Improved Rebound Attack on the Finalist Grøst 1

Jérémy Jean ${ }^{1}$ María Naya-Plasencia ${ }^{2}$ Thomas Peyrin ${ }^{3}$

${ }^{1}$ École Normale Supérieure, France
${ }^{2}$ University of Versailles, France
${ }^{3}$ Nanyang Technological University, Singapore
FSE'2012 - March 19, 2012

SHA-3 Competition Finalists

In December 2010, the NIST chose the 5 finalists of the SHA-3 competition:

- BLAKE
- Grøstl
- JH
- Keccak
- Skein

This year, the winner will be chosen.

Grøstl: Compression Function (CF)

Grøstl-v0 [Knudsen et al. 08] has been tweaked for the final:

- Grøstl-256: $|h|=|m|=512$ bits.
- Grøstl-512: $|h|=|m|=1024$ bits.

Grøstl: Internal Permutations

Permutations P and Q apply the wide-trail strategy from the AES.

- Grøstl-256: 10 rounds on state a 8×8.
- Grøstl-512: 14 rounds on state a 8×16.

Tweak: constants in ARK and Sh changed to introduce asymmetry between P and Q

Grøstl: Finalization Round

Once all blocks of message have been treated: truncation.

Grøstl: Best Analysis After the Tweak

- Grøstl-256:
- [Sasaki et al A10]: 8-round permutation distinguisher.
- [Gilbert et al. FSE10]: 8-round CF distinguisher.
- [Boura et al. FSE11]: 10-round zero-sum.
- Grøstl-512
- [Schläffer 2011]: 6-round collision on the CF.

Our New Results 1/2

- Based on the rebound technique [Mendel et al. FSE09].
- Based on a way of finding solutions for three consecutive full active rounds: new.
- They apply both to 256 and 512 versions.

Our New Results 2/2

- On Grøstl-256, we provide distinguishers for 9 rounds of the permutation (total: 10).
- On Grøstl-512, we provide distinguishers for 8, 9 and 10 rounds of the permutation (total: 14).

Rebound Attack

Rebound Attack

SuperSBox

SuperSBox $=S B \circ M C \circ S B$

Grøstl-256 Permutation

Differential Characteristic for 9 rounds

Inbound for 3 Full-Active Rounds

S3

Inbound for 3 Full-Active Rounds

Inbound for 3 Full-Active Rounds

Inbound for 3 Full-Active Rounds

Inbound for 3 Full-Active Rounds: Analysis

Counting

- 8 forward SuperSBox sets of 2^{64} values and differences
- 8 backward SuperSBox sets of 2^{64} values and differences
- Overlapping on 512 bits of values +512 bits of differences

Number of Solutions Expected

$$
2^{8 \times 64} 2^{8 \times 64} 2^{-512-512}=2^{512+512-512-512}=1
$$

Limited Birthday

2^{384} operations

Our Algorithm

2^{256} operations, memory 2^{64}

Solving the 3 Active Rounds: Context

The 8 forward L_{i} overlaps the 8 backwards L_{i}^{\prime} like this:

Solving the 3 Active Rounds: Step 1

We start by choosing one element in each of the four first L_{i}^{\prime}.

$L_{1}^{\prime} L_{2}^{\prime} L_{3}^{\prime} L_{4}^{\prime}$

Solving the 3 Active Rounds: Step 2

This determines a single element in each L_{i}.

Solving the 3 Active Rounds: Step 3

Each determined element in the remaining L_{i}^{\prime} exists with

$$
p=2^{-8 \times 8} .
$$

$$
\begin{gathered}
\uparrow \uparrow \uparrow \uparrow \\
L_{5}^{L_{5}^{\prime} L_{6}^{\prime} L_{7}^{\prime} L_{8}^{\prime}}
\end{gathered}
$$

Summing Up

Inbound Phase

In total we try 2^{256} combinations of $\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right)$ and each gives a solution with probability: $2^{-4 \times 8 \times 8}=2^{-256}$.

