Structural Evaluation of AES and Chosen-Key Distinguisher of 9-round AES-128

Pierre-Alain Fouque¹ Jérémy Jean² Thomas Peyrin³

¹Université de Rennes 1, France

²École Normale Supérieure, France

³Nanyang Technological University, Singapore

CRYPTO'2013 - August 19, 2013

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
Block Ciphe	rs			

Iterated SPN Block Ciphers

- Internal Permutation : f
- Number of Iterations : r
- SPN : f = P o S applies Substitution (S) and Permutation (P) layers.
- Secret Key : k
- Key Scheduling Algorithm : $k \rightarrow (k_0, \ldots, k_r)$
- Ex : AES, PRESENT, SQUARE, Serpent, etc.

CRYPTO'13 - P-A. Fouque, J. Jean, T. Peyrin - Structural Evaluation of AES and CK Dist. of 9R AES-128 2/18

 Motivations
 Algorithms
 Structural Analysis
 Distinguishing 9R AES-128
 The End

 Differentials
 and
 Differential
 Characteristics

Differential Characteristics

- Used in differential cryptanalysis
- Sequence of differences at each round for an iterated primitive
- The success probability of a differential attack depends on the differential with maximal differential probability p.

Example : 4-round AES

- 4-round characteristic with 25 active S-Boxes (minimal).
- AES S-Box : $p_{max} = 2^{-6}$.
- Differential probability : $p \le 2^{-6 \times 25} = 2^{-150}$.

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
AES				

Design of the AES

- ► AES Permutation : structurally bounded diffusion for any rounds
- Provably resistant to non-RK differential attacks
- ► Ad-hoc key schedule ⇒ RK Attacks [BKN-C09], [BK-A09], [BN-E10].

Minimal Number of Active S-Boxes for AES												
	Rounds	1	2	3	4	5	6	7	8	9	10	
	min	1	5	9	25	26	30	34	50	51	55	

Question : Similar numbers for AES structure in the RK model?

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
Our Contrib	outions			

- We propose an algorithm finding all the "smallest" RK characteristics
- It improves previous works : runs in time linear in the number of rounds
- We focus on AES-128
- We provide a distinguisher for 9-round AES-128

Algorithms

Structural Analysis

Distinguishing 9R AES-128

The End

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- ► Works by induction : derive best *n*-round char. from best chars. on 1,..., *n* − 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_i^j \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_i o \Delta_j)$$

 Δ_1

Algorithms

Structural Analysis

Distinguishing 9R AES-128

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- ► Works by induction : derive best *n*-round char. from best chars. on 1,..., *n* − 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Algorithms

Structural Analysis

Distinguishing 9R AES-128

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- ► Works by induction : derive best *n*-round char. from best chars. on 1,..., *n* − 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Algorithms

Structural Analysis

Distinguishing 9R AES-128

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- ► Works by induction : derive best *n*-round char. from best chars. on 1,..., *n* − 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_i^j \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_i o \Delta_j)$$

Algorithms

Structural Analysis

Distinguishing 9R AES-128

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- ► Works by induction : derive best *n*-round char. from best chars. on 1,..., *n* − 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Tree Example

$$p_i^j \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_i o \Delta_j)$$

Algorithms

Structural Analysis

Distinguishing 9R AES-128

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- ► Works by induction : derive best *n*-round char. from best chars. on 1,..., *n* − 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Algorithms

Structural Analysis

Distinguishing 9R AES-128

Existing Algorithms (1/2)

Matsui's Algorithm (e.g., for DES)

- ► Works by induction : derive best *n*-round char. from best chars. on 1,..., *n* − 1 rounds
- Compute best char. for 1R
- Traverse a tree of depth 2 for 2R
- Pruning possible (A* optim.)

