
ZMAC: A Fast Tweakable Block Cipher
Mode for Highly Secure Message

Authentication

Tetsu Iwata∗1 Kazuhiko Minematsu2

Thomas Peyrin†3 Yannick Seurin‡4

1Nagoya University (Japan) and 2NEC (Japan)
3NTU (Singapore) and 4ANSSI (France)

CRYPTO 2017, California USA
August 22, 2017

∗ Supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), Grant Number 26280045

† Supported by Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06) and Temasek Labs (DSOCL16194)

† Partially supported by French Agence Nationale de la Recherche through the BRUTUS project under Contract ANR-14-CE28-0015

1 / 28

Introduction: Message Authentication Code (MAC)

• Symmetric-key Crypto for tampering detection
• MAC : K × {0, 1}∗ → T
• Alice computes Tag = MAC(K,M) = MACK(M) and sends
(M,Tag) to Bob

• Bob checks if (M,Tag) is authentic by computing tag locally
• If MACK(∗) is a variable-input-length PRF, it is secure

2 / 28

Tweakable Block Cipher (TBC)

Extension of ordinal Block Cipher (BC), formalized by Liskov et
al. [LRW02]
• Ẽ : K × T ×M→M, tweak T ∈ T is a public input
• (K,T) ∈ K × T specifies a permutation overM
• LetM = {0, 1}n and T = {0, 1}t

We implicitly assume additional small tweak i = 1, 2, . . . , used for
domain separation, and write as ẼiK(T,X) when necessary

3 / 28

Building TBC

Block cipher modes for TBC: LRW [LRW02] and XEX [Rog04]
• Efficient but security is up to the birthday bound (O(264) attack

when AES is used)
• Beyond-the-birthday-bound (BBB) security is possible (e.g.

[Min09][LST12][LS15]) but not really efficient
Dedicated designs:
• HPC [Sch98]
• Threefish in Skein hash function [FLS+10]
• Deoxys-BC, Joltik-BC, KIASU-BC [JNP14a], SCREAM [GLS+14],

– in the CAESAR submissions

• SKINNY [BJK+16], QARMA [Ava17], . . .

4 / 28

Security notions of TBC [LRW02]

• Indistinguishable from the set of independent uniform random
permutations indexed by tweak

– Tweakable uniform random permutation (TURP) denoted by P̃
– Tweak is chosen by the adversary

• CCA-secure TBC = TSPRP

• CPA-secure TBC = TPRP

ẼK Ẽ−1
K P̃ P̃

−1

A

5 / 28

Security notions of TBC [LRW02]

• Indistinguishable from the set of independent uniform random
permutations indexed by tweak

– Tweakable uniform random permutation (TURP) denoted by P̃
– Tweak is chosen by the adversary

• CCA-secure TBC = TSPRP
• CPA-secure TBC = TPRP

ẼK P̃

A

5 / 28

Building MAC with TBC : PMAC1

PMAC1 by Rogaway [Rog04], introduced in the proof of PMAC
• Parallel
• Security is up to the birthday bound wrt the block size (n)

– Adv
tprp

PMAC1(σ) = O(σ2/2n) for σ queried blocks
– Thus n/2-bit security

ẼK ẼK ẼK

ẼK

M [1] M [2] M [3] M [4]

Tag

0n

1 2 3

4

PMAC1

6 / 28

Building MAC with TBC: PMAC TBC1k
PMAC TBC1k by Naito [Nai15]
• 2n-bit chaining similar to PMAC Plus [Yas11]

– Finalization by 2n-bit PRF built from TBC
• BBB-secure: improve security of PMAC1 to n bits
• Same computation cost as PMAC1 (except for the finalization)

ẼK ẼK ẼK

M [1] M [2] M [3]

0n

1 2 3

0n
2 2 22 2 2

︷ ︸︸ ︷
multiplication by 2 over GF(2n)

PMAC TBC1k (message hashing part)

7 / 28

Efficiency of MAC

These TBC-based MACs are not optimally efficient
• They process n-bit input per 1 TBC call
• t-bit tweak does not process message – reserved for block index

Optimally-efficient TBC-based MAC?