Outbound Phase

Probability $2^{-2 \times 56}$ to pass two $8 \rightarrow 1$ transitions in the MixBytes.

Distinguisher

We distinguish the 9-round permutation in $2^{256+112}=2^{367}$ operations and 2^{64} in memory.

Note: This compares to a generic complexity of 2^{384} operations.

Grøstl-512 Permutation

Differential Characteristic for 10 rounds

	1	\square	T10	1		T10	1			1			1		1		T	1		,	1	\square	\square	1		
	1			1			1			1			1		1			1			1			1		
	I			1			1			I			1		I			1			I			1		
	I			1			1			I			1		'			1			I			1		
	1			1			1			1			1		1			1			1			1		
	1			1			1		-	1			1		1			1			1			1		
	'			1			I			1			1		I		-	,			,			1		
	,			,			,			,					1		\square	1	-		1			1		
	1			1			1		7	1			1		1			1	-		1			1		
	1			1			1			1			1		1			1	-		1			1		
	1			1			1			1			1		1		-	1			1			1		
-	I		\square	1			1			1			1	-	1			1		\triangle	1			1		
Mb	1	Mb		,	Mb		1	Mb		,	Mb		1	Mb	,	Mb		,	Mb			Mb		,	Mb	
\square	1	\square	T	1	\square	T	1		1	1		\square	1		1	\square	H	,	\dagger	H	I	\square	H	I	F-	T
	1			1			1			1			1		1			1			1			1		
	1			1			1			1		-	1		1		-	1			1			1		
	1			1			1			1			1		1		T	1			I			1		
	1			1			1	-	O	1	\square	-	1		1			1			1			1		
	1			1			1			1		\square	1		1			1			1			1	-	
	'			1			1			1			1		I			I			1			1		
	1			1		-	1			1			1		1			1			1			1		
	'		-	1		-	1		θ	1			1		1			1			,			,		
	I			1		-	,		-	,			1		1			1		-	1		O	1		
	,		\square	,		O	1		O	,		-	1		,			,		\square	,		-			O
	1			1			1			1			1		1			1			1			1		
Sh	I	Sh		I	Sh		1	Sh		I	Sh		1	Sh	I	Sh		I	Sh		,	Sh		,	Sh	
	1		H	1	\square	T	1	\square	W	I			1		1		-	1		1	1	\square	H		\square	目
	1			1			1		-	1			1		1			1			1			,		
	1			1			1		-	1			1		1			1			1			1		
	1			1		-	1		-	1			1		1			1			I	\bigcirc		1		
	I			I		-	1		-	1			,		1		θ	1			I			1		
	I		-1	1		O	1		-	1			1		1		-	I			I			,		
	,		-	,			1			,			,		1			,		-	1		,	1		
	1		-	1			1		O	1			1		,		\square	1	-	-	1	-		1		
	1		,	,		-	1		-	1			1		1			1		-	1			1		
	1			1		-	1		-	1			1		,		-	1		-	I		-	1		-
	1		\square	1		θ	1			1			1		1			I			1			I		
SB	!	SB		1	SB		1	SB		!	SB		1	SB	1	SB										
	I		W	1	\square	1	1		ค	1			,		,			1		T1	,	\square	T	1	\dagger	B
	1			1			1			1			1		1			1			1			1		
	,			,			I		-	I			1		1			,			I					
	,			,			,		-	,			1		1		-	,			,			,		
	1			1			1			1		TH	1		,		-	1	-		1			1		
	1			1			1		-	1			1		1		-	1			1			1		
	1			,			1			1			1		1			1			1			,		
	1			1			1		-	1			1		1		θ	1		-	1			1		
	,			,			,			,	\square		1		I			,			,			,		
	1			1	\square		1		-	1			,		1		-	1			1			1		
	1			1			1			1			1		1			1	\square	\square	I	-	\square	1		
	1	_ -		1	_ 1		1	-		1	-		1	- 1	1	- -								,		

Inbound Phase

Inbound Phase

Inbound Phase

Inbound Phase

Observations

Counting

- 16 forward SuperSBox sets of 2^{64} values and differences
- 16 backward SuperSBox sets of 2^{64} values and differences
- Overlapping on 1024 bits of values +1024 bits of differences

Number of Solutions Expected

$$
2^{16 \times 64} 2^{16 \times 64} 2^{-1024-1024}=2^{1024+1024-1024-1024}=1
$$

Limited Birthday

2^{896} operations

Our Algorithm

2^{280} operations, memory 2^{64}

Algorithm: Guess-and-Determine Approach

Constraints

The differences around the MixBytes layer are restricted since the right state is not fully active.

