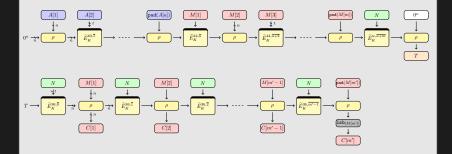

New Results on Romulus

T. Iwata, M. Khairallah, K. Minematsu and T. Peyrin



NIST LWC 2020 Virtual - October 19, 2020 Romulus-N: nonce-respecting

Romulus-N: BBB nonce-respecting AEAD

Romulus-M: BBB nonce-misuse resistant AEAD

We propose the following updates if selected for new round :

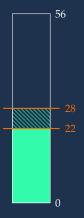
- reduce the number of rounds for the internal primitive
- simplify the submission by removing some variants
- ▷ add hash function Romulus-H
- add two leakage resilient modes
 Romulus-LR and Romulus-LR-TEDT

Additional new results :

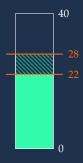
- RUP security proof for Romulus-M
- new software/hardware implementations
- efficient threshold implementation

SKINNY:

- ▶ an ultra lightweight Tweakable Block Cipher (TBC)
- SKINNY is probably the most analysed primitive used in the competition (except AES or Keccak, already standardized)
- ▷ currently in Committee Draft stage at ISO (ISO/IEC 18033-7)
- already used in practical applications


C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich and S.M. Sim **CRYPTO 2016**

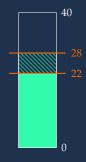
https://sites.google.com/site/skinnycipher/


- SKINNY-128/384 has 56 rounds
- current best attack reaches 28 rounds with 2³¹⁵ time, > 2¹²² data (50% security margin!)
- for attacks with time/data limited to 2¹²⁸, best attack reaches 22 rounds
- SKINNY-128/384 was designed to handle even 384-bit keys, while Romulus uses it as a 128-bit security primitive

SKINNY-128/384

Security margin of SKINNY-128/384 is very (too?) large

- ▷ we reduce the rounds number from 56 to 40
- SKINNY-128/384+ has 40 rounds, proposed by SKINNY team
- still maintains 30% security margin, even for unrealistic 2³¹⁵ attacks
- \triangleright 45% security margin if only considering $< 2^{128}$ time/data



SKINNY-128/384+

Security margin of SKINNY-128/384 is very (too?) large

- \triangleright we reduce the rounds number from 56 to 40
- SKINNY-128/384+ has 40 rounds, proposed by SKINNY team
- still maintains 30% security margin, even for unrealistic 2³¹⁵ attacks
- 45% security margin if only considering
 2¹²⁸ time/data

We directly get a 1.4 performance gain on all current benchmarks

SKINNY-128/384+

We originally proposed 6 versions of Romulus to have several trade-offs.

Previous	Mode	Primitive	Comment
Romulus-N1		SKINNY-128/384	
Romulus-N2	Romulus-N1	SKINNY-128/384	BBB nonce-respecting AEAD
Romulus-N3		SKINNY-128/256	
Romulus-M1		SKINNY-128/384	
Romulus-M2	Romulus-M1	SKINNY-128/384	BBB nonce-misuse resistant AEAD
Romulus-M3		SKINNY-128/256	

In order to simplify, we propose to only keep the main variants Romulus-N1 and Romulus-M1.

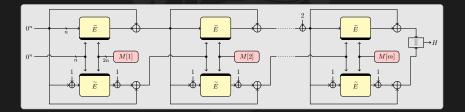
Previous	Mode	Primitive	Comment
Romulus-N2	Romulus-N1	SKINNY-128/384	BBB nonce-respecting AEAD
Romulus-N3		SKINNY-128/256	
Romulus-M1		SKINNY-128/384	
Romulus-M2	Romulus-M1	SKINNY-128/384	BBB nonce-misuse resistant AEAD
Romulus-M3		SKINNY-128/256	

Update : only keep Romulus-N1 and Romulus-M1

Romulus : simpler and faster

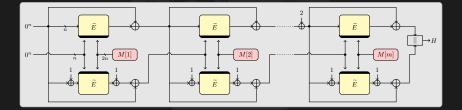
New	Mode	Primitive	Comment		
Romulus-N	Romulus-N1	SKINNY-128/384+	BBB nonce-respecting AEAD		
Romulus-M	Romulus-M1	SKINNI-1207504+	BBB nonce-misuse resistant AEAD		

Update : only keep Romulus-N1 and Romulus-M1

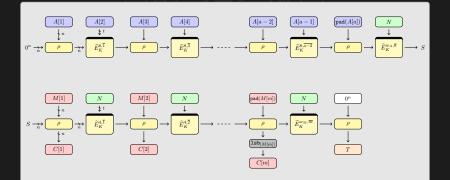

Romulus : simpler and faster

New	Mode	Primitive	Comment		
Romulus-N	Romulus-N1		BBB nonce-respecting AEAD		
Romulus-M	Romulus-M1		BBB nonce-misuse resistant AEAD		
Romulus-H	MDPH	SKINNY-128/384+	Hash function / XOF		
Romulus-LR	AET-LR		Leakage res. AEAD (CIML2 + CCAml1)		
Romulus-LR-TEDT	TEDT		Leakage res. AEAD (CIML2 + CCAmL2)		

Hashing with a 128-bit TBC is very easy with Naito's MDPH :


- build a 256-bit compression function *h* with the well-known Hirose DBL construction (rate 1) [FSE06]
- place *h* into the Merkle-Damgård with Permutation (MDP) mode [JoC12]

