

Updates on Generic Attacks against HMAC and NMAC

Jian GuoNanyang Technological University, SingaporeThomas PeyrinNanyang Technological University, SingaporeYu SasakiNTT Secure Platform Laboratories, JapanLei WangNanyang Technological University Singapore18/August/2014CRYPTO 2014

Message Authentication Codes (MAC)

- MAC provides integrity of message.
- often constructed with a hash function.

novative B&D by N

NMAC [BCK96]

• Compute T with 2 hash function calls. |K| = 2l.

2

NMAC (compression function level)

• In practice, message is processed block by block.

3

Innovative R&D by NT

HMAC [BCK96]

 2 hash function calls with 1 key of arbitrary key length (K is first padded to block size.)

- When n = l, security is proven up to $O(2^{\frac{n}{2}})$. (The bound comes from an internal collision)
- Expecting up to $O(2^{\frac{1}{2}})$ is natural for l > n.

• The tight attack is known [BO96]. With $O(2^{\frac{l}{2}})$ queries, NMAC/HMAC cannot be PRF.

• Existential Forgery

find (M, T) where M is not queried yet

Selective Forgery

find (M, T) where M is selected before attack

• Universal Forgery find (*M*, *T*) for any *M* • Distinguishing-R

distinguish MAC oracle and PRF

• Distinguishing-H

distinguish underlying comp. func. from RF

• Key Recovery

Recover (K_{in}, K_{out}) or recovery original K

Attack	Prev. Comp.	Ours	Tight?
Existential Forgery	$O(2^{l/2})$		Yes
Selective Forgery	$O(2^{5l/6})$		
Universal Forgery	$O(2^{5l/6})$		
Distinguishing-R	$O(2^{l/2})$		Yes
Distinguishing-H	$O(2^{l/2})$		Yes
Key Recovery	?		

Attack	Prev. Comp.	Ours	Tight?
Existential Forgery	$O(2^{l/2})$		Yes
Selective Forgery	$O(2^{5l/6})$	$O(2^{l/2})$	Yes
Universal Forgery	$O(2^{5l/6})$	$O(2^{3l/4})$	
Distinguishing-R	$O(2^{l/2})$		Yes
Distinguishing-H	$O(2^{l/2})$		Yes
Key Recovery	0 (2 ^{<i>l</i>})	Off: $O(2^{l})$ On: $O(2^{3l})$	^{′4})

Recent Techniques for Generic Attacks against HMAC

Copyright©2014 NTT corp. All Rights Reserved.

- Inner function accepts a long message.
- Detect properties of *f* offline in order to reduce the online cost.
- Draw a functional graph f.

10

Functional Graph

- Fix message value for all blocks to const, e.g. 0.
- $f_0: \{0,1\}^l \to \{0,1\}^l$
- f_0 can be represented as a graph

- The largest cycle size: $O(2^{l/2})$
- The longest tail size: $O(2^{l/2})$
- **Height** of node (λ): distance to reach the cycle

Improved Universal Forgery

Copyright©2014 NTT corp. All Rights Reserved.

Previous Attack Idea [PW14] (1/3)

Offline: generate 2^{l-s} nodes in the random graph

 2^{l-s} nodes:

 n_1, n_2, \dots, n_{l-s}

- Internal state values (X_1, \dots, X_s) are unknown.
- Need to test all pairs of (X_i, n_j) : $O(2^l)$ cost.
- Height of (X_1, \dots, X_s) can be recovered.
 - [LPW13] detects the height of each node with $O(2^{l/2})$.

Previous Attack Idea [PW14] (3/3)

Online $(X_1,\lambda(X_1))$ $(X_2,\lambda(X_2))$ $(X_3,\lambda(X_3))$ $(X_4,\lambda(X_4))$ $(X_{s},\lambda(X_{s}))$

- The match of nodes is checked only if the height matches. The cost is reduced from $O(2^l)$.
- Previous attack cost: $O(2^{5l/6})$.

Use more information on the height distribution

- Which height is the most popular?
- Reducing the attack complexity only by collecting nodes with the popular height

[Mutafchiev88, Lemma 2]

Theorem 4 ([13, Lemma 2]). If $l \to \infty$ and $\lambda = o(2^{l/2})$, the mean value of the λ -th stratum S_{λ} is $\sqrt{\pi/2} * 2^{l/2}$.

 [Mutafchiev88, Lemma 2] shows the property of the entire functional graph, which requires O(2^l) cost to draw.

• No advantage compared to brute force attack.

 Need to detect the distribution for a part of the functional graph.

No proven result is known --> Our Conjecture

Conjecture 1. If in total 2^t distinct nodes, where $l/2 \leq t \leq l$ holds, are collected following the procedure in Section 5.1, then for any integer λ satisfying $1 \leq \lambda \leq 2^{l/2}/l$, there are $\Theta(2^{t-l/2})$ nodes collected with the height value λ .

Experimental Results

- Attack was improved with the strict height distribution.
- When $2^{l/4} \le |M| \le 2^{3l/4}$, both offline and online costs are balanced with $O(2^{3l/4})$.

Innovative R&D by NTT

Proposed improved generic attack on NMAC, HMAC and similar MACs

- Selective Forgery with $O(2^{l/2})$ Tight !
- Universal Forgery with $O(2^{3l/4})$ Improved !!
- Tradeoff for Key Recovery Attack First trail !!!

Previous lemma was generalized as a conjecture. The experiment matches the conjecture well. Its formal proof is an open problem.

Thank you for your attention !!

2. Large amount of freedom degrees: $O(2^{2l/3})$

Copyright©2014 NTT corp. All Rights Reserved.

Innovative R&D by NT

Offline:

• Draw a functional graph of f_0 . Find a largest cycle length L. Cost: $O(2^{l/2})$

- Offline
 - Draw a functional graph
 - Select Qery₁ as a target

nnovative B&D by N

- Online
 - Send $Qery_2$ to the oracle to obtain tag T.
 - $(Query_2, T)$ is a valid tag.

Cost: $O(2^{l/2})$

Hellman's Tradeoff for Key Recovery

Copyright©2014 NTT corp. All Rights Reserved.

Simple Application for NMAC (|K| = 2l)

- Regard NMAC as n-bit to n-bit function
- Simple Hellman's TM-tradeoff:
 - Precomp = $O(2^{2l})$, Online Mem=Time= $O(2^{3l/4})$

nnovative B&D by N

Easy Generic Key Recovery with $O(2^l)$

- 1. Recover K_{in} with $O(2^l)$ cost.
 - Find a collision of the inner function with online queries. (existential forgery attack)
 - Guess *K*_{*in*} and check if the collision is obtained.
- 2. Exhaustive search on K_{out} with $O(2^l)$ cost.
- 2n-bit key is recovered with $O(2^l)$, which is already better than simple tradeoff on 2n bits.

This motivated us to find an improved tradeoff for the key recovery attack.

Idea

Firstly recover Kout

- Input message is unknown.
- Combine:
 - Hellman's tradeoff
 - Inner state recovery
- Secondly recover K_{in}.
- Cannot be simple.
 - Use the height distribution (based on our conjecture)