Notations

- Forward SuperSBoxes: L_{1}, \ldots, L_{16}.
- Backward SuperSBoxes: $L_{1}^{\prime}, \ldots, L_{16}^{\prime}$.

Algorithm: Guess-and-Determine Approach

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

1

Next step: L_{2}^{\prime}.

Legend

\checkmark Known value and difference

- Known difference
* Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

1

Next step: L_{7}, L_{16}.

Legend

\checkmark Known value and difference

- Known difference
* Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

1

Next step: $L_{10}^{\prime}, L_{11}^{\prime}$.

Legend

\checkmark Known value and difference

- Known difference
\star Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1)}
$$

Next step: $L_{8}, L_{9}, L_{11}, L_{15}$.

Legend

\checkmark Known value and difference

- Known difference
* Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2)}
$$

Legend

\checkmark Known value and difference

- Known difference
* Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2)}
$$

Next step: L_{12}^{\prime}.

Legend

\checkmark Known value and difference

- Known difference
\star Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2+3)}
$$

Legend

\checkmark Known value and difference

- Known difference
* Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2+3)}
$$

Next step: L_{10}, L_{12}.

Legend

\checkmark Known value and difference

- Known difference
\star Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2+3)}
$$

Legend

\checkmark Known value and difference

- Known difference
\star Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2+3)}
$$

Next step: L_{2}^{\prime}.

Legend

\checkmark Known value and difference

- Known difference
\star Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2+3+5)}
$$

Legend

\checkmark Known value and difference

- Known difference
* Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2+3+5)}
$$

Next step: $L_{13}^{\prime}, L_{14}^{\prime}, L_{15}^{\prime}$.

Legend

\checkmark Known value and difference

- Known difference
\star Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Current Complexity

$$
2^{256+16+8}
$$

Current Probability

$$
2^{-8 \cdot(1+2+3+5+8+8+8)}
$$

Legend

\checkmark Known value and difference

- Known difference
* Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Number of different differences in each L_{i}

Final Complexity

$$
2^{256+16+8}=2^{280}
$$

Final Probability

$$
2^{-8 \cdot(1+2+3+5+8+8+8)}=2^{-280}
$$

The End.

Legend

\checkmark Known value and difference

- Known difference
\star Guessed value and difference
- Highlight current step

Summing Up

Inbound Phase

In total we try: $2^{256+16+8}=2^{280}$ possibilities, and each gives a solution with probability

$$
2^{-8 \times(1+2+3+5+8+8+8)}=2^{-280}
$$

Outbound Phase

$$
\text { Again: } \mathbb{P}(\text { outbound })=2^{-2 \times 56}=2^{-112}
$$

Distinguisher

Finally, we distinguish the 10 -round permutation in $2^{280+112}=2^{392}$ operations and 2^{64} in memory.

This compares to a generic complexity of 2^{448} operations.

Conclusion

- We have provided new rebound results on building blocks of both versions of Grøstl that improve the previous number of analysed rounds.
- We propose a way to solve 3 fully active states in the middle.

The results do not threaten the security of Grøstl, but we believe they will help better understanding AES-based constructions and their bounds regarding rebound techniques.

Conclusion

- We have provided new rebound results on building blocks of both versions of Grøstl that improve the previous number of analysed rounds.
- We propose a way to solve 3 fully active states in the middle.
- The results do not threaten the security of Grøstl, but we believe they will help better understanding AES-based constructions and their bounds regarding rebound techniques.

Thank you!

