The PHOTON Family of Lightweight Hash Functions

Jian Guo, Thomas Peyrin and Axel Poschmann

I2R and NTU

ECRYPT II Hash Workshop 2011

Tallinn, Estonia

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

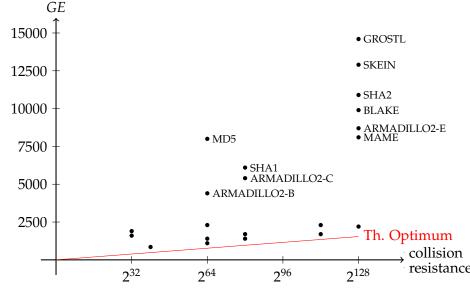
The Security of PHOTON

Lightweight hash functions

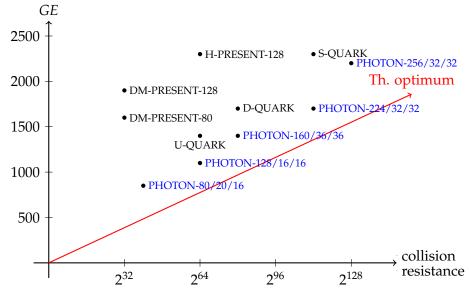
Why do we need lightweight hash functions?

- RFID device authentication and privacy
- in most of the privacy-preserving RFID protocols proposed, a hash function is required
- a basic RFID tag may have a total gate count of anywhere from 1000-10000 gates, with only 200-2000 gates budgeted for security
- hardware throughput and software performances are not the most important criterias, but they must be acceptable

Current picture - graphically



Current picture - graphically



Introduction and Motivation

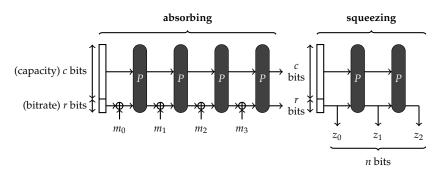
Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Orginial sponge functions [Bertoni et al. 2007]



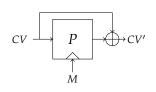
A sponge function has been proven to be indifferentiable from a random oracle up to $2^{c/2}$ calls to the internal permutation P. However, **the best known generic attacks have the following complexity:**

- **Collision:** $\min\{2^{n/2}, 2^{c/2}\}$
- Second-preimage: $min\{2^n, 2^{c/2}\}$
- **Preimage:** $\min\{2^{\min\{n,c+r\}}, \max\{2^{\min\{n-r,c\}}, 2^{c/2}\}\}$

Sponges vs Davies-Meyer

We would like to build the smallest possible hash function with no better collision attack that generic ($2^{n/2}$ operations). Thus **we try to minimize the internal state size**:

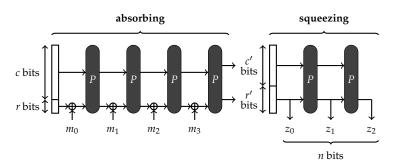
• in a classical Davies-Meyer compression function using a m-bit block cipher with k-bit key, one needs to store 2m + k bits. We minimize the internal state size with $m \simeq n$ and k as small as possible.



• in sponge functions, one needs to store c + r bits. We minimize the internal state size by using $c \simeq n$ and a bitrate r as small as possible.

Sponge function will require about twice less memory bits for lightweight scenarios.

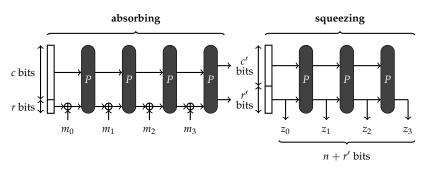
Generalization 1



Sponges with small r are slow for small messages (which is a typical usecase for lightweight applications, as an example EPC is 96 bit long). Thus we can allow the output bitrate r' to be different from the input bitrate r and obtain a preimage security / small message speed tradeoff:

- **Collision:** $\min\{2^{n/2}, 2^{c/2}\}$
- Second-preimage: $min\{2^n, 2^{c/2}\}$
- **Preimage:** $\min\{2^{\min\{n,c+r\}}, \max\{2^{(\min\{n,c+r\}-r')}, 2^{c/2}\}\}$

Generalization 2



Sponges with $c \simeq n$ **are not** n**-bit preimage resistant** (often only preimage resistance is needed for lightweight applications). Thus **we can allow for bigger outputs by adding an extra squeezing step** and increase the preimage security:

- **Collision:** $\min\{2^{(n+r')/2}, 2^{c/2}\}$
- Second-preimage: $\min\{2^{(n+r')}, 2^{c/2}\}$
- **Preimage:** $\min\{2^{(\min\{n+r',c+r\})}, \max\{2^{\min\{n,c+r-r'\}}, 2^{c/2}\}\}$

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

MDS Matrix

What is an **MDS Matrix** ("Maximum Distance Separable")?

