Structural Evaluation of AES and Chosen-Key Distinguisher of 9-round AES-128

Pierre-Alain Fouque ${ }^{1}$ Jérémy Jean ${ }^{2}$ Thomas Peyrin ${ }^{3}$
${ }^{1}$ Université de Rennes 1, France
${ }^{2}$ École Normale Supérieure, France
${ }^{3}$ Nanyang Technological University, Singapore
CRYPTO'2013 - August 19, 2013

Block Ciphers

Iterated SPN Block Ciphers

- Internal Permutation: f
- Number of Iterations : r
- SPN : $f=\mathrm{P} \circ \mathrm{S}$ applies Substitution (S) and Permutation (P) layers.
- Secret Key: k
- Key Scheduling Algorithm : $k \rightarrow\left(k_{0}, \ldots, k_{r}\right)$
- Ex: AES, PRESENT, SQUARE, Serpent, etc.

Differentials and Differential Characteristics

Differential Characteristics

- Used in differential cryptanalysis
- Sequence of differences at each round for an iterated primitive
- The success probability of a differential attack depends on the differential with maximal differential probability p.

Example : 4-round AES

Z Difference
No difference

- 4-round characteristic with 25 active S-Boxes (minimal).
- AES S-Box : $p_{\max }=2^{-6}$.
- Differential probability : $p \leq 2^{-6 \times 25}=2^{-150}$.

AES

Design of the AES

- AES Permutation : structurally bounded diffusion for any rounds
- Provably resistant to non-RK differential attacks
- Ad-hoc key schedule \Longrightarrow RK Attacks [BKN-C09], [BK-A09], [BN-E10].

Minimal Number of Active S-Boxes for AES

Rounds	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\boldsymbol{\operatorname { m i n }}$	1	5	9	25	26	30	34	50	51	55

Question: Similar numbers for AES structure in the RK model?

Our Contributions

■ We propose an algorithm finding all the "smallest" RK characteristics

■ It improves previous works : runs in time linear in the number of rounds

■ We focus on AES-128

■ We provide a distinguisher for 9-round AES-128

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- Works by induction : derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Δ_{1}

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- Works by induction : derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- Works by induction : derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- Works by induction : derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- Works by induction : derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- Works by induction : derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2 R
- Pruning possible (A^{*} optim.)

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- Works by induction : derive best n-round char. from best chars. on $1, \ldots, n-1$ rounds
- Compute best char. for 1 R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A^{*} optim.)

Pros

- Very efficient on DES

Drawbacks

- Rely on non-equivalent differential probabilities
- Need for dominant characteristic(s)
- Poor performances for AES
- Differences visited several times

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Existing Algorithms (2/2)

Biryukov-Nikolic [BN-E10]

- Adapt Matsui's algorithm
- Different algos for several KS

Pros

- No need for a predominant char.
- Switch to truncated differences \Longrightarrow less edges
- Representation of trunc. differences \Longrightarrow handle branching in the KS
- Work on AES

Cons

- Differences visited several times
- Nodes visited exponential in the number of rounds

Tree Example

$$
p_{i}^{j} \stackrel{\text { def }}{=} \mathbb{P}\left(\Delta_{i} \rightarrow \Delta_{j}\right)
$$

Our Algorithm

Algorithm

- Switch to a graph representation

Graph Example

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round

Graph Example

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Dynamic programming approach

Graph Example

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Dynamic programming approach

Pros

- Path search seen as Markov process
- Each difference in each round is visited only once
- Numbers of nodes and edges are linear in the number of rounds
- A^{*} optimization still applies

Notes

- Only partial information propagated
- Need to adapt the Markov process

Graph Example

Different Levels of Analysis

Truncated Differences

- Basic Markov process
- Apply to any SPN cipher : we focus on AES-like ciphers
- Provide a structural evaluation of the cipher in regard to RK attacks
- For AES, similar results as the seminal work [DR-02] (for non-RK)

Actual Differences

- Enhanced Markov process :
- More complete representation of differences
- Add information for local system resolutions
- Need to be adapted to a particular cipher
- For AES, recover all the truncated results from [BN-E10]
- Full instantiation of characteristics while maximizing its probability
- Running time linear in the number of rounds

In reality: Mixing the two concepts

Application to the Structure of AES-128

Structural Analysis

- We ignore the semantic definition of the S-Box and the MDS matrix
- We count the number of active S-Boxes (truncated differences)
- Do not apply to AES-128 with the instantiated S and P
- Give an estimation of the structural quality of the AES family

Related-Key Model (XOR difference of the keys)

Rounds	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\boldsymbol{\operatorname { m i n }}$	0	1	3	9	11	13	15	21	23	25

Impossibility Results for the Structure of AES-128 (1/2)

There exists a characteristic on 10 rounds with only 25 active S-Boxes \Longrightarrow best RK differential attack in $p_{\max }^{-25}$ computations.

Result 1

It is impossible to prove the security of the full AES-128 against related-key differential attacks without considering the differential property of the S-Box.

Notes

- With a random S-Box, $p_{\max }^{-25}$ might be smaller than 2^{128} \Longrightarrow when $p_{\text {max }} \geq 2^{-5}$
- AES structure on its own not enough for RK security
- For a specified S-Box with bounded $p_{\max } \leq 2^{-6}$ \Longrightarrow security against RK attacks

Impossibility Results for the Structure of AES-128 (2/2)

There exists a characteristic on 8 rounds with only 21 active S-Boxes \Longrightarrow best RK differential attack in $p_{\max }^{-21}$ computations.