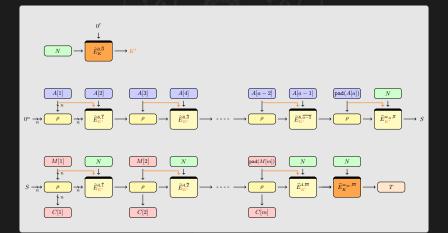
MDPH is indifferentiable from a (variable-input-length) random oracle up to about $(n - \log n)$ queries



Extra features of Romulus-H :

- ▷ XOF : simply use H(M||0), H(M||1), H(M||2), etc.
- Romulus-H can naturally adapt to very constrained area environments by reducing its message block size

One can get some leakage resilience by simply feed-forwarding message block into the tweak input in Romulus-N + key/tag protect



One can get some leakage resilience by simply feed-forwarding message block into the tweak input in Romulus-N + key/tag protect

Romulus-LR : leakage resilience with Romulus

Romulus-LR ensures CIML2 (best for integrity) + CCAml1

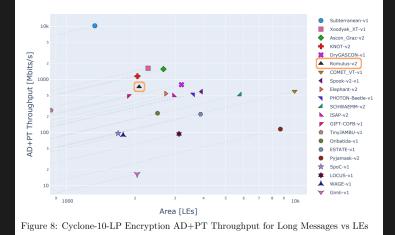
Romulus-LR-TEDT : strong leakage resilience

One can get some strong leakage resilience by simply using TEDT mode [CHES20] with SKINNY-128/384+

Romulus-LR-TEDT ensures CIML2 (best for integrity) + CCAmL2 (best for privacy)

RUP security notion (relevant in case of limited memory) : result of decryption (possibly an unauthentic plaintext) is leaked before the verification result is obtained.

 integrity : Romulus-M is INT-RUP secure (both nonce-respecting and nonce-misuse adversary)
 privacy : Romulus-M is PA1 secure (Plaintext Awarness)


Software performances of Romulus

Cipher	Uno¹ avg. time [µs]	
schwaemm256128v1	2038.020	
tinyjambu128	2206.980	
giftcofb128v1	2339.870	
knot128v1	2362.620	
hyenav1	2455.900	
gimli24v1	2722.500	
ascon128v12	2733.600	
estatetwegift128v1	3010.040	
xoodyakv1	3068.450	
sundaegift96v1	3163.310	P
orangezestv1	3890.570	
romulusn1	3901.450	
spoc128sliscplight256v1	3995.640	
spook128su512v1	4161.550	_
subterraneanv1	4236.020	1
saturninctrcascadev2	4782.230	A. V
twegift64lotusaeadv1	4809.160	
:	:	Sec.6

Cipher	Uno¹ avg. time [µs]
schwaemm256128v1	2038.020
tinyjambu128	2206.980
giftcofb128v1	2339.870
knot128v1	2362.620
<u>hyenav1</u>	2455.900
g <u>imli24v1</u>	2722.500
ascon128v12	2733.600
romulusn1+	2870.170
estatetwegift128v1	3010.040
xoodyakv1	3068.450
sundaegift96v1	3163.310
orangezestv1	3890.570
spoc128sliscplight256v1	3995.640
spook128su512v1	4161.550
subterraneanv1	4236.020
satuminctrcascadev2	4782.230
twegift64lotusaeadv1	4809.160
:	:

Software perf. rankings on AVR (8-bit) from OTH, Germany lwc.las3.de/table.php

Hardware performances of Romulus : FPGA

FPGA performance from GMU, USA

Candidate Th. Area Power				Performance Efficiency		3 Mbps				
Candidate	In.	Area	Power	Energy	Th./Area	Th./Power	Energy×Area	Th./Area	Th./Power	Energy×Area
DryGascon	4	7	7	4	4	4	5	6	8	7
Elephant	6	5	5	6	7	6	7	7		
PHOTON-Beetle	5	6	6	5	6			5		
Pyjamask	8	8	8	8	8		8	8		8
	3	2	2	2	3			2		
Subterranean	1	3	3	10	1		1	3	4	
TinyJambu	7	1	1.20	7	5		4	1		
Xoodyak	2	4	4	3	2	3		4		4

TABLE - ASIC performance ranking from https://github.com/ mustafam001/lwc-aead-rtl/raw/master/asic-report.pdf Threshold implementation for TBCs

As shown in [Spook,NaitoSS-EC20], TBC are great primitives for thres. impl. compared to BCs or sponges (only *n*-bit state to be protected)

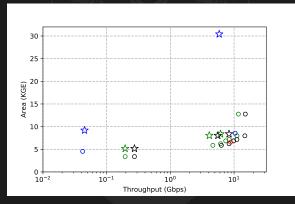


FIGURE – Throughput vs. Area trade-offs. Black : Romulus-N, Green : Romulus-N1, Red : ACORN, Blue : ASCON. • : unprotected impl., * : threshold impl.

Romulus features :

- ▷ provably secure in standard model (unlike most LWC candidates)
- ▷ full 128-bit security (BBB unlike most LWC BC-based candidates) Romulus-N priv. bound is 0, auth is $q_d/2^{\tau}$, doesn't depend on #enc queries (unlike most LWC candidates)
- SKINNY is a stable and well studied primitive, large security margin, no distinguisher (unlike many LWC sponge-based candidates)
- easy nonce-misuse resistance mode (unlike most LWC candidates) birthday with graceful degradation so ~full security in practice
- no or low overhead for small messages (unlike all LWC sponge-based candidates)
 1 AD and 1 M *n*-bit blocks need 2 TBC calls with Romulus
- ▷ among the very top hardware efficient LWC candidates
- among the top-tier software efficient LWC candidates (among top for 4 or 8-bit)
- ▷ side-channel protection :

implementation protection : efficient TBC threshold impl. **mode protection :** Romulus-LR and Romulus-LR-TEDT