- it is used as diffusion layer in many block ciphers and in particular AES
- it has excellent diffusion properties. In short, for a *d*-cell vector, we are ensured that at least *d* + 1 input / output cells will be active ...
- ... which is very good for linear / differential cryptanalysis resistance

The AES diffusion matrix can be implemented fast in software (using tables), but **the situation is not so great in hardware**. Indeed, even if the coefficients of the matrix minimize the hardware footprint, d-1 **cells of temporary memory are needed for the computation**.

$$A = \left(\begin{array}{rrrr} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{array}\right)$$

<u>Idea:</u> use a MDS matrix that can be efficiently computed in a serial way.

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- as good as AES in software, we can use *d* lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware

<u>Idea:</u> use a MDS matrix that can be efficiently computed in a serial way.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & & & & & \vdots & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix} =$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- **as good as** AES **in software**, we can use *d* lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware

<u>Idea:</u> use a MDS matrix that can be efficiently computed in a serial way.

$$\begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & & & & \vdots & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix}$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- **as good as** AES **in software**, we can use *d* lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware

<u>Idea:</u> use a MDS matrix that can be efficiently computed in a serial way.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & & & & & \vdots & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix}$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- **as good as** AES **in software**, we can use *d* lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware

<u>Idea:</u> use a MDS matrix that can be efficiently computed in a serial way.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & & & & \vdots & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix}$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- **as good as** AES **in software**, we can use *d* lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware

<u>Idea:</u> use a MDS matrix that can be efficiently computed in a serial way.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & & & & \vdots & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix}$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- **as good as** AES **in software**, we can use *d* lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware

<u>Idea:</u> use a MDS matrix that can be efficiently computed in a serial way.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & & & & \vdots & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix}$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- **as good as** AES **in software**, we can use *d* lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware

<u>Idea:</u> use a MDS matrix that can be efficiently computed in a serial way.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & & & & \vdots & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ Z_0 & Z_1 & Z_2 & Z_3 & \cdots & Z_{d-4} & Z_{d-3} & Z_{d-2} & Z_{d-1} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-4} \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{d-3} \\ v_{d-2} \\ v_{d-1} \\ v'_0 \end{pmatrix}$$

- we keep the same good diffusion properties since A^d is MDS
- excellent in hardware (no additional memory cell needed)
- **as good as** AES **in software**, we can use *d* lookup tables
- same coefficients for deciphering, so the invert of the matrix is also excellent in hardware

Tweaking AES for hardware: AES-HW

The smallest AES implementation requires 2400 GE with 263 GE dedicated to the MixColumns layer (the matrix A is MDS).

$$A = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} 14 & 11 & 13 & 9 \\ 9 & 14 & 11 & 13 \\ 13 & 9 & 14 & 11 \\ 11 & 13 & 9 & 14 \end{pmatrix}$$

Our tweaked AES-HW implementation requires 2210 GE with 74 GE dedicated to the MixColumnsSerial layer (the matrix $(B)^4$ is MDS):

$$(B)^4 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 4 \end{pmatrix}^4 = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 4 & 9 & 6 & 17 \\ 17 & 38 & 24 & 66 \\ 66 & 149 & 100 & 11 \end{pmatrix} \qquad B^{-1} = \begin{pmatrix} 2 & 1 & 4 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Introduction and Motivation

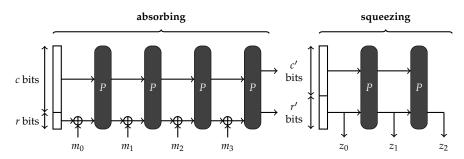
Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

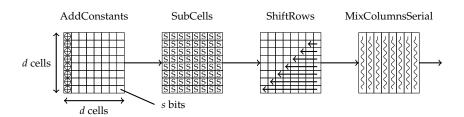
Domain extension algorithm



The (c+r)-bit internal state is viewed as a $d \times d$ matrix of s-bit cells.