Result 2

It is impossible to prove the security of 8-round AES-128 against related-key differential attacks without considering both the differential property of the S-Box and the P layer.

Notes

- With a random S-Box, same reason as before
- For a specified S-Box with bounded $p_{\max } \leq 2^{-6}$:
- Best attack might be $2^{6 \times 21}=2^{126} \leq 2^{128}$
- For AES, we have exhausted all the possible attacks, no valid one
- P layer and KS introduce linear dependencies in the characteristic
- P can be chosen such that there is/isn't solutions

Related-Key attacks on AES-128

RK attacks against AES-128

- After 6 rounds, there is no RK characteristic for AES-128 with a probability greater than 2^{-128}.
- For $1, \ldots, 5$ rounds, our algorithm has found the best characteristics
- Same truncated characteristics as [BN-E10]
- Best instantiations of differences : maximal probabilities.

Best RK attacks on AES-128

Rounds	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
\#S-Boxes	0	1	5	13	17
$[B N-E 10]$	0	-6	-30	-78	-102
$\max \log _{\mathbf{2}}(\boldsymbol{p})$	0	-6	-31	-81	-105

Distinguishing model [KR-A07, BKN-C09]

Solve Open-Problem

We can use the best 5-round characteristic to construct a chosen-key distinguisher for 9-round AES-128.

Let \mathcal{E}_{k} be the 9 -round AES-128 block cipher using key k.

Limited Birthday Problem [GP-FSE10]

Given

- a fully instantiated difference δ in the key,
- a partially instantiated difference $\Delta_{I N}$ in the plaintext,
- a partially instantiated difference $\Delta_{\text {OUT }}$ in the ciphertext, find
- a key k,
- a pair of messages $\left(m, m^{\prime}\right)$,
such that :

$$
\begin{aligned}
& m \oplus m^{\prime} \in \Delta_{I N} \\
\text { and }: & \mathcal{E}_{k}(m) \oplus \mathcal{E}_{k \oplus \delta}\left(m^{\prime}\right) \in \Delta_{\text {OUT }} .
\end{aligned}
$$

9-Round characteristic for AES-128

Construction of the characteristic
Take the best 5-round characteristic for AES-128 we have found.

9-Round characteristic for AES-128

Construction of the characteristic
Prepend three rounds to be controlled by the SuperSBox technique.

9-Round characteristic for AES-128

Construction of the characteristic
Prepend one other round, as inactive as possible.

9-Round CK Distinguisher for AES-128

Distinguishing algorithm

- Generate a valid pair of keys (about 2^{27} of them, since $\mathbb{P}_{K S}=2^{-101}$)
- Store the ith SuperSBox from $S_{\text {start }}^{\prime}$ to $S_{\text {end }}$ in T_{i}
- For all 5 differences at $S_{\text {start }}$, check the tables and :
- Check backward direction : $p=2^{-7}$ (a single S-Box)
- Check forward direction : $p=2^{-6 \times 8}=2^{-48}$ (6 S-Boxes)

Time complexity

Complexity of the distinguishing algorithm

- Check probability : $2^{-7-48}=2^{-55}$
- Time complexity :

$$
2^{15} \times\left(2^{32}+2^{40}\right) \approx 2^{55} \text { computations }
$$

- For 2^{15} different pairs of keys :
- Construct the SuperSBoxes in 2^{32} operations
- Try all values for the 5 byte-differences in 2^{40} operations

Generic time complexity

- Limited-Birthday Problem [GP-FSE10]
- Input space ($\Delta_{I N}$) of size $4 \times 8+7=39$ bits
- Output space ($\Delta_{\text {OUT }}$) of size $3 \times 7=21$ bits
- Time complexity : 2^{68} encryptions

Conclusion

■ New algorithm for SPN ciphers

- Graph-based approach : Dijkstra and A^{*} optimization
- Search the best truncated differential characteristics
- Instantiation \Longrightarrow best differential characteristics
- Time complexity linear in the number of rounds considered

■ Applications to the structure of AES-128:

- Impossibility results for related-key attacks
- Impossibility results for the hash function setting

■ Chosen-key distinguisher for 9-rounds AES-128

- Solve open problem
- Time Complexity : 2^{55} encryptions
- Generic Complexity : 2^{68} encryptions

■ More details in the paper and its extended version (ePrint/2013/366)

Conclusion

■ New algorithm for SPN ciphers

- Graph-based approach : Dijkstra and A^{*} optimization
- Search the best truncated differential characteristics
- Instantiation \Longrightarrow best differential characteristics
- Time complexity linear in the number of rounds considered
- Applications to the structure of AES-128:
- Impossibility results for related-key attacks
- Impossibility results for the hash function setting

■ Chosen-key distinguisher for 9-rounds AES-128

- Solve open problem
- Time Complexity : 2^{55} encryptions
- Generic Complexity : 2^{68} encryptions

■ More details in the paper and its extended version (ePrint/2013/366)

Thank you!

Thanks to the organizing committee and sponsors for waiving my registration fee.