8 / 28

Efficiency of MAC

These TBC-based MACs are not optimally efficient
• They process n-bit input per 1 TBC call
• t-bit tweak does not process message – reserved for block index

Optimally-efficient TBC-based MAC?

8 / 28

Our proposals: ZMAC (“The MAC”) and ZAE

ZMAC is
• The first optimally efficient TBC-based MAC

– (n+ t)-bit input per 1 TBC call
• Parellel, and BBB-secure

– min{n, (n+ t)/2}-bit security, e.g. n-bit-secure when t ≥ n
ZAE is
• An application of ZMAC to Determinisitic Authenticated Encryption

(DAE) [RS06]
• Better efficiency and security than SCT presented at CRYPTO

2016 [PS16]
Both using TBC as a sole primitive, and secure if TBC is a TPRP

9 / 28

Structure of ZMAC

A simple composition of message hashing and finalization
(Carter-Wegman MAC):
• ZMAC = ZFIN ◦ ZHASH
• ZHASH :M→ {0, 1}n+t is a computational universal hash

function
• ZFIN : {0, 1}n+t → {0, 1}2n is a PRF

– Output truncation if needed

Unified specs for any t (t = n or t < n or t > n)

We focus on ZHASH, the most innovative part in ZMAC

10 / 28

Structure of ZMAC

A simple composition of message hashing and finalization
(Carter-Wegman MAC):
• ZMAC = ZFIN ◦ ZHASH
• ZHASH :M→ {0, 1}n+t is a computational universal hash

function
• ZFIN : {0, 1}n+t → {0, 1}2n is a PRF

– Output truncation if needed

Unified specs for any t (t = n or t < n or t > n)

We focus on ZHASH, the most innovative part in ZMAC

10 / 28

How ZHASH works: tweak extension
Optimal efficiency implies t-bit tweak of Ẽ must be extended to
incorporate block index
This can be done by XTX [MI15], an extension of LRW and XEX:

• Global tweak G ∈ G, |G| > 2t

• Keyed function H : L × G → ({0, 1}n × {0, 1}t)
• XTX[Ẽ,H]K,L(G,X) = ẼK(Wt,Wn ⊕X)⊕Wn with
(Wn,Wt) = HL(G)

11 / 28

How ZHASH works: security of XTX/XT

XTX is secure if H is ε-partial AXU (pAXU) [MI15] :

max
G 6=G′,δ∈{0,1}n

Pr[L
$← L : HL(G)⊕HL(G

′) = (δ, 0t)] ≤ ε

that is, n-bit part is close to differentially uniform and t-bit part has a
small collision probability

12 / 28

How ZHASH works: security of XTX/XT

In our case, G ∈ {0, 1}t︸ ︷︷ ︸
message part

× N︸︷︷︸
block index

†, and block index is a counter

Then XTX can be instantiated and optimized by
• Using the “doubling” trick as XEX
• Omitting the outer mask to Y (as decryption is not needed)

† Omitting domain separation variable

13 / 28

How ZHASH works: security of XTX/XT
The resulting scheme is XT , using HL(G) defined as

H(L`,Lr)(T, i) = (2i−1L`, 2
i−1Lr ⊕t T), using two n-bit keys (L`, Lr)

Details:
• 2iX is X multiplied by 2 over GF(2n) for i times

– Computation is easy by caching 2i−1X as done in XEX
• X ⊕t Y = msbt(X)⊕ Y if t ≤ n, (X ‖ 0t−n)⊕ Y if t > n

– Chop-or-pad before sum

14 / 28

How ZHASH works: security of XTX/XT

Lemma

Let P̃ : T × {0, 1}n → {0, 1}n be a TURP and H is ε-pAXU. Then,

Adv
tprp

XT[P̃,H]
(q) ≤ q2ε

2
.

and our H is 1/2n+min{n,t}-pAXU. Thus,

Adv
tprp

XT[P̃,H]
(q) ≤ q2

2n+min{n,t}+1
.

Therefore, XT has min{n, (n+ t)/2}-bit, BBB-security

15 / 28

How ZHASH works: chaining scheme
Given XT, it’s easy to apply it in the PMAC-like single-chaining hashing
scheme

• Message is divided into (n+ t)-bit blocks, (X`[i], Xr[i]) for
i = 1, 2, . . .

