Unaligned Rebound Attack Application to Keccak

Alexandre Duc¹, Jian Guo², Thomas Peyrin³ and Lei Wei³

¹ Ecole Polytechnique Fédérale de Lausanne, Switzerland ² Institute for Infocomm Research, Singapore ³ Nanyang Technological University, Singapore

21 March 2012

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

The SHA-3 Competition

- Most standardized hash functions suffer from attacks
- NIST launched a SHA-3 competition
- December 2010: five finalists selected: BLAKE, Grøstl, JH, KECCAK, Skein
- None of them is broken yet \rightarrow Important to perform cryptanalysis on them
- We focus on KECCAK (designed by Bertoni, Daemen, Peeters and Van Assche)

Outline

- 3 Differential Path Search
 - The Rebound Attack

Our Goals

- Hard to find collision or preimage attacks
- We look for differential distinguishers
- on reduced-round versions of the internal permutation used in KECCAK (KECCAK-f)
- The Sponge proof relies on the fact that the internal permutation is ideal

Previous Cryptanalysis Results on KECCAK

So far, the results on KECCAK are the following:

- J.-P. Aumasson and W. Meier (2009): Zero-sum distinguishers up to 16 rounds of KECCAK-*f*[1600].
- P. Morawiecki and M. Srebrny (2010): Preimage attack using SAT solvers on up to 3 rounds of KECCAK.
- D. J. Bernstein (2010):

A second-preimage attack on 8 rounds with high complexity.

• C. Boura et al. (2010-2011):

Zero-sum partitions distinguishers to the full 24-round version of KECCAK-f[1600].

M. Naya-Plasencia et al. (2011) : Practical attacks on a small number of rounds.

Outline

1 Introduction

- 3 Differential Path Search
- 4) The Rebound Attack
- 5 Results and Further Work

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

The Sponge Construction

The KECCAK-f State

- The *b* bit KECCAK-*f* state: a $5 \times 5 \times 2^{\ell}$ bit array
- 7 versions of KECCAK- $f: \ell = 0, ..., 6$ named KECCAK-f[b]

The KECCAK-f Internal Permutation

- b-bit KECCAK round permutation R_r applied on n_r rounds
- $n_r = 12 + 2\ell$
- 24 rounds for KECCAK-f[1600]
- *R_r* is divided into 5 substeps
- $\mathbf{R}_{\mathbf{r}} = \iota_{\mathbf{r}} \circ \chi \circ \pi \circ \rho \circ \theta$

The θ Permutation

$$\boldsymbol{R}_{\boldsymbol{r}} = \iota_{\boldsymbol{r}} \circ \chi \circ \pi \circ \rho \circ \boldsymbol{\theta}$$

The θ permutation

Linear mapping that provides a high level of diffusion

$$a[x][y][z] \leftarrow a[x][y][z] + \sum_{i=0}^{4} a[x-1][i][z] + \sum_{i=0}^{4} a[x+1][i][z-1]$$

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

The ρ Permutation

$$\boldsymbol{R}_{\boldsymbol{r}} = \iota_{\boldsymbol{r}} \circ \chi \circ \pi \circ \boldsymbol{\rho} \circ \boldsymbol{\theta}$$

The ρ permutation

Linear mapping that provides inter-slice diffusion. Each lane is rotated by a constant depending on x and y

The π Permutation

$$\boldsymbol{R_r} = \iota_r \circ \chi \circ \boldsymbol{\pi} \circ \rho \circ \boldsymbol{\theta}$$

The π permutation

Rotation within a slice. Breaks column alignment.

Bit at position
$$(x', y')$$
 is moved to $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

The χ Permutation

$$\boldsymbol{R}_{\boldsymbol{r}} = \iota_{\boldsymbol{r}} \circ \boldsymbol{\chi} \circ \pi \circ \rho \circ \boldsymbol{\theta}$$

The χ permutation

Only non-linear layer

 $s = 5 \times 2^{\ell}$ Sboxes (one per row)

$$a[x] \leftarrow a[x] + ((\neg a[x+1]) \land a[x+2])$$

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

The ι_r Permutation

$$\boldsymbol{R}_{\boldsymbol{r}} = \boldsymbol{\iota}_{\boldsymbol{r}} \circ \boldsymbol{\chi} \circ \boldsymbol{\pi} \circ \boldsymbol{\rho} \circ \boldsymbol{\theta}$$

- Depends on the round number
- Addition of round constants to the first lane a[0][0][.]
- Breaks the symmetry of the rounds
- For differential cryptanalysis we ignore it

Summary

- We have one linear layer $\rightarrow \lambda := \pi \circ \rho \circ \theta$
- One non-linear layer χ
- One round constant layer that we ignore *ι*_r

Outline

2 Keccak

The Rebound Attack

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Diffusion in KECCAK

- Diffusion comes mostly from θ
- π and ρ move bits around
- χ has a very slow diffusion

Diffusion of θ (at most 11 new active bits)

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

Diffusion in KECCAK

- Diffusion comes mostly from θ
- π and ρ move bits around
- χ has a very slow diffusion