PHOTON- $n/r/r'$		n	С	r	r'	d	s
PHOTON-80/20/16	P_{100}	80	80	20	16	5	4
PHOTON-128/16/16	P_{144}	128	128	16	16	6	4
PHOTON-160/36/36	P_{196}	160	160	36	36	7	4
PHOTON-224/32/32	P_{256}	224	224	32	32	8	4
PHOTON-256/32/32	P_{288}	256	256	32	32	6	8

Internal permutations



The internal permutations apply **12 rounds** of an AES-like fixed-key permutation:

- AddConstants: xor round-dependant constants to the first column
- SubCells: apply the PRESENT (when s = 4) or AES Sbox (when s = 8) to each cell
- **ShiftRows:** rotate the i-th line by i positions to the left
- MixColumnsSerial: apply the special MDS matrix to each columns

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Extended sponge claims

Our security claims (a little bit more than flat sponge claims):

- **Collision:** $\min\{2^{n/2}, 2^{c/2}\}$
- Second-preimage: $min\{2^n, 2^{c/2}\}$
- **Preimage:** $\min\{2^{\min\{n,c+r\}}, \max\{2^{\min\{n,c+r\}-r'}, 2^{c/2}\}\}$

For the security proofs, the internal permutation is modeled as a random permutation:

- the problem is reduced to studying the quality of the PHOTON internal permutations
- hermetic sponge strategy: it is assumed that the internal permutations have no structural flaw
- even if one finds a structural flaw for the internal permutations, it is unlikely to turn it into an attack ...
- ... this is particularily true for PHOTON which has a very small bitrate (i.e. the attacker has in practice a very small amount of freedom degrees in order to use the distinguisher).

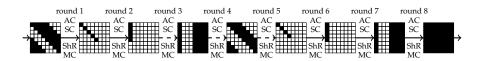
AES-like fixed-key permutation security

- AES-like permutations are simple to understand, well studied, provide very good security
- one can easily derive clear and powerful proofs on the minimal number of active Sboxes for 4 rounds of the permutation: $(d+1)^2$ active Sboxes for 4 rounds of PHOTON
- we avoid any key schedule issue since the permutations are fixed-key

	P_{100}	P_{144}	P_{196}	P_{256}	P_{288}
differential path probability	2^{-72}	2^{-98}	2^{-128}	2^{-162}	2^{-294}
differential probability	2^{-50}	2^{-72}	2^{-98}	2^{-128}	2^{-246}
linear approximation probability	2^{-72}	2^{-98}	2^{-128}	2^{-162}	2^{-294}
linear hull probability	2^{-50}	2^{-72}	2^{-98}	2^{-128}	2^{-246}

Table: Upper bounds for 4 rounds of the five PHOTON internal permutations.

Rebound attack and improvements



The currently best known technique achieves **8 rounds distinguishers** for an AES-like permutation, with quite low complexity.

	P_{100}	P_{144}	P ₁₉₆	P ₂₅₆	P ₂₈₈
computations	28	28	28	28	2 ¹⁶
memory	2 ⁴	2^4	2^4	2 ⁴	28
generic	2 ¹⁰	2 ¹²	2^{14}	2 ¹⁶	2 ²⁴

Improvements are unlikely since no key is used in the permutation, so the amount of freedom degrees given to the attacker is limited to the minimum.

Other cryptanalysis techniques

- **cube testers:** the best we could find within practical time complexity is at most 3 rounds for all PHOTON variants.
- **zero-sum partitions:** distinguishers for at most 8 rounds for the five proposed PHOTON variants (for complexity ≤ preimage claim).
- **algebraic attacks:** the entire system for the internal permutations of PHOTON consists of $d^2 \cdot N_r \cdot \{21, 40\}$ quadratic equations in $d^2 \cdot N_r \cdot \{8, 16\}$ variables.
- slide attacks on permutation level: all rounds of the internal permutation are made different thanks to the round-dependent constants addition.
- slide attacks on operating mode level: the sponge padding rule from PHOTON forces the last message block to be different from zero.
- rotational cryptanalysis: any rotation property in a cell will be directly removed by the application of the Sbox layer.
- **integral attacks:** can reach 7 rounds with complexity $2^{s(2d-1)}$.

Introduction and Motivation

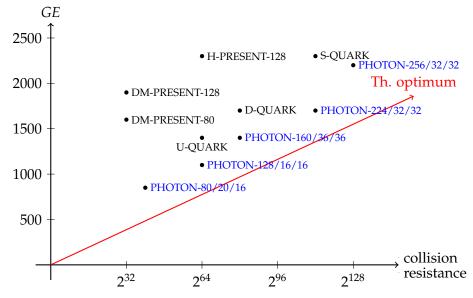
Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Hardware implementation results



Conclusion

The PHOTON family of hash functions

- is very **simple**, clean, based on the AES design strategy
- are the smallest hash functions known so far
- provides acceptable software performances
- provides provable security against classical linear/differential cryptanalysis, and resists all known and recent attacks against hash functions with an extremly large security margin.

Latest results on https://sites.google.com/site/photonhashfunction/