• This is optimally efficient, but security is up to the birthday bound

• Need a larger chaining value

...

Collision w/ 2(n/2)

queries

16 / 28

How ZHASH works: chaining scheme
Given XT, it’s easy to apply it in the PMAC-like single-chaining hashing
scheme

• Message is divided into (n+ t)-bit blocks, (X`[i], Xr[i]) for
i = 1, 2, . . .

• This is optimally efficient, but security is up to the birthday bound
• Need a larger chaining value

...

Collision w/ 2(n/2)

queries

16 / 28

How ZHASH works: chaining scheme

• Naive use of 2n-bit chaining scheme [Nai15][Yas11] doesn’t work
– XT output collision still breaks the scheme

...

Collision w/ 2(n/2)

queries

...

17 / 28

How ZHASH works: chaining scheme
• Key observation: to avoid these collision attacks, the process of
(X`, Xr) (the dotted box) must be a permutation

• A Feistel-like 1-round permutation works (ZHASH)

...

...

ZHASH

Lemma
ZHASH (w/ XT using TURP) is ε-almost universal for ε = 4/2n+min{n,t}

18 / 28

How ZHASH works: chaining scheme
• Key observation: to avoid these collision attacks, the process of
(X`, Xr) (the dotted box) must be a permutation

• A Feistel-like 1-round permutation works (ZHASH)

...

...

ZHASH

Lemma
ZHASH (w/ XT using TURP) is ε-almost universal for ε = 4/2n+min{n,t}

18 / 28

Full ZHASH
Input: X = (X[1], . . . , X[m]), |X[i]| = n+ t
Output (U, V), |U | = n, |V | = t

X[1]

X` Xr

Ẽ8
K t

L`
Lr

t

2

0n

0t

X[2]

X` Xr

Ẽ8
K t

2 · L`
2 · Lr

t

2

. . .

. . .

X[m]

X` Xr

Ẽ8
K t

2m−1 · L`
2m−1 · Lr

t

2

U

V

Details:
• X ⊕t Y = msbt(X)⊕ Y if t ≤ n, (X ‖ 0t−n)⊕ Y if t > n
• 2 ·X : multiplication by 2
• L` and Lr : two n-bit masks from ẼK w/ domain separation

19 / 28

ZFIN
ZFIN simply encrypts U with tweak V twice (for each n-bit output) and
takes a sum (with domain separation)

Ẽi
K

U

V Ẽi+1
K

U

V Ẽi+2
K

U

V Ẽi+3
K

U

V

Y [1] Y [2]

PRF security of ZFIN
• ZFIN is essentially “Sum of Permutations” [Luc00, BI99, Pat08a,

Pat13, CLP14, MN17]
• From a recent result by Dai et al. [DHT17], ZFIN is n-bit secure

Lemma

Adv
prf

ZFIN[P̃]
(q) ≤ 2

(q
2n

)3/2

20 / 28

Security of ZMAC

Combining all lemmas,

Theorem
For q ≤ 2n−4 queries of total σ (n+ t)-bit blocks,

Adv
prf

ZMAC[P̃]
(q, σ) ≤ 2.5σ2

2n+min{n,t} + 4
(q
2n

)3/2
.

Thus ZMAC is min{n, (n+ t)/2}-bit secure

21 / 28

ZAE deterministic authenticated encryption (DAE)

DAE [RS06] is a class of Authenticated Encryption (AE) with the
following features:
• Standard nonce-based AE security when the associated data

(AD) contains distinct nonce at encryption
• Best-possible, DAE security even if nonce is repeated (or there is

no nonce)
– Only the repetition of plaintext is leaked
– Misuse-resistant AE (MRAE)

22 / 28

Building ZAE
Following the generic SIV construction, we need
• PRF: {0, 1}∗︸ ︷︷ ︸

AD(A)

× {0, 1}∗︸ ︷︷ ︸
plaintext(M)

→ {0, 1}2n︸ ︷︷ ︸
Tag

• (random) IV-based encryption: {0, 1}2n︸ ︷︷ ︸
Tag=IV

× {0, 1}∗︸ ︷︷ ︸
plaintext(M)

→ {0, 1}∗︸ ︷︷ ︸
ciphertext(C)

We instantiate
• PRF by ZMAC with input encoding for (A,M)
• IV-based enc by (a variant of) IVCTRT [PS16]

...