Diffusion of θ^{-1} (half of the bits are active in average)

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

Useful Properties

The Column-Parity Kernel

$$\theta: \quad a[x][y][z] \leftarrow a[x][y][z] + \sum_{i=0}^{4} a[x-1][i][z] + \sum_{i=0}^{4} a[x+1][i][z-1].$$

Even number of active bits in every column \rightarrow no diffusion through θ

We call the set of such states the column-parity kernel (CPK)

Path Search Algorithm

$$a_0 \xleftarrow{\lambda^{-1}} b_0 \xleftarrow{\chi^{-1}} \mathbf{a_1} \xrightarrow{\lambda} b_1 \xrightarrow{\chi} a_2 \xrightarrow{\lambda} b_2 \xrightarrow{\chi} a_3 \xrightarrow{\lambda} b_3 \cdots$$

- We start with random state in the CPK with $\leq k$ active columns
- We compute forward taking random "best" slice transition
- By "best", we mean a transition that maximizes the number of columns with even parity and with lowest Hamming weight
- If path has best DP : one round backwards

Differential paths results on KECCAK

Ь	best differential path probability					
	1 rd	2 rds		3 rds		
400	2 ⁻² (2)	2 ⁻⁸	(4 - 4)	2 ⁻²⁴	(8 - 8 - 8)	
 800	2-2 (2)	2 ⁻⁸	(4 - 4)	2 ⁻³²	(4 - 4 - 24)	
1600	2 ⁻² (2)	2 ⁻⁸	(4 - 4)	2 ⁻³²	(4 - 4 - 24)	

b	best differential path probability					
	4 rds		5 rds			
400	2 ⁻⁸⁴	(16 - 14 - 12 - 42)	2 ⁻²¹⁶	(16 - 32 - 40 - 32 - 96)		
800	2 ⁻¹⁰⁹	(12 - 12 - 12 - 73)	2 ⁻⁴³²	(32 - 64 - 80 - 64 - 192)		
1600	2 ⁻¹⁴²	(12 - 12 - 12 - 106)	2 ⁻⁷⁰⁹	(16 - 16 - 16 - 114 - 547)		

• Three round paths with 2^{-32} are best we can hope (see next talk)

Path with 2⁻⁷⁰⁹ was independently improved by M. Naya-Plasencia et al. to 2⁻⁵¹⁰.

Simple Distinguishers

Easy distinguisher: fixed input/output difference

Generic complexity

Mapping a fixed input/output difference: 2^b

Simple Distinguishers

One free round: choose value for each of the Sboxes $\rightarrow Use$ freedom degrees

Generic complexity

Mapping a fixed input/output difference: 2^b

Simple Distinguishers

Map a set of input differences to a set of output differences:

Generic complexity

Limited birthday distinguisher (Gilbert and Peyrin):

$$\max\left\{\min\left\{\sqrt{2^{b}/\Gamma^{\text{in}}},\sqrt{2^{b}/\Gamma^{\text{out}}}\right\},\frac{2^{b}}{\Gamma^{\text{in}}\times\Gamma^{\text{out}}}\right\}$$

Outline

- 1 Introduction
 - 2 Keccak
 - 3 Differential Path Search
 - The Rebound Attack
- 5 Results and Further Work

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

The Rebound Attack

- Proposed first by Mendel et al. in 2009.
- We divide the rounds into three parts

The Rebound Attack

- Proposed first by Mendel *et al.* in 2009.
- Inbound Phase: find matching differences with probability p_{match}. Usually all Sboxes active in the middle

The Rebound Attack

- Proposed first by Mendel *et al.* in 2009.
- Outbound Phase: generate N_{match} values from this match and propagate backward and forward with probability p_B and p_F

Rebound Attack is Hard on KECCAK

- We tried to apply the rebound directly with the 4-round path
 → Would give 9 rounds with complexity < 2⁵¹²
- Not enough differential paths to perform the inbound
- KECCAK has *weak alignment*: impossible to exploit truncated differentials or Super-Sboxes
- DDT: fixed input difference \rightarrow all possible output differences occur with same probability
- Number of possible output differences depends strongly on the Hamming weight of the input

Forward Paths

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Backward Paths

- We need *enough differential paths* for the inbound.
- We need *differential paths with good DP* for the outbound.

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

We start in the CPK with X active columns and 2 active bits each

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

21.03.2012 27 / 35

We let the differences spread in the first round \rightarrow Round for free

We keep the paths with at most one active bit per Sbox.

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

If HW=1 at input of Sbox, there always exists an output difference with HW=1 and two differences with HW=2. We select $k \ 1 \mapsto 2$ transitions. Remaining transitions : $1 \mapsto 1$

Expansion through θ \rightarrow Much more active bits.