Pros

Very efficient on DES

Drawbacks

- Rely on non-equivalent differential probabilities
- Need for dominant characteristic(s)
- Poor performances for AES
- Differences visited several times

Existing Algorithms (2/2)

Biryukov-Nikolic [BN-E10]

- Adapt Matsui's algorithm
- Different algos for several KS

Pros

- No need for a predominant char.
- Switch to truncated differences
 less edges
- Representation of trunc. differences
 ⇒ handle branching in the KS
- Work on AES

Cons

- Differences visited several times
- Nodes visited exponential in the number of rounds

Tree Example

$$p_i^j \stackrel{\mathsf{def}}{=} \mathbb{P}(\Delta_i o \Delta_j)$$

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
Our Algori	thm			
Algorithm Switch t	to a graph repres	entation Gra	$\begin{array}{c} \text{aph Example} \\ \Delta_1 \\ \hline \\ \\ \Delta_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\Delta_{4}\star$ Δ_{6} $\Delta_{1}\star$

 Δ_8

Δg

 Δ_5

Algorithms

Structural Analysis

Distinguishing 9R AES-128

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Dynamic programming approach

Our Algorithm

Algorithm

- Switch to a graph representation
- Merge equal diff. of the same round
- Graph traversal similar as Dijkstra
- Dynamic programming approach

Pros

- Path search seen as Markov process
- Each difference in each round is visited only once
- Numbers of nodes and edges are linear in the number of rounds
- A* optimization still applies

Notes

- Only partial information propagated
- Need to adapt the Markov process

Truncated Differences

- Basic Markov process
- Apply to any SPN cipher : we focus on AES-like ciphers
- Provide a structural evaluation of the cipher in regard to RK attacks
- ► For AES, similar results as the seminal work [DR-02] (for non-RK)

Actual Differences

- Enhanced Markov process :
 - More complete representation of differences
 - Add information for local system resolutions
- Need to be adapted to a particular cipher
- ► For AES, recover all the truncated results from [BN-E10]
- Full instantiation of characteristics while maximizing its probability
- Running time linear in the number of rounds

In reality : Mixing the two concepts

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
Applicatio	n to the Str	ucture of AES-12	8	

Structural Analysis

- We ignore the semantic definition of the S-Box and the MDS matrix
- We count the number of active S-Boxes (truncated differences)
- Do not apply to AES-128 with the instantiated S and P
- Give an estimation of the structural quality of the AES family

Re	Related-Key Model (XOR difference of the keys)											
	Rounds	1	2	3	4	5	6	7	8	9	10	
-	min	0	1	3	9	11	13	15	21	23	25	

- \implies when $p_{max} \ge 2^{-5}$
- ► AES structure on its own not enough for RK security
- For a specified S-Box with bounded p_{max} ≤ 2⁻⁶ ⇒ security against RK attacks

 Motivations
 Algorithms
 Structural Analysis
 Distinguishing 9R AES-128
 The End

 Impossibility Results for the Structure of AES-128 (2/2)
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7

There exists a characteristic on 8 rounds with only 21 active S-Boxes \implies best RK differential attack in p_{max}^{-21} computations.

Result 2

It is impossible to prove the security of 8-round AES-128 against **related-key differential attacks** without considering both the differential property of the S-Box and the P layer.

Notes

- ▶ With a random S-Box, same reason as before
- For a specified S-Box with bounded $p_{max} \leq 2^{-6}$:
 - Best attack might be $2^{6 \times 21} = 2^{126} \le 2^{128}$
 - \blacktriangleright For <code>AES</code>, we have exhausted all the possible attacks, no valid one
 - ► P layer and KS introduce linear dependencies in the characteristic
 - P can be chosen such that there is/isn't solutions

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
Related-Key	attacks o	n AES-128		

RK attacks against AES-128

- ► After 6 rounds, there is no RK characteristic for AES-128 with a probability greater than 2⁻¹²⁸.
- For $1, \ldots, 5$ rounds, our algorithm has found the best characteristics
- Same truncated characteristics as [BN-E10]
- Best instantiations of differences : maximal probabilities.

Best RK attacks on AES-128						
Rounds	1	2	3	4	5	
#S-Boxes	0	1	5	13	17	
[BN-E10]	0	-6	-30	-78	-102	
$\max \log_2(p)$	0	-6	-31	-81	-105	

Distinguishing 9R AES-128

Distinguishing model [KR-A07, BKN-C09]

Solve Open-Problem

We can use the best 5-round characteristic to construct a chosen-key distinguisher for 9-round AES-128.