23 / 28

Building ZAE
Following the generic SIV construction, we need
• PRF: {0, 1}∗︸ ︷︷ ︸

AD(A)

× {0, 1}∗︸ ︷︷ ︸
plaintext(M)

→ {0, 1}2n︸ ︷︷ ︸
Tag

• (random) IV-based encryption: {0, 1}2n︸ ︷︷ ︸
Tag=IV

× {0, 1}∗︸ ︷︷ ︸
plaintext(M)

→ {0, 1}∗︸ ︷︷ ︸
ciphertext(C)

We instantiate
• PRF by ZMAC with input encoding for (A,M)
• IV-based enc by (a variant of) IVCTRT [PS16]

...

23 / 28

Security of ZAE

Security of ZAE: immediate from bounds of ZMAC, SIV, and IVCTRT

Theorem
For total q ≤ 2n−4 (encryption or decryption) queries and total σ
queried blocks in n bits, we have

Advdae
ZAE[P̃]

(A) ≤ 3.5σ2

2n+min{n,t} + 4
(q
2n

)3/2
+

q

22n

This is better than SCT (n/2-bit DAE security)
For example, ZAE with t = n has n-bit DAE security

24 / 28

Efficiency of ZAE

Efficiency of ZAE:
• n(n+ t)/(2n+ t) input bits per one TBC call

– always better than SCT (n/2 bits), which uses PMAC1 for MAC

• e.g. 2n/3 bits for t = n, 4n/3 bits for t = 2n

25 / 28

Instantiations of ZMAC and ZAE

We used Deoxys-BC [JNP+14] and SKINNY [BJK+16]
• Deoxys-BC: TBC in the CAESAR candidate Deoxys

– AES-based, and AESNI can be used
– 128-bit block, 256 or 384-bit TWEAKEY (Tweak and Key) [JNP+14]

• SKINNY: lightweight 64/128-bit TBC at CRYPTO 2016 [BJK+16]
• TBC performance evaluated under random tweak

– can be slightly slower than counter tweak (depending on the
implementation and platform)

Estimated performance examples on Intel Skylake, using AESNI
• Deoxys-BC-256-ZMAC runs at 0.61 c/B
• Deoxys-BC-256-ZAE runs at 1.48 c/B

– 20 to 30 % gain from other MAC/DAE modes with same TBC

• See the paper for details

26 / 28

Performance considerations

The importance of TBC with large tweak (e.g. t = 2n)
• ZMAC operates faster as t grows
• TBC of large t may not be too slow: extending t by n usually does

not double the number of rounds
ZAE performance optimization:
• For IVCTRT, t = n is sufficient
• ZAE may be optimized by a combination of large-tweak variant

(t > n) with small-tweak variant (t = n)
– E.g. Deoxys-BC-384-ZMAC and Deoxys-BC-256-IVCTRT

27 / 28

Concluding remarks

We proposed ZMAC and ZAE, a highly secure and fast MAC and DAE
based on TBC.

The power of XEX-like masking:
• We already see it in many blockcipher modes (e.g. PMAC, OCB)
• ZMAC shows it is also powerful for TBC modes
• As dedicated TBCs are becoming popular, this direction looks

worth to be further explored
Future topics:
• Other applications (e.g. NAE, RAE or wide-block cipher)
• Even stronger security

Thank you!

28 / 28

Concluding remarks

We proposed ZMAC and ZAE, a highly secure and fast MAC and DAE
based on TBC.

The power of XEX-like masking:
• We already see it in many blockcipher modes (e.g. PMAC, OCB)
• ZMAC shows it is also powerful for TBC modes
• As dedicated TBCs are becoming popular, this direction looks

worth to be further explored
Future topics:
• Other applications (e.g. NAE, RAE or wide-block cipher)
• Even stronger security

Thank you!

28 / 28