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

Backward Paths Generation

We keep the paths that have a "good" DP

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

21.03.2012 27 / 35

Backward Paths Generation

We want all Sboxes active to simplify analysis

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

Inbound Complexity

- We need to compute the probability of having a match p_{match} for the inbound
- We could use the average probability that a transition is possible
- Incorrect in practice
- Depends on the input Hamming weight: 4/31 for Hw = 1, 16/31 for Hw = 4
- Separation into Hamming weight classes: for every possible input Hamming weight, we compute the probability of a match

Outbound Complexity Problems

- We need to compute the number of values *N*_{match} we can generate from a match
- Same idea
- Number of solutions decreases exponentially with the Hamming weight
- Probability of having a match *increases exponentially*
- Average number of solutions not possible: we expect only one match

Outbound Complexity

- We call *N_w* the expected number of solutions when the input Hamming weight is *w*
- Same analysis (we consider all Hamming weight distributions)
- We select a *w*_{max}: *highest Hamming weight we can afford*
- $N_{\text{match}} \ge N_{W_{\text{max}}}$
- We need to update p_{match}: a match occur only below w_{max}

Finding Parameters

- We need to set X, k and the bound on the DP p_B for the backward paths
- With the best parameters we found, we get

Complexity of 2^{491.47} for 8 rounds (4 forward, 3 backward, 1 inbound)

Generic complexity is $\geq 2^{1057.6}$.

Outline

2 Keccak

- 3 Differential Path Search
- 4) The Rebound Attack

Overall Results

Table: Best differential distinguishers complexities for each version of KECCAK internal permutations, for 4 up to 8 rounds

b	best differential distinguishers complexity				
	4 rds	5 rds	6 rds	7 rds	8 rds
100	2 ²	2 ⁸	2 ¹⁹	-	-
200	2 ²	2 ⁸	2 ²⁰	2 ⁴⁶	-
400	2 ²	2 ⁸	2 ²⁴	2 ⁸⁴	-
800	2 ²	2 ⁸	2 ³²	2 ¹⁰⁹	-
1600	2 ²	2 ⁸	2 ³²	2 ¹⁴²	2 ^{491.47}

Our model and our method have been **verified in practice** on KECCAK-*f*[100]

We obtained a 6 round rebound attack with complexity 2^{28.76}

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

Further Work

Use the differential path search algorithm for

- the collision/preimage KECCAK "crunchy" challenges:
 → We found collisions for 1 and 2-round challenges
- differential distinguisher on the hash function

Analyze other functions with our framework

Thank You!

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Unaligned Rebound Attack

21.03.2012 35 / 35

Finding Parameters (technical details)

- We need to set *X*, *k* and the bound on the DP *p*_B for the backward paths
- For X = 8, k = 8 and $p_B = 2^{-450}$, we can generate $2^{477.98}$ differences

•
$$p_B = 2^{-450}$$
 and $p_F = 2^{-36}$
 \rightarrow we need $N_{\text{match}} \ge 2^{486} \rightarrow w_{\text{max}} = 1000$

• This leads to
$$p_{match} = 2^{-491.47}$$

Finding Parameters (technical details)

- We need to set *X*, *k* and the bound on the DP *p*_B for the backward paths
- For X = 8, k = 8 and $p_B = 2^{-450}$, we can generate $2^{477.98}$ differences

•
$$p_B = 2^{-450}$$
 and $p_F = 2^{-36}$
 \rightarrow we need $N_{\text{match}} \ge 2^{486} \rightarrow w_{\text{max}} = 1000$

• This leads to $p_{\text{match}} = 2^{-491.47}$

 $\Gamma_B^{
m out}=2^{468.17}, \Gamma_F^{
m in}=2^{23.3}
ightarrow 2^{491.47}$ couples for inbound \surd

Finding Parameters (technical details)

- We need to set *X*, *k* and the bound on the DP *p*_B for the backward paths
- For X = 8, k = 8 and $p_B = 2^{-450}$, we can generate $2^{477.98}$ differences
- $p_B = 2^{-450}$ and $p_F = 2^{-36}$ \rightarrow we need $N_{\text{match}} \ge 2^{486} \rightarrow w_{\text{max}} = 1000$

• This leads to
$$p_{match} = 2^{-491.47}$$

Complexity is $2^{491.47}$ for 8 rounds (4 forward, 3 backward, 1 inbound) Generic complexity is $\ge 2^{1057.6}$. Separation into Hamming weight classes

$$p_{\text{match}} \coloneqq \Pr[\text{match}|\text{full}]$$
$$= \sum_{w} \Pr[\text{Hw}_{\text{total}} = w|\text{full}] \times \Pr[\text{match}|\text{Hw}_{\text{total}} = w, \text{full}]$$

Measured probability at the input of the Sboxes

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)

Separation into Hamming weight classes

$$p_{\text{match}} \coloneqq \Pr[\text{match}|\text{full}]$$
$$= \sum_{w} \Pr[\text{Hw}_{\text{total}} = w|\text{full}] \times \Pr[\text{match}|\text{Hw}_{\text{total}} = w, \text{full}]$$

We consider *all* possible Hamming weight distributions: c_i Sboxes with Hamming weight i

Duc, Guo, Peyrin, Wei (EPFL, I²R, NTU)