate

- improving previous boomerang attacks
- extending E_m (more than single S-layer)
- comprehensive study for modular addition

Thank you for your attention!!