Let \mathcal{E}_k be the 9-round AES-128 block cipher using key k.

Limited Birthday Problem [GP-FSE10]

Given

- a fully instantiated difference δ in the key,
- a partially instantiated difference Δ_{IN} in the plaintext,
- ▶ a partially instantiated difference Δ_{OUT} in the ciphertext,

find

```
► a key <u>k</u>,
```

▶ a pair of messages (*m*, *m*′),

such that :

$$m \oplus m' \in \Delta_{IN}$$

and : $\mathcal{E}_{k}(m) \oplus \mathcal{E}_{k \oplus \delta}(m') \in \Delta_{OUT}$.

Construction of the characteristic

Take the best 5-round characteristic for AES-128 we have found.

Construction of the characteristic

Prepend three rounds to be controlled by the SuperSBox technique.

CRYPTO'13 - P-A. Fouque, J. Jean, T. Peyrin - Structural Evaluation of AES and CK Dist. of 9R AES-128 15/18

 Motivations
 Algorithms
 Structural Analysis
 Distinguishing 9R AES-128
 The End

 9-Round characteristic for AES-128
 AES-128
 The End
 AES-128
 AES-128

Construction of the characteristic

Prepend one other round, as inactive as possible.

Distinguishing algorithm

- Generate a valid pair of keys (about 2^{27} of them, since $\mathbb{P}_{KS} = 2^{-101}$)
 - Store the *i*th SuperSBox from S'_{start} to S_{end} in T_i
 - ▶ For all 5 differences at S_{start}, check the tables and :
 - Check backward direction : $p = 2^{-7}$ (a single S-Box)
 - Check forward direction : $p = 2^{-6 \times 8} = 2^{-48}$ (6 S-Boxes)

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
Time com	plexity			

Complexity of the distinguishing algorithm

- Check probability : $2^{-7-48} = 2^{-55}$
- Time complexity :

 $2^{15} \times (2^{32} + 2^{40}) \approx 2^{55}$ computations

• For 2¹⁵ different pairs of keys :

- Construct the SuperSBoxes in 2³² operations
- Try all values for the 5 byte-differences in 2⁴⁰ operations

Generic time complexity

- Limited-Birthday Problem [GP-FSE10]
- Input space (Δ_{IN}) of size $4 \times 8 + 7 = 39$ bits
- ► Output space (Δ_{OUT}) of size 3 × 7 = 21 bits
- ► Time complexity : 2⁶⁸ encryptions

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
Conclusion				

- New algorithm for SPN ciphers
 - ► Graph-based approach : Dijkstra and A* optimization
 - Search the best truncated differential characteristics
 - Instantiation => best differential characteristics
 - Time complexity linear in the number of rounds considered
- Applications to the structure of AES-128 :
 - Impossibility results for related-key attacks
 - Impossibility results for the hash function setting
- Chosen-key distinguisher for 9-rounds AES-128
 - Solve open problem
 - ▶ Time Complexity : 2⁵⁵ encryptions
 - ▶ Generic Complexity : 2⁶⁸ encryptions
- More details in the paper and its extended version (ePrint/2013/366)

Motivations	Algorithms	Structural Analysis	Distinguishing 9R AES-128	The End
Conclusion				

- New algorithm for SPN ciphers
 - ► Graph-based approach : Dijkstra and A* optimization
 - Search the best truncated differential characteristics
 - Instantiation => best differential characteristics
 - Time complexity linear in the number of rounds considered
- Applications to the structure of AES-128 :
 - Impossibility results for related-key attacks
 - Impossibility results for the hash function setting
- Chosen-key distinguisher for 9-rounds AES-128
 - Solve open problem
 - ▶ Time Complexity : 2⁵⁵ encryptions
 - ▶ Generic Complexity : 2⁶⁸ encryptions
- More details in the paper and its extended version (ePrint/2013/366)

Thank you!

Thanks to the organizing committee and sponsors for waiving my registration fee.